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Abstract. Before using a digital system, it is necessary to evaluate it according
to different parameters. Lately trust emerged as a momentous aspect of evalua-
tion. Evaluating trust in a system is a complex issue that becomes more challeng-
ing when systems use distributed architectures. In a previous work, we proposed
SOCIOTRUST, a trust model that is based on probability theory to evaluate trust
in a system for an activity. In SOCIOTRUST, trust values are considered as the
probability, by which a trustor believes that a trustee behaves as expected. A
limitation of using traditional probability is that users cannot express their uncer-
tainties about some actors of their activity. In real situations, not everyone is in
possession of all the necessary information to provide a dogmatic opinion about
something or someone. Subjective logic thus emerged to facilitate the expression
of trust as a subjective opinion with degrees of uncertainty. In this paper, we pro-
pose SUBJECTIVETRUST, a graph-based trust model to evaluate trust in a system
for an activity using subjective logic. The distinctive features of our proposal
are (i) user’s uncertainties are taken into account in trust evaluation and (ii) be-
sides taking into account the trust in the different entities the user depends on to
perform an activity, it takes into consideration the architecture of the system to
determine its trust level.

1 Introduction

When users need to choose a system to perform an activity, they are faced with a lot
of available options. To choose a system, they evaluate it considering many criteria:
functionality, ease of use, QoS, economical aspects, etc. Trust is also a key factor of
choice [14,18]. However, evaluating this trustworthiness is a challenging issue due to
the system complexity. We argue that studying trust in the separate entities that compose
a system does not give a picture of how trustworthy a system is as a whole. Indeed, the
trust in a system depends on its architecture, more precisely, on the way the entities
which the users depends on to do their activities, are organized.

Trust has been widely studied in several aspects of daily life [4,5,6,20,22]. In the
trust management community, graph-based trust [7,8,12,13,15,16,17] is a way to derive
trust that has been used a lot recently. The main idea in graph-based trust is to estimate
two levels of granularity so-called trust in a path and trust in a graph or a target node
in the graph [1].

SOCIOTRUST [3] is a graph-based trust model, based on probability theory, to eval-
uate trust in a system for an activity. In SOCIOTRUST, trust values are considered as the
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probability by which a trustor believes that a trustee behaves as expected. A limitation
of SOCIOTRUST is that users cannot express their uncertainties about a proposition. In
real situations, no one is in possession of all the necessary information to provide a
dogmatic opinion.

Subjective logic [11] is suitable for dealing with trust because trust can be ex-
pressed as subjective opinions with degrees of uncertainty. In this study, we extend
SOCIOTRUST to use subjective logic. The main contribution of this paper is propos-
ing a generic method, named SUBJECTIVETRUST, for evaluating trust in a system for
an activity. The system definition is based on SOCIOPATH [2] which allows to model
the architecture of a system by taking into account entities of the social and the digital
world involved in an activity. To focus on the trust in the system, the SOCIOPATH model
is abstracted in a graph-based view. Levels of trust are then defined for each node in the
graph. By combining trust values, we are able to estimate two different granularities of
trust, namely, trust in a path and trust in a system, both for an activity to be performed
by a person.

This paper is organized as follows. Section 2 gives a quick overview of subjective
logic and SOCIOPATH. In Section 3, we propose SUBJECTIVETRUST for evaluating
trust in a system for an activity using subjective logic. Section 4 presents the experi-
ments that validate the proposed approach. Section 5 presents some related works be-
fore concluding in Section 6.

2 Background and preliminaries

2.1 Overview of subjective logic

A lot of trust metrics has been proposed to evaluate trust like binary [9], simple [7]
or probabilistic metrics [3]. In previous metrics, a given person can not express her
ignorance or her degree of uncertainty. In another words, she cannot say “I do not
know” or “I am not sure”. In real world situations, no one can determine an absolute
certainty about a proposition. This philosophical idea leads researchers to look for a
mathematical formalism that can express the uncertainty.

Subjective logic [11], which is an extension of classical probability, is a good can-
didate to solve this problem. Subjective logic is a probabilistic logic that uses opinions
as input and output variables. Opinions explicitly express uncertainty about probability
values, and can express degrees of ignorance about a subject matter such as trust. In the
terminology of subjective logic, an opinion held by an individual P about a proposition
x is the ordered quadruple Ox = (bx, dx, ux, ax) where bx (belief) is the belief that
the x is true, dx (disbelief) is the belief that the x is false, and ux (uncertainty) is the
amount of uncommitted belief, bx, dx, ux ∈ [0..1] and bx+dx+ux = 1. The last value
ax ∈ [0..1] is called the base rate, it is the priori probability in the absence of evidence
and is used for computing an opinion’s probability expectation value that can be deter-
mined as E(Ox) = bx + axux. More precisely, ax determines how uncertainty shall
contribute to the probability expectation value E(Ox). The latter can be interpreted as
a probability measure indicating how x is expected to behave in the future.

An opinion Ox can be defined as a point in the triangle shown in Figure 1(a). The
belief axis bx, the disbelief axis dx and the uncertainty axis ux run from the middle
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Fig. 1. Opinion triangle [11]

point of one edge to the opposite corner. In Figure 1(b), the horizontal bottom line
between the belief and disbelief corners represents opinion’s probability expectation
E(Ox). The base rate is represented as a point on the probability axis. The line joining
the top corner of the triangle and the base rate point is called the director. The value
E(Ox) is formed by projecting the opinion point onto the probability axis in parallel to
the base rate director line. For instance, in Figure 1, the point Ox represents the opinion
Ox = (0.4, 0.1, 0.5, 0.6) and E(Ox) = 0.7.

In subjective logic, a mapping between the opinion parameters and the number of
positive and negative observations is provided [11,12,13]. Let r and s express the num-
ber of positive and negative past observations about x respectively, then an opinion
about x can be determined as:

bx = r
r+s+2

dx = s
r+s+2

ux = 2
r+s+2

⇐⇒


r = 2bx

ux

s = 2dx
ux

1 = bx + dx + ux

(1)

Subjective Logic is directly compatible with traditional mathematical frameworks
as we show in the following:

– if b = 1 is equivalent to binary logic TRUE,
– if d = 1 is equivalent to binary logic FALSE,
– if b+ d = 1 is equivalent to a traditional probability,

if b+ d < 1 expresses degrees of uncertainty, b+ d = 0 expresses total uncertainty.

2.2 Operators in subjective logic

In subjective logic, a set of standard logical operations like the conjunction and dis-
junction, and non-standard logical operations like the consensus and the discounting
are defined to combine the opinions. In this section, we present the most important
operators in subjective logic.
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– Conjunction operator: the conjunction operator represents the opinion of a person
toward several propositions. Let OPx = (bPx , d

P
x , u

P
x , a

P
x ) be P ’s opinion about x

and OPy = (bPy , d
P
y , u

P
y , a

P
y ) be P ’s opinion about y, OPx∧y represents P ’s opinion

about both x and y and can be calculated with the following relations:

OPx ∧OPy = OPx∧y =


bPx∧y = bPx b

P
y

dPx∧y = dPx + dPy − dPx dPy
uPx∧y = bPx u

P
y + uPx b

P
y + uPx u

P
y

aPx∧y =
bPx u

P
y a

P
y +bPy u

P
x a

P
x+uPx a

P
x u

P
y a

P
y

bPx u
P
y +uPx b

P
y +uPx u

P
y

(2)

E(OPx ∧OPy ) = E(OPx∧y) = E(OPx )E(OPy ) (3)

– Disjunction operator: the disjunction operator represents the opinion of a person
toward one of the propositions or any union of them. Let OPx = (bPx , d

P
x , u

P
x , a

P
x )

be P ’s opinion about x and OPy = (bPy , d
P
y , u

P
y , a

P
y ) be P ’s opinion about y, OPx∨y

represents P ’s opinion about x or y or both and can be calculated with the following
relations:

OPx ∨OPy = OPx∨y =


bPx∨y = bPx + bPy − bPx bPy
dPx∨y = dPx d

P
y

uPx∨y = dPx u
P
y + uPx d

P
y + uPx u

P
y

aPx∨y =
uPx a

P
x+uPy a

P
y −b

P
x u

P
y a

P
y −b

P
y u

P
x a

P
x−u

P
x a

P
x u

P
y a

P
y

uPx+uPy −bPx uPy −bPy uPx−uPx uPy

(4)

E(OPx ∨OPy ) = E(OPx∨y) = E(OPx ) + E(OPy )− E(OPx )E(OPy ) (5)

– Discounting operator: the discounting operator represents the transitivity of the
opinions. Let OPB = (bPB , d

P
B , u

P
B , a

P
B) be P ’s opinion about B’s advice, and

OBx = (bBx , d
B
x , u

B
x , a

B
x ) be B’s opinion about x, OPBx =OPB ⊗ OBx represents P ’s

opinion about x as a result of B’s advice to P :

OPBx = OPB ⊗OBx =


bPBx = bPBb

B
x

dPBx = bPBd
B
x

uPBx = dPB + uPB + bPBu
B
x

aPBx = aBx

(6)

– Consensus operator: the consensus operator represents the consensus of the opin-
ions of different persons. Let OAx = (bAx , d

A
x , u

A
x , a

A
x ) be A’s opinion about x, and

OBx = (bBx , d
B
x , u

B
x , a

B
x ) be B’s opinion about x, OA,Bx =OAx ⊕ OBx represents the

opinion of an imaginary person [A,B] about x .

