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Fast Hue and Range Preserving Histogram

Specification: Theory and New Algorithms

for Color Image Enhancement
Mila Nikolova (Senior Member IEEE), and Gabriele Steidl

Abstract—Color image enhancement is a complex and chal-
lenging task in digital imaging with abundant applications.
Preserving the hue of the input image is crucial in a wide range
of situations. We propose simple image enhancement algorithms
which conserve the hue and preserve the range (gamut) of the R,
G, B channels in an optimal way. In our setup, the intensity input
image is transformed into a target intensity image whose his-
togram matches a specified, well-behaved histogram. We derive a
new color assignment methodology where the resulting enhanced
image fits the target intensity image. We analyse the obtained
algorithms in terms of chromaticity improvement and compare
them with the unique and quite popular histogram based hue
and range preserving algorithm of Naik and Murthy. Numerical
tests confirm our theoretical results and show that our algorithms
perform much better than the Naik-Murthy algorithm. In spite
of their simplicity, they compete with well-established alternative
methods for images where hue-preservation is desired.

Index Terms—color image enhancement, scaling and shifting
methods, hue preservation, gamut problem, exact histogram
specification, color perception.

I. INTRODUCTION

This paper assists to the tremendous progress in digital

color imaging and display technology. In spite of the important

amount of research, color perception and color appearance are

still open problems. The demand for fast efficient algorithms

improving the color content of digital images has increased

dramatically. The applications of color image improvement are

abundant. They concern for example digital cameras and mo-

bile phone cameras, medical imaging, video, post-production

industry, restoration of old pictures and movies.

Typically, color images are stored and viewed using three

components (channels): red (R), green (G) and blue (B). In this

paper we aim to design color image enhancement methods

in the RGB space sharing three important features, namely

hue and range (gamut) preservation and low computational

complexity. The hue describes in each area of an image the

dominant color ingredient that one really perceives, e.g., red,

orange, magenta, yellow and so on [1], [2]. The hue has the

nice property of being invariant under changes of direction

and intensity of the incident light [3]. Thus, by preserving

the hue and enhancing the brightness, the obtained image will

appear more colorful. Examples where the hue is modified

are shown in Fig. 1. The range (gamut) preservation is often
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Fig. 1. Histogram equalization (HE). Left: Original image onion (Matlab
IPT image credits notice). Middle: HE to each color channel independently.
Right: Enhancement in three steps following [2]: RGB to HSI transform, HE
of the intensity channel, then HSI to RGB transform. Here 36.1 % of the
pixels have values in (255, 443.5].

omitted in works on image enhancement; see, e.g. the recent

textbook [2, p. 80]. Each color channel in a digital image

can only take a limited number, say L, of integer values, e.g.,

L = 256 for 8-bit coding. If the enhancement method produces

larger or smaller values these are clipped back to the boundary

of [0, L − 1] which also changes the hue. In Fig. 1 right

36.1 % of the pixels are clipped back to 255 which yields too

many yellow pixels. Finally, a low computational complexity of

algorithms is particularly important when dealing with “mega-

pixel” images taken by commercial cameras, resources in

hardware implementations and extensions to video.

Remark 1. Fully automatic color image enhancement faces

(at least) two major limits: i) ”The chemical compounds

that form color receptors vary among the population. The

physical shapes of the receptors vary among the population

and within the retina. Thus, the color vision among observers

with normal color vision varies significantly.” [1, p. 18]. ii)

Image enhancement is always driven by an application: typi-

cally the user needs specific visual information determined by

his/her purpose. Further subjective criteria are of paramount

importance [2].

Consequently, we do not look for fully automatic image

enhancement algorithms. Here we focus on histogram based

methods. The selection of a suitable target histogram enables

the user’s needs to be satisfied. Moreover we wish to conceive

fast algorithms. In order to achieve our goals, we propose

simple algorithms composed of two stages:

(a) the intensity channel of the input RGB image is matched

to a specified histogram which gives us the target intensity

image;
(b) the RGB color values are computed based on the target

intensity image so that they satisfy the hue and gamut

constraints in an optimal way.

These stages are briefly commented below.
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Stage (a). Exact histogram specification (HS), also known

as histogram matching, of single-valued (gray-valued) images

aims to transform an input image to an output image which ex-

actly fits a prescribed target histogram. Histogram equalization

(HE) is a particular case of HS where the target histogram is

uniform. Usually HE leads to unnatural images and should not

be the target of choice. We do not focus on the construction

of target histograms. Instead, we adopt a simple approach

inspired by [4]. For digital image HS is an ill posed problem

[5]. The clue to ensuring exact HS is to obtain a meaningful

total strict ordering of all pixels in the input digital image. We

perform exact HS using the algorithm in [32] which currently

provides the best pixel ordering in terms of quality and speed.

Stage (b). The extension of histogram methods to color

images is a quite complex task. The histogram of a gray-value

image is 1-D while the histogram of a color image is 3-D

which gives rise to an under-determined problem. For instance,

applying HE to each color channel independently changes the

color content (the hue) of the image, see Fig. 1 middle. Further

it is not easy to produce color images that respect the range

constraints; see Fig. 1 right. As a central result of this paper,

we propose a general and optimal hue and range preserving

color assignment methodology.

Related work. Since the inaugural paper [6] providing

PDE-based and variational formulations for image histogram

modifications, these methods were further expanded to deal

with color image enhancement; see, e.g., [7], [8], [9], [10].

These approaches provide flexible tools to incorporate various

knowledge on human visual perceptual phenomena, typically

in relation with Retinex theory [11]. An automatic color

enhancement (ACE) algorithm for digital images, mimicking

some characteristics of the human visual system, has been

proposed in [12] and refined in [13]. A fast implementation

of ACE was developed in [14]. A perceptually inspired vari-

ational approach allowing a more flexible control of contrast

adjustment and attachment to data was proposed in [7]. A

numerical implementation of the gradient descent technique

applied to the corresponding energy functionals coincides

with the equation of the ACE. Some basic requirements for

”perceptually inspired” objectives were formulated in [8] and

gave rise to successful algorithms [8], [15].

Next we summarize the main approaches via histogram

modification of color images following a chronological order.

Since the suitably normalized histogram of an image is also

the empirical probability distribution of its pixel values, a

statistical vocabulary is used in many papers. In [16] a 3-D

color histogram in the RGB color space was proposed for HE;

the resultant images present an excessive brightness for bright

pixels, see [17]. A method that preserves both the hue and

the range (gamut) constraints was inaugurated by Naik and

Murthy in [18]. Even though this article did not show color

image applications, it is a state-of-the-art method applied in

many papers; see, e.g., [19], [17]. As to the choice of the

color space, some methods work directly in the RGB space

while others operate in transformed color spaces, e.g., LHS,

HSI, YIQ, HSV, etc., see [5]. When processing is done in

a transform color space, coming back to the original RGB

space typically generates a gamut problem, as cautioned in

[18]. Beyond the additional numerical cost, a post-processing

in RGB is then needed (often realized using [18]). Gray-value

grouping was tentatively extended to color HE in [20]. In

[21], a new definition of the histogram of a color image was

introduced whose cumulative distribution function (cdf) is the

product of the marginal cdf’s of each color channel. Then

the color values are increased / decreased by the same amount

iteratively. This work was refined in a later paper [22]. Another

approach, developed in [19], is to work in the HSI space where

the hue and the saturation are equalized and then processed

using probability smoothing. All pixels in the RGB space that

present gamut problem are corrected using [18]. A generic

brightness preserving dynamic histogram equalization scheme,

composed of five steps, was proposed in [23]. This scheme was

applied to color images in several ways, including transforms

into other color spaces. The work in [17] demonstrates that

the methods in [19], [21], [16] based on higher dimensional

histogram definition, increase the brightness of the image

and cannot fit the prescribed uniform histogram. The main

conclusion is that only the 1-D histogram of the intensity

channel can be considered for equalization. The new color

values are then computed using the algorithm in [18]. The

method in [17] was recently improved in [24]. In order to avoid

the excessive contrast enhancement due to HE, a histogram

mixing strategy was applied in [25]. There are also many

histogram based techniques where the enhancement function is

an S-type, or power, or logarithmic transform; see, e.g., [26],

[27], [28], [29]. In particular, the approach in [27] is based on

models for color perception and is automatic. Unfortunately,

there are no algorithms nor tests on color images.