OA,Bx = OAx ⊕OBx =


bA,Bx =

bAx u
B
x +bBx u

A
x

uAx+uBx −uAx uBx
dA,Bx =

dAx u
B
x +dBx u

A
x

uAx+uBx −uAx uBx
uA,Bx =

uAx u
B
x

uAx+uBx −uAx uBx
aA,Bx =

uAx a
B
x +uBx a

A
x−(a

A
x+aBx )uAx u

B
x

uAx+uBx −2uAx uBx

(7)
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It is important to mention that conjunction and disjunction are commutative and
associative.

OPx ∧OPy = OPy ∧OPx
OPx ∨OPy = OPy ∨OPx

(OPx ∧OPy ) ∧OPz = OPx ∧ (OPy ∧OPz )

(OPx ∨OPy ) ∨OPz = OPx ∨ (OPy ∨OPz )

But the conjunction over the disjunction is not distributive. This is due to the fact
that opinions must be assumed to be independent, whereas distribution always in-
troduces an element of dependence.

OPx ∧ (OPy ∨OPz ) 6= (OPx ∧OPy ) ∨ (OPx ∧OPz )

For the same reason, the discounting over the consensus is not distributive.

OPx ⊗ (OPy ⊕OPz ) 6= (OPx ⊗OPy )⊕ (OPx ⊗OPz )

Let us now present an overview of SOCIOPATH.

2.3 Overview of SOCIOPATH

The SOCIOPATH meta-model [2] allows to describe a system in terms of the entities
that exist in (i) the social world1, where persons own physical resources and data, and
in (ii) the digital world, where instances of data (including application programs) are
stored and artifacts (software) are running. SOCIOPATH also allows to describe the
relations between the different entities of the two worlds. Figure 2 shows a graphical
representation of SOCIOPATH. Enriched with deduction rules, the SOCIOPATH meta-
model allows to underline and discover chains of access relations between artifacts, and
control relations between persons and digital resources in a system. The main concepts
defined in SOCIOPATH are:

– minimal path (σ̂); a list that begins from an actor, ends with a data instance and
contains artifacts in between. Between each two consecutive elements in this list,
there is a relation access. A minimal path describes a straight way an actor achieves
an activity without passing by cycles.

– activity (ω); a task like editing a document by a user, where some restrictions are
considered to impose the presence of particular elements in the path. For instance, if
a user wants to read a .doc document, she must use an artifact that can understand
this type of document (e.g., Microsoft Word or LibreOffice Writer).

Each artifact in a path is controlled by at least one person and supported by at
least one physical resource. In SOCIOPATH, the persons who control an artifact are the
persons who own a physical resource that supports the artifact or who own some data
represented by a data instance that supports the artifact (the providers).

1 The words in italic in this section refer to keywords of Figure 2, describing the SOCIOPATH

meta-model [2].
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Fig. 2. Graphical view of SOCIOPATH as a UML class diagram.

Figure 3 presents a graphical representation of a simple system drawn by apply-
ing SOCIOPATH. Consider that a person John wants to achieve the activity “accessing
the document toto using GoogleDocs”. In the social world, the person John owns
some Data, a PC and an iPad. Microsoft, Google and Apple are moral persons
who provide resources and artifacts. Renater, Orange and SFR are French telco com-
panies. John’s iPad is connected to SFR Servers and Renater Servers as well as
John’s PC is connected to Orange Servers. On the other hand, in the digital world, the
operating system Windows is running on John’s PC. Windows supports IExplorer.
John’s iPad supports the running iOS, which supports the application Safari. John’s
data are represented in the digital world by the document toto which is supported by
the physical resources owned by Google. For sake of simplicity, we consider Google
Cloud as the storage system used by the application GoogleDocs. By applying the
SOCIOPATH rules on this example, we obtain the relations of access and control shown
in Figure 3 where John has the following minimal paths to access toto:

σ̂1 ={John, Windows, IExplorer, ADSL Network, Google Cloud, GoogleDocs, toto}.

σ̂2 ={John, iOS, Safari, SFR Network, Google Cloud, GoogleDocs, toto}.

σ̂3 ={John, iOS, Safari, Professional Network, Google Cloud, GoogleDocs, toto}.

For sake of simplicity, in the current paper we voluntary limit the digital activities
to those that can be represented using a straight path. We do not consider activities that
need multiple paths in parallel to be achieved. Of course, an activity can be achieved
through several paths and each path represents a different way to perform it. Most of
the popular activities can be illustrated this way like connecting to a search engine, con-
sulting a web page, publishing a picture, editing a document, etc. In the next sections,
“accessing a document” embodies our illustrative activity.
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GoogleDoc” using SOCIOPATH.

3 Inferring trust in a system for an activity

In order to evaluate the trust level of a particular user in a system for a particular activity,
we first obtain a coarse-grained view of the system, from a SOCIOPATH model, as a
weighted directed acyclic graph (WDAG) (cf. Section 3.1). This graph represents the
system allowed to perform the digital activity of the user. We then apply subjective
logic on this graph to obtain the user’s trust in a system for an activity achieved through
the different paths in the graph (cf. Section 3.2).

3.1 A SOCIOPATH model as a weighted directed acyclic graph

We simplify the representation of SOCIOPATH by using only access and control rela-
tions derived from SOCIOPATH rules. We combine an artifact, the set of persons control-
ling it and the set of physical resources supporting it in one unique component. These
merged components are represented by nodes in a WDAG. Moreover, edges in this
WDAG represent the relations access. A user achieves an activity by passing through
several successive access relations of the graph, so-called a path2. Each node is associ-
ated with the user’s opinion about this node. To summarize, a system that enable a user
to achieve an activity ω can be formally modeled as a tuple:
αω,P =< Nω,Aω, wω > where:

– ω: the activity the user wants to achieve.
– P : the user who wants to achieve an activity.
– Nω: the set of usable nodes in a system for an activity. Each node aggregates one

artifact, the persons who control it and the physical resources that support it.
– Aω ∈ Nω × Nω: the set of edges in a system. From the rules of SOCIOPATH and

the aggregation we made for a node, our WDAG exhibits only the relation access.

2 If there is no ambiguity, we denote a minimal path through the WDAG by simply a path σ.
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Fig. 4. The activity “John accesses a document toto on GoogleDoc” as a WDAG.

– wω : N→ ([0, 1], [0, 1], [0, 1], [0, 1]): a function that assigns to each node an opin-
ion. In this paper, an opinion about a node N is denoted by wN for simplicity.

Figure 4 shows the same system presented in Figure 3 as a merged WDAG where each
node represents an artifact with all additional informations as physical resources it de-
pends on and persons who control it and each edge represents the relation accesses. The
associated values on the node represents John’s opinion about this node. The paths that
enable John to access toto become: σ1 ={A, C, E, H, I}; σ2 ={A, C, F, H,

I}; σ3 ={B, D, G, H, I}.

3.2 SUBJECTIVETRUST: an approach to infer trust in a system with subjective
logic

Trust can be modeled through a graph that contains a source node and a target node
and intermediates nodes. The edges in the graph represent the relations between nodes.
Trust values are usually associated to the graph’s node or edges. Trust evaluation in
graph-based trust models has three phases:

– Trust evaluation in a node: the evaluation of a node’s trust value differs from one
person to another. There are several ways to construct this trust level. We can figure
out different objective and subjective factors that impact this trust level like the
reputation or the personal experience with this node. In this paper, we depend on
the user’s local binary observations of a node to build the user’s trust in a node (c.f.
Section 3.2.1).

– Trust evaluation in a path: this phase is based on concatenating the node’s/edge’s
trust value along a path between a source and a target (c.f. Section 3.2.2).

– Trust evaluation in a graph: this phase is based on aggregating the different path’s
trust values in the graph (c.f. Section 3.2.3).

The main problem that faces this type of trust evaluation is the common nodes/edges
between paths. Since the trust evaluation is firstly based on concatenation the trust value
along a path then aggregating the trust value of all paths, the trust values of the com-
mon nodes/edges between paths are multi-counted which leads to non-accurate result
in evaluating trust [12,13].

In our approach, we propose several methods which are based on graph simplifi-
cation and edge splitting to obtain a graph that has independent paths to resolve the
previous problem (c.f. Section 3.2.3-2).
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3.2.1 Opinion about a node: opinion about a node depends on user’s negative or
positive observations r, s and is computed by Relations 1. Since our work focuses on
local trust, local observations are considered. A trust survey shown in Appendix A.6
allows to collect the users’ observations in order to build an opinion about a node.
The proposed questions in this survey collect information about the user’s usage of a
node to estimate the uncertainty u. The negative observations of using a node is also
demanded to estimate the value of d for a node. The value of b is computed by the
relation b = 1− d− u.

3.2.2 Opinion about a path: after building an opinion about a node, an opinion
about a path that contains several nodes can be computed. If a person needs to achieve
an activity through a path, she needs to pass by all the nodes composing this path.
Hence, an opinion about a path is the opinion of all the nodes composing this path.

The conjunction operator in subjective logic represents the opinion of a person about
several propositions. If OPx = (bPx , d

P
x , u

P
x , a

P
x ) is P ’s opinion about x and OPy =

(bPy , d
P
y , u

P
y , a

P
y ) is P ’s opinion about y, OPx∧y represents P ’s opinion about both x

and y. Thus, the conjunction operator is the appropriate operator to compute an opinion
about a path from the opinions about the nodes.

Let σ = {N1, N2, . . . , Nn} be a path that enables a user P to achieve an
activity. P ’s opinion about the nodes {Ni}i∈[1..n] for an activity are denoted by
ONi = (bNi , dNi , uNi , aNi). P ’s opinion about the path σ for achieving an activity,
denoted by Oσ = (bσ, dσ, uσ, aσ) can be derived by the conjunction of P ’s opinions
about {Ni}i∈[1..n]. Oσ={N1,...,Nn} =

∧
{ONi}i∈[1..n]. Given the following relations

from [11];

Ox∧y =


bx∧y = bxby
dx∧y = dx + dy − dxdy
ux∧y = bxuy + uxby + uxuy
ax∧y =

bxuyay+byuxax+uxaxuyay
bxuy+uxby+uxuy

We obtain the following generalization:

Oσ={N1,...,Nn} =


bσ={N1,...,Nn} = b∧{Ni}i∈[1..n]

=
∏n
i=1 bNi

dσ={N1,...,Nn} = d∧{Ni}i∈[1..n]
= 1−

∏n
i=1 (1− dNi )

uσ={N1,...,Nn} = u∧
{Ni}i∈[1..n]

=
∏n
i=1(bNi + uNi )−

∏n
i=1(bNi )

aσ={N1,...,Nn} = a∧{Ni}i∈[1..n]
=

∏n
i=1(bNi

+uNi
aNi

)−
∏n
i=1(bNi

)∏n
i=1

(bNi
+uNi

)−
∏n
i=1

(bNi
)

(8)

The proofs of Relations 8 in Appendix A.1 and the verifications of the relations: bσ +
dσ + uσ = 1, 0 < bσ < 1, 0 < dσ < 1, 0 < uσ < 1 and 0 < aσ < 1 are in
Appendix A.1.1.

3.2.3 Opinion about a system after building an opinion about a path, an opinion
about a system that contains several paths can be built. An opinion about a system is
the opinion of a person about one of the paths or any union of them.

The disjunction operator in subjective logic represents the opinion of a person in
one proposition or several. IfOPx = (bPx , d

P
x , u

P
x , a

P
x ) is P ’s opinion about x andOPy =



10 Nagham Alhadad1, Yann Busnel2, Patricia Serrano-Alvarado2, Philippe Lamarre3

(bPy , d
P
y , u

P
y , a

P
y ) is P ’s opinion about y, OPx∨y represents P ’s opinion about x or y or

both. Thus, the disjunction operator is the appropriate operator to evaluate an opinion
about a system. In the following, we show how to build an opinion about a system when
(i) there are not common nodes between paths and (ii) there are some common nodes
between paths.

1. Opinion about a system having independent paths:
Let {σ1, σ2, . . . , σm} be the paths that enable a user P to achieve an activity.
The user opinion about the paths {σi}i∈[1..m] for an activity are denoted by
Oσi = (bσi , dσi , uσi , aσi). The user opinion about the system α for achieving the
activity, denoted byOα = (bα, dα, uα, aα) can be derived by the disjunction of P ’s
opinions about {σi}i∈[1..m]. Oα =

∨
{Oσi}i∈[1..m]. Given the following relations

from [11];

Ox∨y =


bx∨y = bx + by − bxby
dx∨y = dxdy
ux∨y = dxuy + uxdy + uxuy
ax∨y =

uxax+uyay−bxuyay−byuxax−uxaxuyay
ux+uy−bxuy−byux−uxuy

We obtain the following generalization:

Oα={σ1,...,σm} =


bα={σ1,...,σm} = b∨{σi} = 1−

∏m
i=1 (1− bσi )

dα={σ1,...,σm} = d∨{σi} =
∏m
i=1 dσi

uα={σ1,...,σm} = u∨
{σi} =

∏m
i=1(dσi + uσi )−

∏m
i=1(dσi )

aα={σ1,...,σm} = a∨{σi} =
∏m
i=1(dσi

+uσi
)−

∏m
i=1(dσi

+uσi
−uσiaσi )∏m

i=1
(dσi

+uσi
)−

∏m
i=1

(dσi
)

(9)

The proofs of relations 9 are in Appendix A.2 and the verifications of the relations:
bα + dα + uα = 1, 0 < bα < 1, 0 < dα < 1, 0 < uα < 1 and 0 < aα < 1 are in
Appendix A.2.1.

2. Opinion about a system having dependent paths:
In subjective logic the disjunction is not distributive over the conjunction, ie. we
have Ox ∧ (Oy ∨ Oz) 6= (Ox ∧ Oy) ∨ (Oy ∧ Oz). Then when there are common
nodes between paths, the Relations 8, 9 can not be applied directly. In order to apply
subjective logic for evaluating trust in a system, we propose to transform a graph
having dependent paths to a graph having independent paths. Once this transforma-
tion is made, we can apply the Relations 8, 9. Three methods are proposed:

– Method 1 (M1): this method is achieved by simplifying a graph with common
nodes between paths into a graph having only independent paths. This is made
by removing the dependent paths which have high value of uncertainty as pro-
posed in [13]. The principle of this method focuses on maximizing certainty,
and not on deriving the most positive or negative trust value.
An issue of of M1 is that the graph simplification cause information loss. To
minimize the loss of information, we propose other methods that are based
on splitting common nodes into several nodes to obtain a graph that contains
independent paths as follows.
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A

DI
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FED
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CB

F2E2D

P A2 F1E1

Fig. 5. Graph transformation using node splitting.

– Method 2 (M2): this method is achieved by splitting a dependent node into
several different nodes as illustrated in Figure 5. The left side of this figure
shows an example of a graph that has dependent paths. The source node is
S and the target node is T , the dependent paths are: σ1 = {A,B,C}, σ2 =
{A,E, F}, σ3 = {D,E, F}. The common nodes areA,E and F . For instance,
A is a common node between σ1 and σ2. A is split into A1, A2 where A1 ∈
σ′1 = {A1, B,C} and A2 ∈ σ′2 = {A2, E, F} in the new graph, so is the
case for the nodes E and F . The right part of Figure 5 shows the new graph
after splitting the common nodes. The new graph contains the paths σ′1 =
{A1, B, C}, σ′2 = {A2, E1, F1} and σ′3 = {D,E2, F2}.
Node splitting should be followed by opinion splitting. In M2, we keep the
same opinion associated to the original node on the split nodes. This method
is based on the idea that the new produced path σ′ maintains the same opinion
of the original path σ. For instance, if A is a common node between σ1 and σ2
and the opinion about A is OA, we split the node A into A1 ∈ σ′1 and A2 ∈ σ′2
in a new graph, and the opinion about A1 and A2 remains the same of A, that
is OA. In this case Oσ1 = Oσ′1 and Oσ2 = Oσ′2 . This method is formalized in
Algorithm 1.

Find all the paths σi:i∈[1..n] for an activity ω performed by a person P
foreach σi:i∈[1..n] do

foreach Nj:j∈[2..length(σi)−1] ∈ σi do
if Nj ∈ σk:k 6=j then

Create a node Njk
Replace Nj by Njk in σk
Initialize ONjk ← ONj

end
end

end
Algorithm 1: M2 algorithm.

– Method 3 (M3): this method follows the process of M2 in splitting dependent
nodes to obtain a graph that has independent paths as shown in Figure 5. In
order to maintain the opinion about a system, we split the opinion on the de-
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pendent node into independent opinions, such that when they are disjunct, they
produce the original opinion. Formally speaking, if the node A is in common
between σ1 and σ2 and the opinion about it is OA, A is split into A1 ∈ σ′1 and
A2 ∈ σ′2 and the opinion OA is also split into OA1

and OA2
where OA1

and
OA2 satisfy the following relations: OA1 = OA2 and OA1 ∨ OA2 = OA. The
following are the obtained split opinion in two cases, the case of splitting an
opinion into two independent opinions and the case of splitting an opinion into
n independent opinions.
• Splitting a dependent opinion into two independent opinions:

∧{
OA1 ∨OA2 = OA
OA1

= OA2

⇔


bA1 ∨ bA2 = bA
dA1 ∨ dA2 = dA
uA1
∨ uA2

= uA
aA1
∨ aA2

= aA

∧
bA1 = bA2

dA1
= dA2

uA1
= uA2

aA1
= aA2

⇒


bA1

= bA2
= 1−

√
1− bA

dA1 = dA2 =
√
dA

uA1
= uA2

=
√
dA + uA −

√
dA

aA1 = aA2 =
√
1−bA−

√
1−bA−aAuA√

dA+uA−
√
dA

(10)

• Splitting a dependent opinion into n independent opinions:∧{
OA1 ∨OA2 ∨ . . . ∨OAn = OA
OA1 = OA2 = . . . = OAn

⇔


bA1
∨ bA2 ∨ . . . ∨ bAn = bA

dA1
∨ dA2 ∨ . . . ∨ dAn = dA

uA1 ∨ uA2 ∨ . . . ∨ uAn = uA
aA1 ∨ aA2 ∨ . . . ∨ aAn = aA

∧
bA1

= bA2 = . . . = bAn
dA1 = dA2 = . . . = dAn
uA1 = uA2 = . . . = uAn
aA1

= aA2 = . . . = aAn

⇒


bA1 = bA2 = . . . = bAn = 1− (1− bA)

1
n

dA1 = dA2 = . . . = dAn = d
1
n

A

uA1 = uA2 = . . . = uAn = (dA + uA)
1
n − d

1
n

A

aA1 = aA2 = . . . = aAn = (1−bA)
1
n−(1−bA−aAuA)

1
n

(dA+uA)
1
n−dA

1
n

(11)

The proofs of Relations 10 and 11 are in Appendix A.3. M3 is formalized in
Algorithm 2.