Contributions. We propose a general affine model for

fast hue and range preserving image enhancement in the

RGB space which gives rise to Algorithm 3. Two simple but

important instances of this algorithm are the Multiplicative

algorithm 4 and the Additive algorithm 5. We show how the

outcome of Algorithm 3 can be faithfully approximated as

a convex combination of the images obtained by Algorithm

4 and Algorithm 5, which is quite practical. The enhance-

ment performances of our algorithms and the Naik-Murthy

algorithm [18] are analyzed in terms of their chromaticity

improvement. In all cases, our algorithms clearly outperform

the algorithm in [18] recently applied to color images in

[17]. All numerical tests confirm our theoretical results. Our

algorithms are simple and fast. They are really efficient when

one wishes to give a better clarity of images (not too altered

by artifacts) while preserving the original color ambience.

Outline. In Section II we sketch our HS method and present

the Maik-Murthy algorithm [18]. Section III presents our

approach for color image enhancement. In Section IV we

evaluate our algorithms and the algorithm in [18] analytically

in terms of saturation as well as qualitatively. Section V

presents numerical results. Conclusions and points for future

work are drawn in Section VI.

The proofs of all statements are given in the Appendix.

II. PRELIMINARIES

Let w = (wr, wg, wb) be an RGB image of size M × N ,

where wc ∈ {0, . . . , L − 1}, c ∈ {r, g, b} are its red, green
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and blue channels, respectively. For 8-bit images we have L =
256. We reorder each color channel columnwise into a vector

of size n := MN and address the pixels by the index set

In := {1, · · · , n}.

A. Histogram Specification

The intensity of an RGB image w is defined by [5]

f(w) :=
1

3
(wr + wg + wb). (1)

Then f has 3(L−1)+1 different values in 1
3{0, · · · , 3(L−1)}.

Remark 2. Instead of the intensity f we can also work with

other convex combinations of RGB values. E.g., we can use

the weights 0.299, 0.587 and 0.114 which are in proportion

to the human perception of the RGB channels, see [1], [2].

We want to find an intensity image f̂ with gray values in

{0, . . . , L − 1} which has a specified (target) histogram ĥ =
(ĥ1, . . . , ĥL), i.e., ĥ[k] := ♯ {i ∈ In : f̂ [i] = k − 1}, k =
1, . . . , L, where ♯ stands for cardinality. Such exact HS can

almost never be achieved for images with a small number of

different values compared to the number of pixels using the

classical statistical method based on the cumulative density

function, see [5]. Instead we will apply a procedure based on a

meaningful strict ascending ordering of the pixels in f . Various

ordering algorithms for digital images were proposed in the

literature, see e.g. [30], [31], [33]. The method in [32], based

on [33], provides currently the best way in terms of speed and

quality to order the pixels in digital images. The basic idea is to

minimize a smoothed ℓ1−TV functional by simple fixed point

iterations with the original image as initialization. After a few

iterations the approximate minimizer has entries which differ

(up to very few outliers) pairwise from each other while the

ordering of the original gray values is retained. Let ∇ denote

the discrete gradient operator (horizontal and vertical forward

differences), see [32], ∇T its transposed and let

η(t) :=
t

α+ |t|
and η−1(y) =

αy

1− |y|
, (2)

where α := 0.05 is the default value. Note that η = θ′ where

θ(t) := |t| −α log(1+ |t|
α
), see [32]. Once a strict ordering is

obtained, exact HS is direct. Our HS algorithm reads as:

Algorithm 1 HS using strict ordering [32]

Initialization: u(0) := f , β := 0.1, target histogram ĥ,

iteration number K (default K := 5), c0 := 0.

———————————————————————–

1. For k = 1, . . . ,K compute

u(k) := f − η−1
(
β∇Tη(∇u(k−1))

)
.

2. Obtain the ordering {ij}
n
j=1 of In from the ascending

sort of the entries of u(K).

3. For k = 0, . . . , L− 1 set ck+1 := ck + hk and

f̂ [ck + 1] = . . . = f̂ [ck+1] = k.

The importance of a meaningful strict ordering for HS is

illustrated in Fig. 2 in the context of HE. The Matlab built-in

function histeq does not involve a strict ordering of f and

the resulting histogram of f̂ is not uniform. This entails some

artifacts shown in (a). Such artifacts are not observed in (b)

obtained using our Algorithm 1. The colors in Fig. 2(a)-(b)

were assigned using Algorithm 2 given in the next subsection.

original (a) histeq histogram of (a) zoom of (a)

0 255

(b) Algorithm 1 histogram of (b) zoom of (b)

0 255

Fig. 2. Illustration of the importance of a meaningful ordering. Top: Original
image and application of Matlab histeq. Bottom: Application of Algorithm 1.

B. Hue and Range Preservation

Range preservation is a mandatory constraint for all digital

imaging devices [4]. A transformed version ŵ of w can be

correctly depicted only if

ŵc[i] ∈ [0, L− 1] ∀ i ∈ In ∀ c ∈ {r, g, b} , (3)

since no more than L digits can be displayed. Otherwise,

the obtained image is modified according to the visualization

device - which is quite an ad-hoc option; see e.g., Fig. 1 right.

The hue of an image w is given by H(w) = 0 if wr =
wg = wb and otherwise by

H(w) :=

{
θ if wb ≤ wg,
360o − θ if wb > wg,

(4)

where

θ := arccos
1
2 ((wr − wg) + (wr − wb))

((wr − wg)2 + (wr − wb)(wg − wb))
1

2

,

see [5]. Note that the denominator of θ can be rewritten as

( 12 ((wr − wg)
2 + (wr − wb)

2 + (wg − wb)
2))

1

2 .

Remark 3. The simplest hue and range preserving method

is to apply the same affine mapping ξ(w) := aw + b to

all pixels, computing a and b so that the least and the

largest pixels in ξ(w) are 0 and L − 1, respectively. Let

wmax := max{wc[i]; c ∈ {r, g, b}, i ∈ In} and let wmin :=
min{wc[i]; c ∈ {r, g, b}, i ∈ In}. Then ξ(w) given by

ξ(w) := (L− 1)
w − wmin

wmax − wmin
(5)

is the desired stretching of w. For example, see Fig. 16, top.

It is easy to see that the hue of the modified image ŵ is

also preserved if the color values of each pixel are modified

by the same affine transform

ŵc[i] = a[i]wc[i] + b[i], c ∈ {r, g, b}, (6)

where the constants a[i] and b[i] have to be chosen for any

i ∈ In. Finding other appropriate hue-preserving transforms is

an interesting problem. For a[i] = 1, model (6) amounts to an
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additive transform, usually called shifting. For b[i] = 0, it is a

linear/multiplicative transform known as scaling. Both scaling

and shifting have been introduced in [34], [35]. In general, the

result of (6) fails the range constraint (3).

The gamut problem was examined by Naik and Murthy in

[18] in the scaling case for a[i] = f̂ [i]/f [i], where f̂ is a target

intensity. If f̂ [i]/f [i] > 1, the range constraint (3) might not

be guaranteed. In such a case the authors propose to avoid the

potential problem by switching from the RGB color space to

the CMY (Cyan = L − 1−R, Magenta = L − 1−G, Yellow

= L−1−B) space and then to transform back into RGB. This

correction step reads for all c ∈ {r, g, b} as

ŵc[i] = L− 1−
L− 1− f̂ [i]

L− 1− f [i]
(L− 1− wc[i]) if

f̂ [i]

f [i]
> 1.

This formula is equivalent to ŵc[i] =
L−1−f̂ [i]
L−1−f [i] (wc[i]−f [i])+

f̂ [i], so that the algorithm in [18] can be formulated as follows:

Algorithm 2 Naik and Murthy [18]

1. Compute the intensity f of w and the target intensity f̂ .

2. For i ∈ In compute

(i) ŵc[i] :=
f̂ [i]
f [i] wc[i] if

f̂ [i]
f [i] ≤ 1

(ii) ŵc[i] :=
L−1−f̂ [i]
L−1−f [i] (wc[i]− f [i]) + f̂ [i] if

f̂ [i]
f [i] > 1

Algorithm 2 is often used to avoid the gamut problem.

III. NEW AFFINE HISTOGRAM SPECIFICATION MODELS

In this section we develop our affine color enhancement

methodology. Given an RGB image w and a target histogram,

we compute its intensity f by (1) and then the target intensity

image f̂ by Algorithm 1. Our next goal is to transform w into

an image ŵ having the following properties:

(a) Intensity fit: f̂ = 1
3 (ŵr + ŵg + ŵb).

(b) Hue preservation: the hue of ŵ and w coincide.

(c) Range preservation: 0 ≤ ŵc ≤ L− 1, c ∈ {r, g, b}.

We adopt the hue preserving affine transform (6). Summing

up over c in (6) shows that property (a) holds if and only if

f̂ [i] = a[i]f [i] + b[i] ⇔ b[i] = f̂ [i]− a[i]f [i]. (7)

Therefore the affine model (6) obeys (a) if and only if

ŵc[i] = a[i](wc[i]− f [i]) + f̂ [i], c ∈ {r, g, b}. (8)

Two particular instances of (6) are the following:

− Scaling: For b[i] = 0, model (8) reads as

ŵc[i] =
f̂ [i]

f [i]
wc[i], c ∈ {r, g, b}. (9)

− Shifting: For a[i] = 1, model (8) becomes

ŵc[i] = wc[i]− f [i] + f̂ [i], c ∈ {r, g, b}.

We have to adapt these models so that they preserve the range.

We will use for all i ∈ In the magnitudes

M [i] := max{wc[i] : c ∈ {r, g, b}},

m[i] := min{wc[i] : c ∈ {r, g, b}}
(10)

and similarly M̂ [i] for the maximum and m̂[i] for the mini-

mum of the RGB components of ŵ[i] given in (8).

Remark 4. By the definitions of f , m and M we have

0 ≤ m[i] ≤ f [i] ≤ M [i] ≤ L− 1.

Further M [i] = f [i], resp., m[i] = f [i] if and only if wr[i] =
wg[i] = wb[i], i.e., w[i] is a gray pixel.

A pixel ŵ[i] has an upper gamut problem if M̂ [i] > L− 1
and a lower gamut problem if m̂[i] < 0. We will treat these

gamut problems in an optimal way in the following sense:

• Assume that we have an upper gamut problem, i.e., M̂ [i] >

L − 1 for some i ∈ In. Then M̂ [i] = ŵk[i] for some k ∈
{r, g, b} and the best correction of this pixels is clearly to

choose a[i] in (8) so that ŵk[i] has the closest value in the

range, i.e. ŵk[i] = L− 1, see, e.g., [4]. Equivalently,

L− 1 = a[i](M [i]− f [i]) + f̂ [i]. (11)

From Remark 4 we know that for non gray-valued pixels

M [i]− f [i] > 0, so that

a[i] =
L− 1− f̂ [i]

M [i]− f [i]
≥ 0.

Thus, for the upper gamut problem, the corrected color

values of pixel i are given by

ŵc[i] =
L− 1− f̂ [i]

M [i]− f [i]
(wc[i]−f [i])+f̂ [i], c ∈ {r, g, b}. (12)

• Assume we have a lower gamut problem m̂[i] < 0 for some

i ∈ In. Let k ∈ {r, g, b} be such that ŵk[i] = m̂[i]. Then the

optimal correction in (8) obeying (c) is to set ŵk[i] = 0, i.e.,

0 = a[i] (m[i]− f [i]) + f̂ [i]. (13)

By Remark 4 f [i]−m[i] > 0 for non gray pixels, so that

a[i] =
f̂ [i]

f [i]−m[i]
≥ 0.

Hence for the lower gamut problem, the corrected color

value at i is given by

ŵc[i] =
f̂ [i]

f [i]−m[i]
(wc[i]−f [i])+ f̂ [i], c ∈ {r, g, b}. (14)

A. Affine Algorithm with Optimal Range Preservation

Our affine model is a convex combination of the shifting

and scaling models for some λ ∈ [0, 1]:

ŵc[i] = λ
f̂ [i]

f [i]
wc[i] + (1− λ) (wc[i]− f [i] + f̂ [i]) (15)

= a[i](wc[i]− f [i]) + f̂ [i],

where

a[i] := λ
f̂ [i]

f [i]
+ 1− λ (16)

with upper and lower gamut corrections (12) and (14) if

necessary. Clearly, for λ = 1 we have the scaling model and

for λ = 0 the shifting one. Algorithm 2 corresponds to λ = 1
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in (15) but the gamut problem is tackled just by thresholding

a[i] at one; this appears to be an important drawback.

The next propositions show that correcting the gamut prob-

lems using (12) or (14) does not yield new gamut problems.

Proposition 1. Assume that pixel i ∈ In in (15) has an upper

gamut problem. Then its correction ŵc[i] in (12) satisfies

0 ≤ ŵc[i] ≤ L− 1, c ∈ {r, g, b}.

Let us mention that a lower gamut problem can obviously

not appear for the multiplicative model (9) i.e. for λ = 1.

Proposition 2. Let λ ∈ [0, 1). Assume that pixel i ∈ In in

(15) has an lower gamut problem. Then its correction ŵc[i]
in (14) satisfies

0 ≤ ŵc[i] ≤ L− 1, c ∈ {r, g, b}.

Using Propositions 1 and 2, the optimal range-preserving

approximation of our affine model (15) can be computed in

one iteration where all pixels in the input image are modified

only once. The algorithm is described below.

Algorithm 3 Optimal Range-Preserving Enhancement

1. Compute the intensity f of w by (1) and the target

intensity f̂ using Algorithm 1 for given ĥ.

2. For i ∈ In compute M [i] and m[i] by (10). If f [i] = 0,

then ŵ[i] := 0. Otherwise compute

a[i] := λ
f̂ [i]

f [i]
+ (1− λ),

Gλ
m[i] := a[i](m[i]− f [i]) + f̂ [i],

Gλ
M [i] := a[i](M [i]− f [i]) + f̂ [i]

and for all c ∈ {r, g, b}:

(i) ŵc[i] := a[i] (wc[i]− f [i]) + f̂ [i]

if Gλ
m[i] ≥ 0 and Gλ

M [i] ≤ L− 1 ,

(ii) ŵc[i] :=
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if Gλ
M [i] > L− 1,

(iii) ŵc[i] :=
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i]

if Gλ
m[i] < 0.

Algorithm 3 and the role of λ is illustrated in Fig. 3. The

images were computed for Gaussian target histogram with

parameters (l, r) = (0.9, 0.1), see (27), Sec. V-A.