In the following, we evaluate our approach with several experiments.

4 Experimental evaluation

Evaluating this proposal faces multiple issues. First, the variations that we focus on for
studying our approach is the percentage of dependent nodes or the percentage of de-
pendent paths in a graph. Thus studying our approach on one single graph is not that
useful, each graph has its own topology and its own characteristics that can not been
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Find all the paths σi:i∈[1..n] for an activity ω performed by a person P
foreach σi:i∈[1..n] do

foreach Nj:j∈[2..length(σi)−1] ∈ σi do
if Nj ∈ σk:k 6=j then

Create a node Njk
Replace Nj by Njk in σk
ONjk ← opinion resulted from Relations 11

end
end

end
Algorithm 2: M3 algorithm.

generalized on one single graph. Second, the proposed methods are approximate meth-
ods for evaluating trust in a system. There is not a referenced method to be compared
with the proposed methods. Third, subjective logic is relatively new, there are not yet
circulating opinions that we can extract to test our approach on a real case study.

To overcome the previous difficulties, we decide to treat them one by one on sepa-
rated experiments that have the following objectives:

– Comparing the proposed methods.
– Evaluating the accuracy of the proposed methods.
– Confronting this approach with real users.

Next sections present the different experiments, their results, analysis and how we
deal with previous difficulties.

4.1 Comparing M1, M2, M3

In order to compare the different graph transformation methods, we conducted exper-
iments on several simple graphs having different topologies (see Table 1). Besides the
topology, these graphs vary in the percentage of dependent nodes and dependent paths
they have.

To make this comparison, random opinionsON = (bN , dN , uN , aN ) are associated
to each node, and the opinion’s probability expectation value of the graph, E(Oα) =
bα + aαuα is computed using the methods M1, M2, M3. This step is repeated 50 times
for each graph where each time represents random opinions of a person towards the
different nodes the compose the graph. Table 2 shows the obtained results.

Conclusion of the first experiment: all methods have the same probability expectation
value E(Oα) when the graph has independent paths (α1). The difference between the
methods becomes more clear when the percentage of the dependent nodes or paths
increases. M2 is much more optimist than M3 and M1, it always give higher opinion’s
probability expectation than the ones given by M3 or M1. The mathematical proofs that
M2 is more optimisic than M3 and M1 are in Appendices A.4, A.5. In general M1, M2
and M3 show the same behavior, when the E(Oα) increases in one method it increases
in the other methods, and vice versa.
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α1

B

F

C

DIGP

D E

H

dependent nodes 0%
dependent paths 0% 

A

I J

L M NK
α2

B

F

C

DI
H

P

D

E

I

dependent nodes 25%
dependent paths 50% 

A

α3

B

F

C

DIHP

D

EI

dependent nodes 50%
dependent paths 75% 

A

α4

B

F

C

DI

H

P

D

E

I dependent nodes 62%
dependent paths 100% 

A

α5
B

F

C DI

G

P D E

dependent nodes 71%
dependent paths 100% 

A α6

B

F

DIP C D

dependent nodes 100%
dependent paths 100% 

A

E

Table 1: Graphs that have different topologies.

4.2 Studying the accuracy of M1, M2, M3

The three methods of SUBJECTIVETRUST are approximate methods. Comparing these
methods to each other does not show which of them is the most accurate. In order
to evaluate their accuracy, we propose to compare this approach to the SOCIOTRUST
approach proposed in [3]. However, the building component in the latter approach is a
single value that represents a node’s trust value. In M1, M2,M3, the building component
is a node’s opinion ON = (bN , dN , uN , aN ). Thus, such a comparison is not possible
directly.

Subjective logic returns back to traditional probability when b+d = 1 such that u =
0, i.e. the value of uncertainty is equal to 0. When u = 0, the operations in subjective
logic are directly compatible with the operations of the traditional probability. In this
case the value of E(O) = b+ au = b corresponds to the value of probability.

Since SOCIOTRUST is based on probability theory, the results obtained by applying
subjective logic should be equal to the obtained results using probability theory if u = 0.
SOCIOTRUST is a proposition that has no approximations, thus we can evaluate the
accuracy of these methods by choosing u = 0 and compare the value of bα = E(Oα)
resulted from applying the three methods of SUBJECTIVETRUST to the system’s trust
value obtained by applying SOCIOTRUST.

The experiments are conducted on the graphs shown in Table 1. Random opinions
ON = (bN , dN , 0, aN ) are associated to each node, and opinion’s probability expecta-
tion of the graph E(Oα) = bα + aαuα = bα is computed. This step is repeated 10000
times for each graph. For simplicity, the notations T , TM1, TM2, TM3 respectively de-
note system’s trust value resulting from applying SOCIOTRUST and system’s opinion
probability expectation resulting from applying M1, M2 and M3. Table 3 shows the
results of comparing system’s opinion probability expectation TM1,TM2,TM3 and the
trust value T resulting of using probability theory on the graphs shown in Table 1. The
values of T − TM1, T − TM2, T − TM3 are computed and the average of these values
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α1 α2

α3 α4

α5 α6

Table 2: Different graphs and their value of E(Oα) for 50 persons using the three meth-
ods M1, M2 and M3.
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∑
(T−TM1)
10000 ,

∑
(T−TM2)
10000 ,

∑
(T−TM3)
10000 are computed as an indication of the accuracy of

the methods of SUBJECTIVETRUST.

Conclusion of the second experiment: in the graph that has independent paths α1, all
results are equal as expected. M2 is the method that gives the closest results to the results
obtained by applying probability theory, which is an indication that this method gives
the nearest result to the exact result. M2 is more optimistic than the probability theory,
its results is always higher than the obtained results in probability theory. M2 shows a
high accuracy, between 0 (in a graph that has total independent nodes and paths) and
0.078327 (in a graph that has 100% dependent nodes and 100% dependent paths).

M1, M3 are more pessimistic than the probability theory, their results are always
lower than the obtained results in probability theory. The accuracy of M1 is between 0
(in a graph that has total independent nodes and paths) and 0.12486 (in a graph that has
100% dependent nodes and 100% dependent paths). The accuracy of M3 is between 0
(in a graph that has total independent nodes and paths) and 0.20546 (in a graph that has
100% dependent nodes and 100% dependent paths).

The system’s trust value obtained by using probability theory is always between the
system’s opinion probability expectation value obtained by M2 and M1, or by M2 and
M3.

4.3 Social evaluation: a real case

In order to study our approach on a real case study, we need the following data: a real
system modeled by using SOCIOPATH and real opinions held by real users who use the
entities of the system.

We modeled a subpart of the LINA research laboratory system3 using SOCIOPATH.
We applied the rules of SOCIOPATH on this system for the activity “a user accesses
a document toto that is stored on the SVN server of LINA”. Figure 8 presents the
WDAG for this activity, with renamed nodes A,B,C,D,E, F,G for privacy issues.
For sack of clarity, we simplify this graph as much as possible.

A

B

toto

E

P

C

G

D

F

Fig. 6. LINA’s WDAG for the activity “accessing a document toto on the SVN”.

Since subjective logic is relatively new, users are not used to build an opinion di-
rectly using this logic. We build this opinion ourselves from users’ positive or negative

3 https://www.lina.univ-nantes.fr/
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observations. Since our work focuses on local trust, local observations are considered.
To do that, the survey introduced in Appendix A.6 helps us to collect the observations
of LINA users about the nodes. A local opinion in each entity is built for each user, few
examples are shown in Appendix A.6 as well. The opinion and the opinion’s probabil-
ity expectation of the system are then computed using M2 for each user. The results are
shown in Table 4.

Conclusion of the third experiment: in this experiment, depending on the local obser-
vations, opinions in the nodes are built and a local opinion in a system is computed. We
asked each user for a feedback about their opinion in the nodes and in the system. LINA
users were satisfied of the obtained results whereas, in [3], some users were not satisfied
of the results. In the latter approach, when users do not have enough knowledge about a
node, they vote with the value 0.5, which are considered for them as neutral value. That
led to incorrect data that gave a false trust value in a system. In SUBJECTIVETRUST,
uncertainties are expressed for the opinions in the nodes and computing an opinion in a
system is made considering these uncertainties. That shows that, in uncertain environ-
ment, it is more suitable to use subjective logic than other metrics for trust evaluations.



18 Nagham Alhadad1, Yann Busnel2, Patricia Serrano-Alvarado2, Philippe Lamarre3

α1 α2

α3 α4

α5 α6

Table 3: The difference between the opinion’s probability expectation of a graphE(Oα)
using SUBJECTIVETRUST and the trust value resulting of using SOCIOTRUST.
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5 Related work

This paper proposes an approach to evaluate the system trust value for an activity as a
combination of several trust values through a graph. This work is principally related to
the trust propagation problem in social networks [10,21].

Usually, a social network is represented as a graph where the nodes are persons and
the edges reflect the trust relations between these persons. The values associated to the
edges represent the values of trust between these persons. Trust propagation problem
in social network focuses on finding a trust value toward a defined person or resource
through the multiple paths that relate the trustor with the trustee.

In our work, a system for an activity is represented by a graph where the nodes
are the entities that compose the system and the edges are the relations of access be-
tween the nodes. The relationship of trust are the directed relations applied from the
source node, which is the user who achieves an activity, towards the nodes that build
the system. The graph-based trust models in social network aim to propagate trust be-
tween two nodes in a graph, whereas the objective of our work is evaluating trust in the
whole graph that reflects the activity achieved through it. Figure 7 shows the difference
between a trust graph in a social network and our work.