B. Multiplicative, Additive Algorithms and their Combinations

For λ ∈ {0, 1} Algorithm 3 yields two simple range pre-

serving scaling and shifting algorithms called Multiplicative

and Additive algorithm, respectively. Observing that

G0
m[i] = m[i]− f [i] + f̂ [i],

G0
M [i] = M [i]− f [i] + f̂ [i],

G1
M [i] = f̂ [i]

f [i]M [i]

these algorithms read as follows:

Fig. 3. Input image couple (top left) and its enhancement by our Algorithm
3 for λ = 0, 1

4
, 1

2
, 3

4
, 1. Here the size of the sets U(λ) in (18) in percent

of all image pixels are 0.70, 1.24, 2.12, 3.13, 4.17 and the sets L(λ) are
empty. All nuances between the very colorful image ŵ× and the grayish
image ŵ+ can be also obtained by their convex combinations in (17).

Algorithm 4 Multiplicative Color Enhancement

1. Compute the intensity f of w and the target intensity f̂
using Algorithm 1.

2. For i ∈ In compute M [i] by (10). If f [i] = 0, then

ŵ[i] := 0. Otherwise compute

G1
M [i] = f̂ [i]

f [i]M [i]

and for all c ∈ {r, g, b}:

(i) ŵc[i] :=
f̂ [i]
f [i] wc[i]

if G1
M [i] ≤ L− 1,

(ii) ŵc[i] :=
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if G1
M [i] > L− 1.

Algorithm 5 Additive Color Enhancement

1. Compute the intensity f of w and the target intensity f̂
using Algorithm 1.

2. For i ∈ In compute M [i] and m[i] by (10). If f [i] = 0,

then ŵ[i] := 0. Otherwise compute

G0
m[i] = m[i]− f [i] + f̂ [i] and G0

M [i] = M [i]− f [i] + f̂ [i]

and for all c ∈ {r, g, b}:

(i) ŵc[i] := wc[i]− f [i] + f̂ [i]

if G0
m[i] ≥ 0 and G0

M [i] ≤ L− 1,

(ii) ŵc[i] :=
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i]

if G0
M [i] > L− 1,

(ii) ŵc[i] :=
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i]

if G0
m[i] < 0.

Let ŵ× be obtained by the Multiplicative algorithm 4 and

ŵ+ by the Additive algorithm 4. For some λ ∈ [0, 1], consider

w̃c := λŵ×
c + (1− λ)ŵ+

c ∀c ∈ {r, g, b}. (17)

Since w̃c is a convex combination of ŵ× and ŵ+, it obeys

all conditions (a)-(c). We want to know if w̃c can replace the
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affine Algorithm 3. In order to answer this question, we set

U(λ) := {i ∈ In : Gλ
M [i] > L− 1},

L(λ) := {i ∈ In : Gλ
m[i] < 0}.

(18)

Here U(λ) corresponds to the upper gamut step (ii) and L(λ)
– to the lower gamut step (iii) in Algorithm 3.

Proposition 3. The sets U(λ) and L(λ) defined in (18) fulfill

L(1) = ∅ and

U(λ1) ⊆ U(λ2), L(λ1) ⊇ L(λ2), 0 ≤ λ1 < λ2 ≤ 1.

In particular, (18) yields

U(1) =
{
i ∈ In : f̂ [i]

f [i]M [i] > L− 1
}
,

U(0) =
{
i ∈ In : f̂ [i]− f [i] +M [i] > L− 1

}
,

L(0) =
{
i ∈ In : f̂ [i]− f [i] +m[i] < 0

}
.

(19)

From Proposition 3 one has U(0) ⊆ U(1). The notation in

(19) enables Algorithms 4 and 5 to be restated as follows:

− Multiplicative algorithm (λ = 1)

(i) ŵc[i] =
f̂ [i]
f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ In \U(1),

(ii) ŵc[i] =
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ U(1).

(20)

− Additive algorithm (λ = 0)

(i) ŵc[i] = (wc[i]− f [i]) + f̂ [i] if i ∈ In \ {U(0) ∪ L(0)},

(ii) ŵc[i] =
L−1−f̂ [i]
M [i]−f [i] (wc[i]− f [i]) + f̂ [i] if i ∈ U(0),

(iii) ŵc[i] =
f̂ [i]

f [i]−m[i] (wc[i]− f [i]) + f̂ [i] if i ∈ L(0).
(21)

The relation between w̃c in (17) and the outcome ŵ of Al-

gorithm 3 for the same λ is described in the next proposition.

Proposition 4. Let ŵ be obtained by Algorithm 3 and w̃
by (17) for the same λ ∈ [0, 1]. Then it holds for i ∈
In \

{
U(1) \U(0) ∪ L(0)

}
that w̃c[i] = ŵc[i].

The sets U(1), U(0) and L(0) are usually small for reason-

able target intensity images f̂ (see Table I) and U(1) \U(0)
contains generally much less pixels than U(1). If we wish

to see the enhancement results ŵ of Algorithm 3 for various

λ ∈ [0, 1], Proposition 4 justifies to compute instead w̃ by (17)

which is much more practical. Thus, by sliding λ in (17), we

can easily move between the two models.

IV. COMPARISON OF THE ALGORITHMS

A. Saturation Properties

Here we analyze the saturation of images enhanced by our

methods and by the Naik-Murthy algorithm. The saturation of

an RGB image w in the HSI model [5] is defined by

S(w) :=





1−
min{wr, wg, wb}

f(w)
if f(w) > 0,

0 if f(w) = 0 .
(22)

Proposition 5. Let S(w[i]) and S(ŵ[i]) denote the saturation

of pixel i in the input image w and the image ŵ obtained by

our Algorithm 3, respectively. If f [i] ∈ {m[i],M [i]} we have

S(ŵ[i]) = 0. Otherwise the obtained saturation is given by

(i) S(ŵ[i]) = S(w[i])
(
λ+ (1− λ) f [i]

f̂ [i]

)

if i ∈ In \ {U(λ) ∪ L(λ)},

(ii) S(ŵ[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
M [i]−f [i] if i ∈ U(λ),

(iii) S(ŵ[i]) = 1 if i ∈ L(λ).

To clarify the comparison, all magnitudes relevant to Al-

gorithm 2 (Naik and Murthy) hold the superscript •, those

relevant to Algorithms 4 (Multiplicative) and 5 (Additive) have

the superscripts × and +, respectively. In particular, we obtain:

− Algorithm 4 (Multiplicative)

(i) S(ŵ×[i]) = S(w[i]) if i ∈ In \U(1),

(ii) S(ŵ×[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
M [i]−f [i] if i ∈ U(1).

(23)

− Algorithm 5 (Additive)

(i) S(ŵ+[i]) = S(w[i]) f [i]

f̂ [i]
if i ∈ In \ (U(0) ∪ L(0)),

(ii) S(ŵ+[i]) = S(ŵ×[i]) if i ∈ U(0),

(iii) S(ŵ+[i]) = 1 if i ∈ L(0).
(24)

Let us denote

V :=

{
i ∈ In :

f̂ [i]

f [i]
> 1

}
. (25)

By (19) and Remark 4 we find that if i ∈ U(1) then
f̂ [i]
f [i] >

L−1
M [i] ≥ 1 and that if i ∈ L(0), then

f̂ [i]
f [i] < 1−m[i]

f [i] < 1. Hence

V ⊇ U(1) and L(0) ⊂ In \ V. (26)

Using the notation in (25), case (i) in Algorithm 2 (Naik-

Murthy) holds for any i ∈ In \ V and step (ii) holds for any

i ∈ V . The saturation of images enhanced by applying the Naik

- Murthy Algorithm 2 is given by the following proposition.