A

B C D

E F

G
A

B C D

E F

G

Trust relationships in a social network Trust relationships in a SocioTrust

Fig. 7. Difference between trust relationships in a social network and SOCIOPATH.

A lot of metrics have been proposed to propagate trust through a social network like
binary metrics [9] or simple metrics (average, weighted average, etc.) [7,19] or proba-
bilistic metrics [3,17], subjective logic is also used for the trust propagation problem as
a type of probabilistic metrics [12,13]. In [12,13], the graph-based trust model is divided
into two phases, trust propagation through a path and trust propagation through a graph.
In the first phase, the proposed methods focus on the transitivity of trust, the methods in
the second phase focus on the consensus of trust through the multiple paths. Our work
converges with these works in the phases of evaluating trust through a graph, but it
diverges in the proposed formalisms and algorithms in the two phases due to the differ-
ences in the trust relationships represented in the graph, see Figure 7 and the different
objective of our work. That imposes us to propose different relations and algorithms
and not straightly adopted what exists in this domain.
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6 Conclusion and perspectives

This paper presents a graph-based trust model to evaluate user’s trust in a system for
an activity using subjective logic. The problem of dependent paths in evaluating trust
using a weighted directed acyclic graph is illustrated and some methods are proposed to
resolve this problem, all by using subjective logic. Some experiments are conducted to
validate the proposed methods and a real case study is made to confront this approach
to real users. The limitation of this approach that the proposed methods are approximate
methods. The way that has been proposed to evaluate their accuracy is limited, because
it is made for the case where the value of uncertainty is equal to 0.

In this paper, building an opinion about a node is based on the user’s binary obser-
vations towards this node, either positive or negative observation. In future works, we
plan to use a degree of strength for the observations. Thus, they should be represented
as a range of discrete values, in this case, a user observation is a value that belongs to a
discrete interval like [0..10]. This imposes using a different mapping function between
the observation and the opinion parameters.
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A Appendix

A.1 Opinion about a path (mathematical proof):

Ox∧y =


bx∧y = bxby
dx∧y = dx + dy − dxdy
ux∧y = bxuy + uxby + uxuy
ax∧y =

bxuyay+byuxax+uxaxuyay
bxuy+uxby+uxuy

⇒

Oσ={N1,...,Nn} =


bσ={N1,...,Nn} = b∧{Ni}i∈[1..n]

=
∏n
i=1 bNi

dσ={N1,...,Nn} = d∧{Ni}i∈[1..n]
= 1−

∏n
i=1 (1− dNi)

uσ={N1,...,Nn} = u∧{Ni}i∈[1..n]
=
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi)

aσ={N1,...,Nn} = a∧{Ni}i∈[1..n]
=

∏n
i=1(bNi+uNiaNi )−

∏n
i=1(bNi )∏n

i=1(bNi+uNi )−
∏n
i=1(bNi )

1. The mathematical proof of the relation bσ:

Lemma 1. bσ={N1,...,Nn} = b∧{Ni}i∈[1..n]
=
∏n
i=1 bNi

Proof. We prove by induction that, for all n ∈ Z+,

b∧{Ni}i∈[1..n]
=

n∏
i=1

bNi

Base case. When n = 2:

bN1∧N2 = bN1bN2 =

2∏
i=1

bNi

Induction step. Let k ∈ Z+ be given and suppose that Lemma 1 is true for n = k.
Then

b∧{Ni}i∈[1..k+1]
= b{∧{Ni}i∈[1..k]}∧Nk+1

=

k∏
i=1

bNibNk+1
=

k+1∏
i=1

bNi

Thus, Lemma 1 holds for n = k + 1. By the principle of induction, Lemma 1 is
true for all n ∈ Z+. ut

ut

2. The mathematical proof of the relation dσ:

Lemma 2. dσ={N1,...,Nn} = d∧{Ni}i∈[1..n]
= 1−

∏n
i=1 (1− dNi)

Proof. We prove by induction that, for all n ∈ Z+,

d∧{Ni}i∈[1..n]
= 1−

n∏
i=1

(1− dNi)
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Base case. When n = 2:

dN1∧N2
= dN2

+ dN1
− dN1

dN2

= 1− (1− dN2
− dN1

+ dN1
dN2

)

= 1− (1− dN1
)(1− dN2

)

= 1−
2∏
i=1

(1− dNi)

Induction step. Let k ∈ Z+ be given and suppose that Lemma 2 is true for n = k.
Then

d∧{Ni}i∈[1..k+1]
= d{∧{Ni}i∈[1..k]}∧Nk+1

= d∧{Ni}i∈[1..k] + dNk+1
− d∧{Ni}i∈[1..k]dNk+1

=

[
1−

k∏
i=1

(1− dNi)

]
+ dNk+1

−

[
1−

k∏
i=1

(1− dNi)

]
dNk+1

= 1−
k∏
i=1

(1− dNi) + dNk+1
− dNk+1

+ dNk+1

k∏
i=1

(1− dNi)

= 1−
k∏
i=1

(1− dNi) + dNk+1

k∏
i=1

(1− dNi)

= 1−

[
k∏
i=1

(1− dNi)

]
[1− dNk+1

]

= 1−
k+1∏
i=1

(1− dNi)

Thus, Lemma 2 holds for n = k + 1. By the principle of induction, Lemma 2 is
true for all n ∈ Z+. ut

ut

3. The mathematical proof of the relation uσ:

Lemma 3. uσ={N1,...,Nn} = u∧{Ni}i∈[1..n]
=
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi)

Proof. We prove by induction that, for all n ∈ Z+,

u∧{Ni}i∈[1..n]
=

n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi)
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Base case. When n = 2:

uN1∧N2
= bN1

uN2
+ uN1

bN2
+ uN1

uN2

= bN1
uN2

+ uN1
bN2

+ uN1
uN2

+ bN1
bN2
− bN1

bN2

= (bN1
+ uN1

)(bN2
+ uN2

)− bN1
bN2

=

2∏
i=1

(bNi + uNi)−
2∏
i=1

(bNi)

Induction step. Let k ∈ Z+ be given and suppose that Lemma 3 is true for n = k.
Then

u∧{Ni}i∈[1..k+1]
= u{∧{Ni}i∈[1..k]}∧Nk+1

= b∧{Ni}i∈[1..k]uNk+1
+ u∧{Ni}i∈[1..k]bNk+1

+ u∧{Ni}i∈[1..k]uNk+1

=

[
k∏
i=1

bNi

]
uNk+1

+

[
k∏
i=1

(bNi + uNi)−
k∏
i=1

(bNi)

]
bNk+1

+

[
k∏
i=1

(bNi + uNi)−
k∏
i=1

(bNi)

]
uNk+1

=

k∏
i=1

bNiuNk+1
+

k∏
i=1

(bNi + uNi)bNk+1
−

k∏
i=1

(bNi)bNk+1

+

k∏
i=1

(bNi + uNi)uNk+1
−

k∏
i=1

(bNi)uNk+1

=

[
k∏
i=1

(bNi + uNi)

]
(bNk+1

+ uNk+1
)−

k+1∏
i=1

(bNi)

=

k+1∏
i=1

(bNi + uNi)−
k+1∏
i=1

(bNi)

Thus, Lemma 3 holds for n = k + 1. By the principle of induction, Lemma 3 is
true for all n ∈ Z+. ut

ut

4. The mathematical proof of the relation aσ:

Lemma 4. aσ={N1,...,Nn} = a∧{Ni}i∈[1..n]
=

∏n
i=1(bNi+uNiaNi )−

∏n
i=1(bNi )∏n

i=1(bNi+uNi )−
∏n
i=1(bNi )

Proof. We prove by induction that, for all n ∈ Z+,

a∧{Ni}i∈[1..n]
=

∏n
i=1(bNi + uNiaNi)−

∏n
i=1(bNi)∏n

i=1(bNi + uNi)−
∏n
i=1(bNi)
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Base case. When n = 2:

aN1∧N2
=
bN1uN2aN2 + bN2uN1aN1 + uN1aN1uN2aN2

bN1
uN2

+ uN1
bN2

+ uN1
uN2

=
(bN1uN2aN2 + bN2uN1aN1 + uN1aN1uN2aN2 + bN1bN2)− bN1bN2

uN1∧N2

=
(bN1

+ uN1
aN1

)(bN2
+ uN2

aN2
)− (bN1

bN2
)

uN1∧N2

=

∏2
i=1(bNi + uNiaNi)−

∏2
i=1(bNi)∏2

i=1(bNi + uNi)−
∏2
i=1(bNi)

Induction step. Let k ∈ Z+ be given and suppose that Lemma 4 is true for n = k.
Then

a∧{Ni}i∈[1..k+1]
= a{∧{Ni}i∈[1..k]}∧Nk+1

=

b∧{Ni}i∈[1..k]uNk+1
aNk+1

+ bNk+1
u∧{Ni}i∈[1..k]a∧{Ni}i∈[1..k] + u∧{Ni}i∈[1..k]a∧{Ni}i∈[1..k]uNk+1

aNk+1

b∧{Ni}i∈[1..k]uNk+1
+ u∧{Ni}i∈[1..k]bNk+1

+ u∧{Ni}i∈[1..k]uNk+1

We denote the numerator with γ, and the denominator with β.

a∧{Ni}i∈[1..k+1]
=
γ

β

γ = b∧{Ni}i∈[1..k]uNk+1
aNk+1

+ bNk+1
u∧{Ni}i∈[1..k]a∧{Ni}i∈[1..k]