Proposition 6. Let S(w[i]) and S(ŵ •[i]) denote the satura-

tion of pixel i in the input image w and the image ŵ • obtained

by the Naik-Murthy Algorithm 2, respectively. Then

(i) S(ŵ •[i]) = S(w[i]) if i ∈ In \ V,

(ii) S(ŵ •[i]) = S(w[i]) f [i]

f̂ [i]

L−1−f̂ [i]
L−1−f [i] if i ∈ V .

Remark 5. Proposition 3 and (26) show that V ⊇ U(1) ⊇
U(0). Note that all these inclusions are almost always strict;

see Table I. E.g., in (26) we find U(1) = V if and only if

M [i] = L− 1 for all i ∈ V .

Using Propositions 5 and 6, the saturation that Algorithms 4,

5 and 2 provide can be rigorously compared.

• Let i ∈ In \V . Then i ̸∈ U(1) and i ̸∈ U(0). Hence

S(w[i]) = S(ŵ×[i]) = S(ŵ •[i]) ≤ S(ŵ+[i]),

where the last inequality becomes an equality only for

f̂ [i] = f [i]. Beyond this case, only the Additive algorithms 5

increases the saturation if f̂ [i] < f [i]. But since the output
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intensity is decreased, the perceived colorfulness of the pixel

is decreased.
• Let i ∈ V \U(1) = {i ∈ In : 1 < f̂ [i]

f [i] ≤ L−1
M [i]}. Then

i ̸∈ (U(0) ∪ L(0)) and consequently

S(w[i]) = S(ŵ×[i]) > S(ŵ+[i]) > S(ŵ •[i])

and S(ŵ •[i]) decreases faster than S(ŵ+[i]) when f̂ [i]
increases because

S(ŵ •[i])

S(ŵ+[i])
=

M [i]− f [i]

L− 1− f [i]
< 1.

• Let i ∈ U(1). Then

S(w[i]) > S(ŵ×[i]) ≥ S(ŵ •[i]),

where the equality is reached if and only if M [i] = L− 1.

But for most of the pixels one has M [i] < L− 1. Further,

S(w[i]) > S(ŵ+[i]) ≥ S(ŵ •[i]),

where the equality holds if and only if M [i] = L − 1 and

i ∈ U(0). So the inequality is strict for most of the pixels.

In all cases, the images enhanced by the Maik-Murthy al-

gorithm have the weakest saturation. On In \V , where the

target intensity is less than the input intensity, the Additive

algorithm 5 gives a better saturation than the Multiplicative

algorithm 4. On V \U(1) the Multiplicative algorithm 4 gives

rise to a better saturation than the Additive algorithm 5.

B. Qualitative comparison

We begin with a simple but instructive example where we

apply Algorithms 4, 5 and 2 to two different ”images” each

composed of one dark and one bright pixel, resp.,

wdark = (25, 48, 32), wbright = (80, 172, 108)

having the same hue but different intensities fdark = 35 and

fbright = 120. In Figs. 4 and 5, the input pixels w are shown

on the top row, while the next rows detail the results of the

algorithms w.r.t. the target intensity f̂ ∈ {0, . . . , 255} given

on the x-axis. By (19) we see that the pixel belongs to U(1)

for f̂ > (L−1)f
M

=: fU(1), to U(0) for f̂ > (L − 1) − M +

f =: fU(0), to L(0) for f̂ < f − m =: fL(0) and to V for

f̂ > f := fV . The corresponding values for our dark and

bright image are given in the following table:

fU(1) fU(0) fL(0) fV
wdark 185.9 242 10 35

wbright 177.9 203 40 120

Fig. 4 deals with the dark pixel wdark. The Multiplicative

algorithm 4 (i) is applied for f̂ ∈ [0, 185.9]. All color values

are multiplied by f̂/f , where f̂/f > 1 for f̂ > 35 which

yields a clear increase of the distance between all color

channels. The third row shows a pleasant enhancement of the

dark input pixel. By (23) the input saturation is preserved. The

Additive Algorithm 5 (i) is performed for f̂ ∈ [10, 242], where

all color values are increased by the same amount f̂−f . Since

the input pixel is quite dark, the values wc, c ∈ {r, g, b} and

f are relatively close to each other. For this reason, all color

channels ŵ+
c remain close to each other. On [10, 35) we have

w = (25, 48, 32), f = 35, H(w) = 137.3, S(w) = 0.29

Alg. 4 (×) Alg. 5 (+) Alg. 2 (NM)

(ŵ×

r , ŵ×

g , ŵ×

b ) (ŵ+
r , ŵ+

g , ŵ+
b ) (ŵ •

r , ŵ
•

g , ŵ
•

b )

0 35 186 255
0

132.1

169.1

255

10 35 242
0

20.7

238
255

0 35 255
0

24.29
46.63

255

ŵ× ŵ+ ŵ •

35 255 35 255 35 255

S(ŵ×) S(ŵ+) S(ŵ •)

0 35 186 255
0

0.29

1

10 35 242
0

0.29

1

0 35 255
0

0.29

1

Fig. 4. Enhancement of a quite dark pixel shown in the first row. Second

and third rows: the output intensity f̂ is on the x-axis and the plots depict the
results of Algorithms 4, 5 and 2. The second row specify the value of each

color channel. The third row shows the resulting color ŵ w.r.t. f̂ and the last

row plots the saturation of the output pixel as a function of f̂ .

f > f̂ so by (24), S(ŵ+) > S(w) and S(ŵ+) continuously

decreases from 1 to S(w) = 0.29. On [35, 242], S(ŵ+)
decreases from S(w) = 0.29 to 0.04 according to S(w)f/f̂ .

This explains why the colors on the third row remain quite

dull, compared to Algorithm 4. For Algorithm 2, case (i) holds

only for f̂ ∈ [0, 35], where the input saturation is preserved.

If f̂ > 35, step (ii) is performed and S(ŵ •) decreases much

faster than in Algorithm 5. As a consequence, on (35, 255]
the enhanced colors tend to be nearly equal and the obtained

color values are nearly gray, see the third row in the figure.

Fig. 5 shows the performance for the brighter pixel wbright.

The Multiplicative algorithm 4 (i) is applied for f̂ ∈ [0, 177.9].
The input saturation is preserved. The Additive algorithm 5 (i)

holds for f̂ ∈ [40, 203]. On [40, 120] the recovered saturation

decreases from 1 to S(w) = 0.33 and on (120, 203] it slowly

decreases to 0.6S(w). In Algorithm 2, step (i) holds for f̂ ≤
f = 120 where the input saturation is unchanged. Step (ii) is

applied for f̂ ∈ (120, 255] – the interval is not so large as in

Fig. 4 and the saturation decreases much less fast to zero. On

the 3rd row one sees that the colors obtained with all the three

algorithms are quite similar.

Remark 6. From Fig. 4, if a dark pixel has a wrong hue (e.g.

due to compression or printing artifacts, noise, color cast,

etc.), the Multiplicative algorithm 4 can magnify the intensity

of this wrong color. If the input image contains a lot of such

pixels, the Additive algorithm 5 can be a better choice.

Our conclusions drawn in Subsection IV-A and our findings

for one pixel images are confirmed by our tests on the two im-

ages, bungalow (underexposed) and flower (slightly lustreless)

depicted in Fig. 6 and 7. The distribution of f̂ [i]/f [i] for these

two images is very different – the first one ranges on [0, 18]
and the second one on [0, 1.22]. Roughly speaking, bungalow

mimics the phenomena explained for Fig. 4 and flower those

relevant to Fig. 5.
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w = (80, 172, 108), f = 120, H(w) = 137.3, S(w) = 0.33

Alg. 4 (×) Alg. 5 (+) Alg. 2 (NM)

(ŵ×

r , ŵ×

g , ŵ×

b ) (ŵ+
r , ŵ+

g , ŵ+
b ) (ŵ •

r , ŵ
•

g , ŵ
•

b )

0 120 178 255
0

118

159.3

255

0 40 120 203 255
0

27.3

89.7

162

190

255

0 120 255
0

79.33

107.1

170.6

255

ŵ× ŵ+ ŵ •

120 255 120 255 120 255

S(ŵ×) S(ŵ+) S(ŵ •)

0 120 178 255
0

0.33

1

0 40 120 203 255
0

0.33

1

0 120 255
0

0.33

1

Fig. 5. Enhancement of a quite bright pixel shown in the first row.
Arrangement of images as in Fig. 4.

Input intensity histogram Target histogram

0 221 0 255

Input image Alg. 4 (×)

Alg. 5 (+) Alg. 2 (NM)

Fig. 6. Original image bungalow (660× 1024) and enhanced versions. For
underexposed images the Naik-Murthy algorithm 2 gives nearly gray-valued
results. The Multiplicative algorithm 4 gives the most colorful image. The
Additive algorithm 5 yields color values between those of the multiplicative
and the Naik-Murthy algorithm; it performs better than the last one.

Input intensity histogram Target histogram

2 255 0 255

Input image Alg. 4 (×)

Alg. 5 (+) Alg. 2 (NM)

Fig. 7. Original image flower (300 × 400) and enhanced versions. All
Algorithms 2, 4 and 5 produce very similar results.

V. NUMERICAL RESULTS

Here we demonstrate the performance of our algorithms to

render images where we want to preserve the hue.

A. Target histograms

Our algorithms depend, up to a certain degree, on the

choice of a target histogram for the intensity channel. Various

target histograms avoiding the drawbacks of HE have been

proposed in the literature. Some of them leave gaps in the

target histogram which can yeild artifacts as in Fig. 2, see e.g.

[20], [26], others preserve the input brightness which limits

the enhancement of underexposed images, see, e.g. [23], [28].

The models proposed in [25] combine the input image his-

togram and a uniform histogram using various penalties and

parameters. Instead, we adopt a simple and intuitive approach.

A common way for histogram based enhancement is to use

the histogram of a well exposed example image; see, e.g., [4].

Commercials in photography and image processing software

(e.g., Photoshop) mention that well exposed pictures typically

have bell-shaped histograms. Based on these advises we focus

on target histograms whose shapes are Gaussian functions ĥG,

with domain [0, L− 1], fixed so that

l := ĥG(0) ≤ 1, max
x∈[0,L−1]

ĥG(x) = 1 and r := ĥG(L−1) < 1 .

A user has to choose two parameters:

• l ∈ (0, 1] which is the desired portion of dark pixels;

• r ∈ (0, 1] drawing the desired portion of light pixels.

Note that one cannot choose l = r = 1. Given l ∈ (0, 1] and

r ∈ (0, 1], the shape of the target histogram reads as

ĥG(x) = exp

(
−
(x− µ)2

σ

)
, x ∈ [0, L− 1], for

µ= −(L−1)(ln l−
√
ln l ln r)

ln r−ln l
, σ= (L−1)2(

√
− ln l−

√
− ln r)2

(ln r−ln l)2 .

(27)

Finally the target histogram ĥ is normalized according to the

number n of pixels in the image:

ĥ(x) =
n ĥG(x)∑L−1
x=0 ĥG(x)

∀ x ∈ {0, · · · , L− 1}.

Whenever (27) is used, we shall write ĥG for ĥ.

Remark 7. If the input RGB image w has no pixel values

on an interval [0, L0] for some L0 ≥ 1 one has to perform

the hue-preserving stretching in (5). The target histogram is

chosen based on the stretched histogram and the enhanced

image is computed from the stretched image; see Fig. 16.

With this cautionary remark, we can explain how to choose

good target histograms using (27). The input intensity his-

togram, after stretching if necessary, is denoted by hf .

Remark 8. The choice of the parameters (l, r) to build ĥG in

(27) depends on the input intensity histogram hf and on the

enhancement task. E.g., (l, r) = (1, 0.99) leads to HE.

(i) Function ĥG can be easily adapted to all images whose

histogram hf is roughly unimodal – see the original

images in Figs. 6, 7, 9, 10, 11, 13, 14 and 16.
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If the pixel values are mainly in the middle of the interval

[0, L− 1] and decay at the ends (see Figs. 7, 9 and 16),

a good enhancement can be done with l ' r ∈ [0.1, 0.2].
When hf rapidly decays towards L−1, one should choose

r ∈ (0, 0.1] (see Figs. 6, 10, 11, 13 and 16). The stronger

this decay, the smaller the value of r should be selected

(e.g. in Fig. 11, r = 10−4.)

A too large r should entail artifacts typical for HE.

If most of the pixel have small values (underexposed

images, see Figs. 6, 10, 11 and 13), it is reasonable to

select l ∈ [0.8, 1]. The higher the concentration near 0,

the larger the value of l / 1 should be taken.
(ii) For images with important very dark and very bright

areas, function (27) should not work well. Then a good

option is to take a mixed target histogram

ĥmix :=
1

2
(hf + ĥG) (28)

where the parameters (l, r) for ĥG are selected following

the rules in (i). For example, see Figs. 8, 12 and 15.

This remark is illustrated in Fig. 8.

B. Enhancement Tests

We present some results from a large series of test images

with the goal to improve the visual quality. The enhanced

image should seem natural and an observer should not suspect

that it is a post-processing result.

We compare our Multiplicative algorithm 4 (×) with the

Naik-Murthey algorithm 2 (NM) and the Additive algorithm

5 (+). The HS in these algorithms is done by Algorithm 1.

The histogram of the original intensity image and the target

histograms are depicted beneath the images. The percentage

of pixels having a gamut problem in Alg. 4 (×), Alg. 5 (+)

and Alg. 2 (NM) is contained in Table I. Further we provide

comparison results with

• the fast implementation of ACE by [14] available online

at http://demo.ipol.im/demo/g_ace/, and

• the perceptual color enhancement through variational

methods in [7] and [8].

ACE has one main parameter, the enhancement strength α
whose default value α = 0.5 is often a good choice. For the

two perceptual enhancement methods [7] and [8], the authors

gave us their codes and helped us to tune the parameters.

We present the results for images with different defects. The

parameter values for all methods are given in the captions, as

well as the image credits. The original images in Figs. 6, 7,

8, 10, 11, 13, 12 and 16 are photos taken by the authors who

wanted to improve them. For all these images, we do not have

“ground truth”. For Fig. 17 we shot an underexposed and a

better “example” image which enabled us to compare with the

perceptual histogram-based method in [10].

Fig. 8 illustrates Remark 8. The image club in (a) is under-

exposed and its histogram hf does not obey Remark 8(i). The

result in (b) is obtained with a Gaussian target histogram ĥG

for parameters following (i). In (c) we use a mixed target

histogram ĥmix as proposed in (28). This image better shows

(a) Original image (b) Alg. 4 (×) ĥG

0 255 0 255

(c) Alg. 4 (×) ĥmix (d) Perceptual [8]

0 255

Fig. 8. (a) Image club (1800×3200). Enhancement using our Multiplicative

algorithm with: (b) ĥG for (l, r) = (1, 0.2); (c) ĥmix by (28) for ĥG as in
(b). (d) Enhancement by the variational method in [8].

(a) Original image (b) Alg. 5 (+) (c) Perceptual [8]

12 247 0 255

Fig. 9. (a) Image islanda (courtesy of P. Greenspun) of size 294×293, and

plot of hf . Enhancement results: (b) Additive algorithm with ĥG for (l, r) =
(0.1, 0.1), see (27); (c) Perceptual variational method [8] with Michelson’s
contrast function and default parameters (courtesy of the authors of [8]).

the ambience of the club. The perceptual method [8] in (d)

gives a colder color palette.