+ u∧{Ni}i∈[1..k]a∧{Ni}i∈[1..k]uNk+1
aNk+1

γ =

[
k∏
i=1

bNi

]
uNk+1

aNk+1

+

[
k∏
i=1

(bNi + uNi )−
k∏
i=1

(bNi )

][∏k
i=1(bNi + uNiaNi )−

∏k
i=1(bNi )∏k

i=1(bNi + uNi )−
∏k
i=1(bNi )

]
bNk+1

+

[
k∏
i=1

(bNi + uNi )−
k∏
i=1

(bNi )

][∏k
i=1(bNi + uNiaNi )−

∏k
i=1(bNi )∏k

i=1(bNi + uNi )−
∏k
i=1(bNi )

]
uNk+1

aNk+1

γ =

[
k∏
i=1

bNiuNk+1
aNk+1

]
+

[
k∏
i=1

(bNi + uNiaNi )−
k∏
i=1

(bNi )

]
bNk+1

+

[
k∏
i=1

(bNi + uNiaNi )−
k∏
i=1

(bNi )

]
uNk+1

aNk+1

γ =

[
k∏
i=1

bNiuNk+1
aNk+1

]
+

[
k∏
i=1

(bNi + uNiaNi )−
k∏
i=1

(bNi )

] [
bNk+1

+ uNk+1
aNk+1

]

γ =

[
k∏
i=1

bNiuNk+1
aNk+1

]
+

[
k∏
i=1

(bNi + uNiaNi )

] [
bNk+1

+ uNk+1
aNk+1

]

−
k∏
i=1

(bNi )
[
bNk+1

+ uNk+1
aNk+1

]
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γ =

[
k∏
i=1

bNiuNk+1
aNk+1

]
+

k+1∏
i=1

(bNi + uNiaNi )

− k∏
i=1

(bNi )bNk+1
−

k∏
i=1

(bNi )uNk+1
aNk+1

γ =

k+1∏
i=1

(bNi + uNiaNi )

− k+1∏
i=1

(bNi )

β = b∧{Ni}i∈[1..k]uNk+1
+ u∧{Ni}i∈[1..k]bNk+1

+ u∧{Ni}i∈[1..k]uNk+1

β =

[
k∏
i=1

bNi

]
uNk+1

+

[
k∏
i=1

(bNi + uNi )−
k∏
i=1

(bNi )

]
bNk+1

+

[
k∏
i=1

(bNi + uNi )−
k∏
i=1

(bNi )

]
uNk+1

β =
k∏
i=1

bNiuNk+1
+

k∏
i=1

(bNi + uNi )bNk+1
−

k∏
i=1

(bNi )bNk+1

+
k∏
i=1

(bNi + uNi )uNk+1
−

k∏
i=1

(bNi )uNk+1

β =

[
k∏
i=1

(bNi + uNi )

]
(bNk+1

+ uNk+1
)−

k+1∏
i=1

(bNi )

=

k+1∏
i=1

(bNi + uNi )−
k+1∏
i=1

(bNi )

a∧{Ni}i∈[1..k+1]
=
γ

β
=

[∏k+1
i=1 (bNi + uNiaNi)

]
−
∏k+1
i=1 (bNi)∏k+1

i=1 (bNi + uNi)−
∏k+1
i=1 (bNi)

Thus, Lemma 4 holds for n = k + 1. By the principle of induction, Lemma 4 is
true for all n ∈ Z+. ut

ut

A.1.1 Verifications: in this section we verify the following relations:

0 < bσ =
∏n
i=1 bNi < 1

0 < dσ = 1−
∏n
i=1 (1− dNi) < 1

0 < uσ =
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi) < 1

0 < aσ =
∏n
i=1(bNi+uNiaNi )−

∏n
i=1(bNi )∏n

i=1(bNi+uNi )−
∏n
i=1(bNi )

< 1

bσ + dσ + uσ = 1

Lemma 5. 0 < bσ =
∏n
i=1 bNi < 1

Proof.
∀i ∈ [1..n] : 0 < bNi < 1

The multiplications of several values between 0 and 1 is between 0 and 1⇒

0 <

n∏
i=1

bNi < 1⇒ 0 < bσ < 1

ut ut
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Lemma 6. 0 < dσ = 1−
∏n
i=1 (1− dNi) < 1

Proof.

∀i ∈ [1..n] :

0 < dNi < 1⇒
1 > 1− dNi > 0⇒

1 >

n∏
i=1

(1− dNi) > 0⇒

0 < 1−
n∏
i=1

(1− dNi) < 1⇒

0 < dσ < 1

ut ut

Lemma 7. 0 < uσ =
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi) < 1

Proof. The left side:

∀i ∈ [1..n] : uNi > 0⇒
bNi + uNi > bNi ⇒
n∏
i=1

(bNi + uNi) >

n∏
i=1

(bNi)⇒

n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi) > 0⇒

uσ > 0

The right side:

∀i ∈ [1..n] : bNi + uNi < 1⇒
n∏
i=1

(bNi + uNi) < 1⇒

n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi) < 1⇒

uσ < 1

ut ut

Lemma 8. 0 < aσ =
∏n
i=1(bNi+uNiaNi )−

∏n
i=1(bNi )∏n

i=1(bNi+uNi )−
∏n
i=1(bNi )

< 1

Proof. The left side:

∀i ∈ [1..n] :
bNi + uNiaNi > bNi ⇒

∏n
i=1(bNi + uNiaNi)−

∏n
i=1(bNi) > 0

bNi + uNi > bNi ⇒
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi) > 0

⇒
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i=1(bNi + uNiaNi)−

∏n
i=1 bNi)∏n

i=1(bNi + uNi)−
∏n
i=1(bNi)

> 0⇒ aσ > 0

The right side:

∀i ∈ [1..n] : 0 < aNi < 1⇒
uNiaNi < uNi ⇒
bNi + uNiaNi < bNi + uNi ⇒
n∏
i=1

(bNi + uNiaNi) <

n∏
i=1

(bNi + uNi)⇒

n∏
i=1

(bNi + uNiaNi)−
n∏
i=1

(bNi) <

n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi)⇒∏n
i=1(bNi + uNiaNi)−

∏n
i=1(bNi)∏n

i=1(bNi + uNi)−
∏n
i=1(bNi)

< 1⇒

aσ < 1

ut ut

Lemma 9. bσ + dσ + uσ = 1

Proof.  bσ =
∏n
i=1 bNi

dσ = 1−
∏n
i=1 (1− dNi)

uσ =
∏n
i=1(bNi + uNi)−

∏n
i=1(bNi)

⇒

bσ + dσ + uσ =

n∏
i=1

bNi + 1−
n∏
i=1

(1− dNi) +
n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi)

bσ + dσ + uσ =

n∏
i=1

bNi + 1−
n∏
i=1

(bNi + uNi) +

n∏
i=1

(bNi + uNi)−
n∏
i=1

(bNi)

bσ + dσ + uσ = 1

ut ut



30 Nagham Alhadad1, Yann Busnel2, Patricia Serrano-Alvarado2, Philippe Lamarre3

A.2 Opinion about a system (mathematical proof):

Ox∨y =


bx∨y = bx + by − bxby
dx∨y = dxdy
ux∨y = dxuy + uxdy + uxuy
ax∨y =

uxax+uyay−bxuyay−byuxax−uxaxuyay
ux+uy−bxuy−byux−uxuy

⇒

Oα={σ1,...,σm} =


bα={σ1,...,σm} = b∨{σi} = 1−

∏m
i=1 (1− bσi)

dα={σ1,...,σm} = d∨{σi} =∏m
i=1 dσi

uα={σ1,...,σm} = u∨{σi} =∏m
i=1(dσi + uσi)−

∏m
i=1(dσi)

aα={σ1,...,σm} = a∨{σi} =
∏m
i=1(dσi+uσi )−

∏m
i=1(dσi+uσi−uσiaσi )∏m

i=1(dσi+uσi )−
∏m
i=1(dσi )

1. The mathematical proof of the relation bα:

Lemma 10. bα={σ1,...,σm} = b∨{σi}i∈[1..m]
= 1−

∏m
i=1 (1− bσi)

Proof. We prove by induction that, for all m ∈ Z+,

b∨{σi}i∈[1..m]
= 1−

m∏
i=1

(1− bσi) (12)

Base case. When m = 2:

bσ1∨σ2
= bσ2

+ bσ1
− bσ1

bσ2

= 1− (1− bσ2
− bσ1

+ bσ1
bσ2

)

= 1− (1− bσ1
)(1− bσ2

)

= 1−
2∏
i=1

(1− bσi)

Induction step. Let k ∈ Z+ be given and suppose that Lemma 10 is true for
m = k. Then
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b∨{σi}i∈[1..k+1]
= b∨{{σi}i∈[1..k]}∨σk+1

= b{σi}i∈[1..k] + bσk+1
− b{σi}i∈[1..k]bσk+1

=

[
1−

k∏
i=1

(1− bσi)

]
+ bσk+1

−

[
1−

k∏
i=1

(1− bσi)

]
bσk+1

= 1−
k∏
i=1

(1− bσi) + bσk+1
− bσk+1

+ bσk+1

k∏
i=1

(1− bσi)

= 1−
k∏
i=1

(1− bσi) + bσk+1

k∏
i=1

(1− bσi)

= 1−

[
k∏
i=1

(1− bσi)

]
[1− bσk+1

]

= 1−
k+1∏
i=1

(1− bσi)

Thus, Lemma 10 holds for m = k+ 1. By the principle of induction, Lemma 10 is
true for all m ∈ Z+. ut

ut

2. The mathematical proof of the relation dα:

Lemma 11. dα={σ1,...,σm} = d∨{σi} =∏m
i=1 dσi

Proof. We prove by induction that, for all m ∈ Z+,

d∨{σi}i∈[1..m]
=

m∏
i=1

dσi

Base case. When m = 2:

dσ1∨σ2 = dσ1dσ2 =

2∏
i=1

dσi

Induction step. Let k ∈ Z+ be given and suppose that Lemma 11 is true for
m = k. Then

d∨{σi}i∈[1..k+1]
= d∨{{σi}i∈[1..k]}∨σk+1

= d∨{{σi}i∈[1..k]}dσk+1
=

k∏
i=1

dσidσk+1
=

k+1∏
i=1

dσi

Thus, Lemma 11 holds for m = k+ 1. By the principle of induction, Lemma 11 is
true for all m ∈ Z+. ut

ut
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3. The mathematical proof of the relation uα:

Lemma 12. uα={σ1,...,σm} = u∨{σi} =∏m
i=1(dσi + uσi)−

∏m
i=1(dσi)

Proof. We prove by induction that, for all m ∈ Z+,

u∨{σi}i∈[1..m]
=

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi)

Base case. When m = 2:

uσ1∨σ2 = dσ1uσ2 + uσ1dσ2 + uσ1uσ2

= dσ1uσ2 + uσ1dσ2 + uσ1uσ2 + dσ1dσ2 − dσ1dσ2

= (dσ1 + uσ1)(dσ2 + uσ2)− dσ1dσ2

=

2∏
i=1

(dσi + uσi)−
2∏
i=1

(dσi)

Induction step. Let k ∈ Z+ be given and suppose that Lemma 12 is true for
m = k. Then

u∨{σi}i∈[1..k+1]
= u∨{{σi}i∈[1..k]}∨σk+1

= d{σi}i∈[1..k]uσk+1
+ u{σi}i∈[1..k]dσk+1

+ u{σi}i∈[1..k]uσk+1

=

[
k∏
i=1

dσi

]
uσk+1

+

[
k∏
i=1

(dσi + uσi)−
k∏
i=1

(dσi)

]
dσk+1

+

[
k∏
i=1

(dσi + uσi)−
k∏
i=1

(dσi)

]
uσk+1

=

k∏
i=1

dσiuσk+1
+

k∏
i=1

(dσi + uσi)dσk+1
−

k∏
i=1

(dσi)dσk+1

+

k∏
i=1

(dσi + uσi)uσk+1
−

k∏
i=1

(dσi)uσk+1

=

[
k∏
i=1

(dσi + uσi)

]
(dσk+1

+ uσk+1
)−

k+1∏
i=1

(dσi)

=

k+1∏
i=1

(dσi + uσi)−
k+1∏
i=1

(dσi)

Thus, Lemma 12 holds for m = k+ 1. By the principle of induction, Lemma 12 is
true for all m ∈ Z+. ut

ut
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4. The mathematical proof of the relation aα:

Lemma 13. aα =
∏m
i=1(dσi+uσi )−

∏m
i=1(dσi+uσi−uσiaσi )∏m

i=1(dσi+uσi )−
∏m
i=1(dσi )

Proof. We prove by induction that, for all m ∈ Z+,

a∨{σi} =
∏m
i=1(dσi + uσi)−

∏m
i=1(dσi + uσi − uσiaσi)∏m

i=1(dσi + uσi)−
∏m
i=1(dσi)

Base case. When m = 2:

aσ1∨σ2
=
uσ1

aσ1
+ uσ2

aσ2
− bσ1

uσ2
aσ2
− bσ2

uσ1
aσ1
− uσ1

aσ1
uσ2

aσ2

uσ1
+ uσ2

− bσ1
uσ2
− bσ2

uσ1
− uσ1

uσ2

We denote the numerator with γ, and the denominator with β.

aσ1∨σ2
=
γ

β

γ = uσ1aσ1 + uσ2aσ2 − bσ1uσ2aσ2 − bσ2uσ1aσ1 − uσ1aσ1uσ2aσ2

= (1− bσ1 − bσ2 + bσ1bσ2)− (1− bσ1 − bσ2 + bσ1bσ2)

+ uσ1aσ1 + uσ2aσ2 − bσ1uσ2aσ2 − bσ2uσ1aσ1 − uσ1aσ1uσ2aσ2

= (1− bσ1 − bσ2 + bσ1bσ2)− (1− bσ1 − bσ2 + bσ1bσ2

− uσ1aσ1 − uσ2aσ2 + bσ1uσ2aσ2 + bσ2uσ1aσ1 + uσ1aσ1uσ2aσ2)

= (1− bσ1)(1− bσ2)− (1− bσ1 − uσ1aσ1 − bσ2 + bσ1bσ2 + bσ2uσ1aσ1

− uσ2aσ2 + bσ1uσ2aσ2 + uσ1aσ1uσ2aσ2)

= (1− bσ1)(1− bσ2)

− [(1− bσ1 − uσ1aσ1)− bσ2(1− bσ1 − uσ1aσ1)− uσ2aσ2(1− bσ1 − uσ1aσ1)]

= (1− bσ1)(1− bσ2)− [(1− bσ1 − uσ1aσ1)(1− bσ2 − uσ2aσ2)]

= (dσ1 + uσ1)(dσ2 + uσ2)− [(dσ1 + uσ1 − uσ1aσ1)(dσ2 + uσ2 − uσ2aσ2)]

=

2∏
i=1

(dσi + uσi)−
2∏
i=1

(dσi + uσi − uσiaσi)

β = uσ1 + uσ2 − bσ1uσ2 − bσ2uσ1 − uσ1uσ2

= uσ1 + uσ2 − (1− dσ1 − uσ1)uσ2 − (1− dσ2 − uσ2)uσ1 − uσ1uσ2

= dσ1uσ2 + uσ1uσ2 + dσ2uσ1 + uσ2uσ1 − uσ1uσ2

= dσ1uσ2 + dσ2uσ1 + uσ2uσ1

= uσ1∧σ2

=

2∏
i=1

(dσi + uσi)−
2∏
i=1

(dσi)

aσ1∨σ2 =
γ

β
=

∏2
i=1(dσi + uσi)−

∏2
i=1(dσi + uσi − uσiaσi)∏2

i=1(dσi + uσi)−
∏2
i=1(dσi)
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Induction step. Let k ∈ Z+ be given and suppose that Lemma 13 is true for
m = k. Then

a∨{σi}i∈[1..k+1]
= a∨{{σi}i∈[1..k]}∨σk+1

=
γ

β
:

γ = u{σi}i∈[1..k]a{σi}i∈[1..k] + uσk+1
aσk+1

− b{σi}i∈[1..k]uσk+1
aσk+1

− bσk+1
u{σi}i∈[1..k]a{σi}i∈[1..k] − u{σi}i∈[1..k]a{σi}i∈[1..k]uσk+1

aσk+1

β = u{σi}i∈[1..k] + uσk+1
− b{σi}i∈[1..k]uσk+1

− bσk+1
u{σi}i∈[1..k] − u{σi}i∈[1..k]uσk+1
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γ = uαaα + uσk+1
aσk+1

− bαuσk+1
aσk+1

− bσk+1
uαaα − uαaαuσk+1

aσk+1

=

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

][∏k
i=1(dσi + uσi )−

∏k
i=1(dσi + uσi − uσiaσi )∏k

i=1(dσi + uσi )−
∏k
i=1(dσi )

]

+ uσk+1
aσk+1

−
[
1−

k∏
i=1

(1− bσi )
]
uσk+1

aσk+1

− bσk+1

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

][∏k
i=1(dσi + uσi )−

∏k
i=1(dσi + uσi − uσiaσi )∏k

i=1(dσi + uσi )−
∏k
i=1(dσi )

]

− uσk+1
aσk+1

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

][∏k
i=1(dσi + uσi )−

∏k
i=1(dσi + uσi − uσiaσi )∏k

i=1(dσi + uσi )−
∏k
i=1(dσi )

]

γ =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi + uσi − uσiaσi )
]

+ uσk+1
aσk+1

−
[
1−

k∏
i=1

(1− bσi )
]
uσk+1

aσk+1

− bσk+1

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi + uσi − uσiaσi )
]

− uσk+1
aσk+1

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi + uσi − uσiaσi )
]

γ =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi + uσi − uσiaσi )
] [

1− bσk+1
− uσk+1

aσk+1

]

+ uσk+1
aσk+1

[
1− 1 +

k∏
i=1

(1− bσi )
]

γ =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi + uσi − uσiaσi )
] [
dσk+1

+ uσk+1
− uσk+1

aσk+1

]

+ uσk+1
aσk+1

[
k∏
i=1

(dσi + uσi )

]

γ =

[
k∏
i=1

(dσi + uσi )

] [
dσk+1

+ uσk+1
− uσk+1

aσk+1

]
−

k+1∏
i=1

(dσi + uσi − uσiaσi )


+

[
k∏
i=1

(dσi + uσi )

]
uσk+1

aσk+1

γ =

[
k∏
i=1

(dσi + uσi )

] [
dσk+1

+ uσk+1

]
−

k+1∏
i=1

(dσi + uσi − uσiaσi )


γ =

k+1∏
i=1

(dσi + uσi )

−
k+1∏
i=1

(dσi + uσi − uσiaσi )