Two tests with the image islanda are shown in Fig. 9. The

original in (a) is a rather light image. The Multiplicative,

the Additive and the NM algorithms with Gaussian target

histograms produce quite similar results, which confirms our

discussion in Subsection IV-B. Only the issue of our Additive

algorithm is shown in (b). The perceptual method [8] and the

ACE perform similarly and give a nice, different color content

of the image. We depict the result by [8] in (c).

The photo boy-on-stones in Fig. 10(a) was taken in a very

sunny day. Due to camera corrections, the picture appears

underexposed. Our Multiplicative algorithm gives a realistic

result shown in (b). In particular, observe the reflectance of

the sunlight on the stones. The NM algorithm yields a grayish

result (c). The Additive algorithm (not shown) gives a slightly

better enhancement than the NM algorithm which confirms

our findings in Subsection IV-B. The perceptional variational

algorithms [7] in (d) and [8] in (e), as well as the ACE in (f),

shift the colors towards blue; observe the stones.

The cathedral photo in Fig. 11(a) is much too dark. The

result of our Multiplicative algorithm in (b) is quite colorful.
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(a) Original image (b) Alg.4 (×)

0 239 0 255

(c) Alg.2 (NM) (d) Perceptual [7]

(e) Perceptual [8] (f) ACE [14]

Fig. 10. (a) Image boy-on-stones (800× 800) and plot of hf . Enhancement

results: (b) Multiplicative algorithm with ĥG for (l, r) = (0.8, 0.2); (c) Naik-

Murthy algorithm with the same ĥG; (d) Perceptual variational method [7]
with data-fitting parameter γ = 0.2; (e) Perceptual variational method [8]
with a symmetric contrast function and slope parameter 10; (f) ACE, α = 5.

The same algorithm for the mixed target histogram (28) gives

in (c) a darker and still colorful image. The results of [7] in (d)

and [8] in (c) have a darker color palette. The NM algorithm

produces a nearly gray value image shown in (f). All results

give a different atmosphere.

The photo taken in Jericoacoara, Fig. 12(a), has very dark

and also some quite clear areas; see hf in (c). By Remark 8(ii),

we use a mixed target histogram ĥmix. The original has lots

of JPEG artifacts so we prefer our Additive algorithm (see

Remark 6). The result in (b) is convincing and the details in

the dark are clarified. For the ACE in (d) we use a small

enhancement, α = 3, in order to limit the false color shift.

The orchid image in Fig. 13(a) has a bad flashlight effect.

This artifact is removed by all tested methods and the back-

ground of the scene is clear. Our Multiplicative algorithm gives

a realistic colorful result, see (b). As in Fig. 6, our Additive

algorithm produces a rather pale image (c) while the issue of

the NM algorithm in (d) is too gray. The images obtained by

[7] in (e) and by the ACE in (f) exhibit color shifts (see the

green leaves on the right and the grass on the bottom left).

(a) Original image (b) Alg.4(×), ĥG (c) Alg.4(×), ĥmix

0 255 0 255 0 255

(d) Perceptual [7] (e) Perceptual [8] (f) Alg.2 (NM)

Fig. 11. (a) Image cathedral (768×1024) and plot of hf . Enhancement results:

(b) Multiplicative algorithm with ĥG for (l, r) = (1, 10−4); (c) The same

algorithm for ĥmix in Remark 8(ii) with ĥG in (b); (d) Perceptual variational
method [7], default parameters; (e) Perceptual variational method [8] with

Michelson’s contrast function; (f) NM algorithm with ĥG in (b).

(a) Original image (b) Alg. 5 (+), ĥmix

(c) Histograms (d) ACE [14]

0 248

0 255

hf

ĥmix

Fig. 12. (a) Image Jericoacoara (886 × 1181). Enhancement results: (b)

Additive algorithm with mixed target histogram ĥmix for (l, r) = (1, 0.1);
(c) Histograms of the input and the target intensities; (d) ACE for α = 3.

The frog image in Fig. 14(a) has an intensity histogram

between (i) and (ii) in Remark 8. Indeed, both recipes gave

similarly good results. The result with ĥG is shown in (b). For

the ACE in (c) we select a small α = 3 limit the color shift.

The ferrari image in Fig. 15(a) has very dark and very bright

areas. Using Remark 8 (ii), we take a mixed target histogram.

Our Multiplicative algorithm gives a realistic image shown in

(b) with vivid colors that fit the typical red of the brand. The

variational methods [7] in (c) and [8] in (d) outperform the

ACE (result not shown).

The image fields in Fig. 16(a) was taken trough an aircraft

porthole. It has no pixels with values in [0, 109]. By Remark

3, we use in (b) the global hue-preserving stretching. Its

further enhancements using our Multiplicative and Additive

algorithms give visually the same results, so only the first one

is shown in (c). For the ACE in (d) we take α = 8 in order to

obtain an enhancement strength similar to (c). The JPEG blue
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(a) Original image (b) Alg. 4 (×)

0 255 0 255

(c) Alg.5 (+) (d) Alg. 2 (NM)

(e) Perceptual by [7] (f) ACE [14]

Fig. 13. (a) Image orchid (768×1024) with a bad flashlight effect. Enhance-

ment results: (b) Multiplicative algorithm with ĥG for (l, r) = (1, 0.1); (c)
Additive algorithm for the same target histogram; (d) NM algorithm [18] for
the same target histogram; (e) Perceptual variational method [7] for γ = 0.2;
(f) ACE [14], default parameter.

(a) Original image (b) Alg. 4 (×) (c) ACE [14]

0 255 0 255

Fig. 14. (a) Image frog, 332 × 300 (credits: John D. Willson, USGS
Amphibian Research and Monitoring Initiative). Enhancement results: (b)

Multiplicative algorithm with ĥG for (l, r) = (0.4, 0.1); (c) ACE for α = 3.

artifacts are stronger in (d) compared to (c).

Fig. 17 (a) and (b) show an underexposed and a better

exposed “example” image of the same scene flag. In [10] the

authors propose an algorithm for the color transfer between

images (usually of different scenes). Using this algorithm we

transferred the colors from the example image (b) to the

underexposed one (a). The result in (c) is close to the example

image. We have applied our Multiplicative algorithm to image

(a) using the intensity histogram of (b). The result, shown in

(d), is less dull than the example (b). The third row in Fig. 17

depicts a zoom into the area with the raven (right middle). One

observes that the bird is fused with part of the background in

(a) Original image (b) Alg. 4 (×), ĥmix

0 254 0 255

(c) Perceptual [7] (d) Perceptual [8]

Fig. 15. (a) Image ferrari (courtesy of P. Greenspun) of size 235×240 and
histogram of its intensity channel.. Enhancement results: (b) Multiplicative
algorithm with mixed target histogram for (l, r) = (1, 0.1); (c) Perceptual
variational method [7] with default parameters (courtesy of the authors); (d)
Perceptual variational method [8] with Michelson’s contrast function and
default parameters (courtesy of the authors).

(a) Original image (b) Stretch

110 254 9 241

(c) Alg. 4 (×) (d) ACE [14]

0 255

Fig. 16. (a) Image fields (512 × 512) and histogram of its intensity.
Enhancement results: (b) Global affine stretching (Remark 3) and intensity
histogram; (c) Multiplicative algorithm applied to (b) with Gaussian target
histogram for (l, r) = (0.1, 0.1); (d) ACE for α = 8 applied to (a).
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image ♯U(1) ♯U(0) ♯L(0) ♯V

bungalow ĥG 1.90 0.94 0 98.15

islanda ĥG 0.89 0.85 0.94 2.93

club ĥG 0.98 0.23 0.67 94.61

club ĥmix 0.33 0.15 1.39 92.61

boy-on-stones (ĥG) 4.76 2.40 0.54 94.15

cathedral (ĥG) 1.04 0.00 1.38 95.71

Jericoacoara (ĥmix) 5.98 5.71 0.40 68.26

orchid (ĥG) 0.21 0.10 1.85 87.93

frog (ĥG) 0.09 0.08 6.79 80.04

ferrari (ĥmix) 4.40 4.22 0.30 60.7

fields (ĥG) 4.61 2.99 2.06 89.16

TABLE I
Percentage of pixels requiring an upper or lower gamut correction. For our
Algorithms 4 (×) and 5 (+) the numbers ♯U(1), resp., ♯U(0), ♯L(0) are

very small in all tests; this is not the case for ♯V in the NM algorithm.

(a) Input (b) Example (c) Alg. [10] (d) Alg.4 (×)

0 163 0 213

zoom of (a) zoom of (b) zoom of (c) zoom of (d)

Fig. 17. (a) Input underexposed image flag (1500× 1125) and (b) example
better-exposed flag together with the histograms of their intensities. Enhance-
ment results: (c) the color transfer method [10] and (d) our Multiplicative
algorithm with the example target intensity histogram in (b).

(c), whereas it is distinguishable in (b) and (d).

VI. CONCLUSIONS AND FUTURE WORK

This work provides the first comprehensive and rigorous

presentation of the wide family of histogram specification

based affine color assignment models. We have proposed a

fast hue and range preserving algorithm. We analyzed the

performances of this algorithm and two of its important

instances as well as the gamut preserving method in [18].

Many open questions have been raised that we want to

answer in our future research. Since our algorithms are fast,

extensions to video should be envisaged. We are aware of

the broad literature on color enhancement taking both global

and local neighborhood of pixels into account see, e.g., [6],

[7], [8], [13], [36]. It will be interesting to incorporate such

information into our framework. Moreover, we want to take

into account other important properties of the human visual

system.

VII. APPENDIX

Proof of Proposition 1: A pixel i ∈ In in (15) has an upper

gamut problem if

λf̂ [i] + (1− λ)f [i]

f [i]
M [i] + (1− λ)(f̂ [i]− f [i]) > L− 1. (29)

The upper bound follows from the choice of ŵc[i], c ∈
{r, g, b} in (12). We focus the lower bound. First we see

that (29) implies f̂ [i] ≥ f [i], since in case f̂ [i] < f [i] we

would get by replacing f̂ [i] by f [i] in the denominator of the
quotient and the second summand in (29) the contradiction
M [i] > L − 1. Since M [i] − f [i] > 0 the lower bound holds
true if and only if

(L− 1− f̂ [i])(wc[i]− f [i]) + f̂ [i](M [i]− f [i]) ≥ 0,

(L− 1− f̂ [i])wc[i]− (L− 1)f [i] + f̂ [i]M [i] ≥ 0

which is clearly fulfilled if

f̂ [i]M [i]− (L− 1)f [i] ≥ 0. (30)

By (29) we have

f̂ [i]M [i]− (L− 1)f [i]

> f̂ [i]M [i]−
(
λf̂ [i] + (1− λ)f [i]

)
(M [i]− f [i])− f̂ [i]f [i]

=
(
f̂ [i]−

(
λf̂ [i] + (1− λ)f [i]

))
(M [i]− f [i]).

By f̂ [i] ≥ f [i] the first factor on the right-hand side is ≥ 0
the second one is > 0. Thus, (30) is satisfied. �

Proof of Proposition 2: A pixel i ∈ In in (15) has a lower
gamut problem if

λf̂ [i] + (1− λ)f [i]

f [i]
m[i] + (1− λ)(f̂ [i]− f [i]) < 0. (31)

The lower bound is clear from the construction of wc[i] in
(14). We show the upper bound. Developing (14) yields

ŵc[i] =
f̂ [i]wc[i]− f̂ [i] f [i] + f̂ [i] f [i]− f̂ [i] m[i]

f [i]−m[i]

=
f̂ [i]

f [i]−m[i]
(wc[i]−m[i]), c ∈ {r, g, b}. (32)

Using (31), one has

f̂ [i]
λm[i] + (1− λ)f [i]

f [i]
+ (1− λ)(m[i]− f [i]) < 0

and hence

f̂ [i] <
(1− λ)f [i]

λm[i] + (1− λ)f [i]
(f [i]−m[i]) < f [i]−m[i].

Thus, since 0 < wc[i]−m[i] < L− 1, we obtain finally

f̂ [i]

f [i]−m[i]
(wc[i]−m[i]) < L− 1.

Proof of Proposition 3: Let 0 ≤ λ1 < λ2 ≤ 1. In the upper

gamut case we always have f̂ [i] > f [i]. Then λ1f̂ [i] + (1 −
λ1)f [i] < λ2f̂ [i] + (1 − λ2)f [i], hence Gλ1

M [i] ≤ Gλ2

M [i] and

U(λ1) ⊆ U(λ2). Similarly, since f̂ [i] < f [i] in the lower

gamut case, λ1f̂ [i] + (1− λ1)f [i] > λ2f̂ [i] + (1− λ2)f [i] so

that Gλ1

m [i] ≥ Gλ2

M [i] and hence L(λ1) ⊇ L(λ2). �

Proof of Proposition 4: Let i ∈ In \ {U(1) ∪ L(0)}. Then
ŵ×

c [i] is given by (20)(i) and since U(0) ⊆ U(1), the value
ŵ+

c [i] is given by (21)(i). Consequently,

w̃c[i] = λ
f̂ [i]

f [i]
(wc[i]− f [i]) + (1− λ)(wc[i]− f [i]) + f̂ [i] = ŵc[i],
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where the last equality follows by U(λ) ⊆ U(1) and

Algorithm 3(i).

Let i ∈ U(0). Then ŵ+
c [i] is given by (21)(ii) and since

U(0) ⊆ U(1), ŵ×
c [i] is given by (20)(ii). We have ŵ+

c [i] =
ŵ×

c [i] which shows by U(0) ⊆ U(λ) that w̃c[i] = ŵ[i]. �

Proof of Proposition 5: By (22) we have S(w[i]) = 1−m[i]
f [i] , or

equivalently, f [i]−m[i] = f [i]S(w[i]). Algorithm 3 computes

ŵc[i] = d[i](wc[i]− f [i]) + f̂ [i], (33)

for

d[i] =





λ
f̂ [i]
f [i]

+ (1− λ) if i ∈ In \ {U(λ) ∪ L(λ)},
L−1−f̂ [i]
M [i]−f [i]

if i ∈ U(λ),
f̂ [i]

f [i]S(w[i])
if i ∈ L(λ).

Since d[i] > 0 in all cases, we have

S(ŵ[i]) = 1−
1

f̂ [i]

(
d[i]

(
min{wr[i]wg[i], wb[i]} − f [i]

)
+ f̂ [i]

)

= 1−
f [i]

f̂ [i]
d[i]

min{wr[i], wg[i], wb[i]}

f [i]
+

f [i]

f̂ [i]
d[i]− 1

= S(w[i])
f [i]

f̂ [i]
d[i] . (34)

Inserting the above values d[i] into (34) finishes the proof. �

Proof of Proposition 6: The case
f̂ [i]
f [i] ≤ 1 follows just as a

special case of Proposition 5(i) for λ = 1. Let f̂ [i] > f [i].
Then case (ii) in Algorithm 2 can be rewritten as (33) for

d[i] := L−1−f̂ [i]
L−1−f [i] . Combining this with (34) we are done. �
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