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β = uα + uσk+1
− bαuσk+1

− bσk+1
uα − uαuσk+1

β =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
+ uσk+1

−
[
1−

k∏
i=1

(1− bσi )
]
uσk+1

− bσk+1

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
−

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
uσk+1

β =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
+ uσk+1

− uσk+1
+

k∏
i=1

(dσi + uσi )uσk+1

−
[
1− dσk+1

− uσk+1

] [ k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
−

k∏
i=1

(dσi + uσi )uσk+1
+

k∏
i=1

(dσi )uσk+1

β =

[
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]

−
[
1− dσk+1

− uσk+1

] [ k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

]
+

k∏
i=1

(dσi )uσk+1

β =
k∏
i=1

(dσi + uσi )−
k∏
i=1

(dσi )

−
[
1− dσk+1

− uσk+1

] k∏
i=1

(dσi + uσi ) +
[
1− dσk+1

− uσk+1

] k∏
i=1

(dσi ) +

k∏
i=1

(dσi )uσk+1

β =

k∏
i=1

(dσi + uσi )
[
1− 1 + dσk+1

+ uσk+1

]
−

k∏
i=1

(dσi )
[
1− 1 + dσk+1

+ uσk+1
− uσk+1

]

=

k∏
i=1

(dσi + uσi )
[
dσk+1

+ uσk+1

]
−

k∏
i=1

(dσi )
[
dσk+1

]

=

k+1∏
i=1

(dσi + uσi )−
k+1∏
i=1

(dσi )

a∨{σi}i∈[1..k+1]
=
γ

β
=

[∏k+1
i=1 (dσi + uσi)

]
−
[∏k+1

i=1 (dσi + uσi − uσiaσi)
]

∏k+1
i=1 (dσi + uσi)−

∏k+1
i=1 (dσi)

Thus, Lemma 13 holds for m = k+ 1. By the principle of induction, Lemma 13 is
true for all m ∈ Z+. ut

ut

A.2.1 Verifications: in this section we verify the following relations:

0 < bα = 1−
∏m
i=1 (1− bσi) < 1

0 < dα =
∏m
i=1 dσi < 1

0 < uα =
∏m
i=1(dσi + uσi)−

∏m
i=1(dσi) < 1

0 < aα =
∏m
i=1(dσi+uσi )−

∏m
i=1(dσi+uσi−uσiaσi )∏m

i=1(dσi+uσi )−
∏m
i=1(dσi )

< 1

bα + dα + uα = 1

Lemma 14. 0 < bα = 1−
∏m
i=1 (1− bσi) < 1
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Proof.

∀i ∈ [1..m] :

0 < bσi < 1⇒
1 > 1− bσi > 0⇒

1 >

m∏
i=1

(1− bσi) > 0⇒

0 < 1−
m∏
i=1

(1− bσi) < 1⇒

0 < bα < 1

ut ut

Lemma 15. 0 < dα =
∏m
i=1 dσi < 1

Proof.
∀i ∈ [1..m] : 0 < dσi < 1

The multiplication of several values between 0 and 1 is between 0 and 1⇒

0 <

m∏
i=1

dσi < 1⇒ 0 < dα < 1

ut ut

Lemma 16. 0 < uα =
∏m
i=1(dσi + uσi)−

∏m
i=1(dσi) < 1

Proof. The left side:

∀i ∈ [1..m] : uσi > 0⇒
dσi + uσi > dσi ⇒
m∏
i=1

(dσi + uσi) >

m∏
i=1

(dσi)⇒

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi) > 0⇒

uα > 0

The right side:

∀i ∈ [1..m] : dσi + uσi < 1⇒
m∏
i=1

(dσi + uσi) < 1⇒

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi) < 1⇒

uα < 1
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ut
ut

Lemma 17. 0 < aα =
∏m
i=1(dσi+uσi )−

∏m
i=1(dσi+uσi−uσiaσi )∏m

i=1(dσi+uσi )−
∏m
i=1(dσi )

< 1

Proof. The left side:

∀i ∈ [1..m] :
dσi + uσi > dσi + uσi − uσiaσi ⇒

∏m
i=1(dσi + uσi)−

∏m
i=1(dσi + uσi − uσiaσi) > 0

dσi + uσi > dσi ⇒
∏m
i=1(dσi + uσi)−

∏m
i=1(dσi) > 0

⇒
aα =

∏m
i=1(dσi + uσi)−

∏m
i=1(dσi + uσi − uσiaσi)∏m

i=1(dσi + uσi)−
∏m
i=1(dσi)

> 0

The right side:

∀i ∈ [1..m] : 0 < aσi < 1⇒
uσi − uσiaσi > 0⇒
dσi + uσi − uσiaσi > dσi ⇒
m∏
i=1

(dσi + uσi − uσiaσi) >
m∏
i=1

(dσi)⇒

−
m∏
i=1

(dσi + uσi − uσiaσi) < −
m∏
i=1

(dσi)⇒

−
m∏
i=1

(dσi + uσi − uσiaσi) < −
m∏
i=1

(dσi)⇒

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi + uσi − uσiaσi) <
m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi)⇒∏m
i=1(dσi + uσi)−

∏m
i=1(dσi + uσi − uσiaσi)∏m

i=1(dσi + uσi)−
∏m
i=1(dσi)

< 1

ut
ut

Lemma 18. bα + dα + uα = 1

Proof.  bα = 1−
∏m
i=1 (1− bσi)

dα =
∏m
i=1 dσi

uα =
∏m
i=1(dσi + uσi)−

∏m
i=1(dσi)

⇒

bα + dα + uα = 1−
m∏
i=1

(1− bσi) +
m∏
i=1

dσi +

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi)

bα + dα + uα = 1−
m∏
i=1

(dσi + uσi) +

m∏
i=1

dσi +

m∏
i=1

(dσi + uσi)−
m∏
i=1

(dσi)

bα + dα + uα = 1

ut ut
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A.3 Relations of M3 (mathematical proof):

– The case of splitting a dependent opinion into two independent opinions:
bA1 ∨ bA2 = bA
dA1
∨ dA2

= dA
uA1
∨ uA2

= uA
aA1
∨ aA2

= aA

∧
bA1 = bA2

dA1
= dA2

uA1
= uA2

aA1
= aA2

⇒


bA1

= bA2
= 1−

√
1− bA

dA1
= dA2

=
√
dA

uA1 = uA2 =
√
dA + uA −

√
dA

aA1
= aA2

=
√
1−bA−

√
1−bA−aAuA√

dA+uA−
√
dA

(13)
– The case of splitting a dependent opinion into n independent opinions:

bA1 ∨ bA2 ∨ . . . ∨ bAn = bA
dA1
∨ dA2 ∨ . . . ∨ dAn = dA

uA1
∨ uA2 ∨ . . . ∨ uAn = uA

aA1
∨ aA2 ∨ . . . ∨ aAn = aA

∧
bA1 = bA2 = . . . = bAn
dA1

= dA2 = . . . = dAn
uA1

= uA2 = . . . = uAn
aA1

= aA2 = . . . = aAn

⇒


bA1 = bA2 = . . . = bAn = 1− (1− bA)

1
n

dA1 = dA2 = . . . = dAn = d
1
n

A

uA1 = uA2 = . . . = uAn = (dA + uA)
1
n − d

1
n

A

aA1 = aA2 = . . . = aAn = (1−bA)
1
n−(1−bA−aAuA)

1
n

(dA+uA)
1
n−dA

1
n

(14)

In the following sections we denote OA = (bA, dA, uA, aA) with OA = (b, d, u, a) for
simplicity.

A.3.1 The mathematical proof of Relations 13:

1. The mathematical proof of the relation b in case of splitting a node into two inde-
pendent nodes:

Lemma 19. (bA1 ∨ bA2 = b) ∧ (bA1 = bA2)⇒ bA1
= bA2

= 1−
√
1− b

Proof.

bA1 ∨ bA2 = b⇒
bA1 + bA2 − bA1bA2 = b⇒
bA1 + bA1 − bA1bA1 = b⇒
b2A1 − 2bA1 + b = 0

This is an equation from the second degree

∆ = 4− 4b = 4(1− b) > 0⇒

bA1 = bA2 =
2 + 2

√
(1− b)
2

= 1 +
√
(1− b) > 1(refused)

bA1 = bA2 =
2− 2

√
(1− b)
2

= 1−
√
(1− b)

0 < bA1 = bA2 = 1−
√
(1− b) < 1 (accepted solution)

ut ut
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2. The mathematical proof of the relation d in case of splitting a node into two inde-
pendent nodes:

Lemma 20. (dA1 ∨ dA2 = d) ∧ (dA1 = dA2)⇒ dA1 = dA2 =
√
d

Proof.

dA1 ∨ dA2 = d⇒
dA1dA2 = d⇒
d2A1 = d⇒

dA1 = dA2 = −
√
d < 0(refused)

dA1 = dA2 =
√
d

0 < dA1 = dA2 =
√
d < 1 (accepted solution)

ut ut

3. The mathematical proof of the relation u in case of splitting a node into two inde-
pendent nodes:

Lemma 21. (uA1 ∨ uA2 = u) ∧ (uA1 = uA2)⇒ uA1
= uA2

=
√
d+ u−

√
d

Proof.

uA1 ∨ uA2 = u⇒
dA1uA2 + dA2uA1 + uA1uA2 = u⇒
dA1uA1 + dA1uA1 + uA1uA1 = u⇒
2dA1uA1 + u2A1 = u⇒
u2A1 + 2dA1uA1 − u = 0⇒

u2A1 + 2
√
duA1 − u = 0⇒

This is an equation from the second degree

∆ = 4d+ 4u = 4(d+ u) > 0⇒

uA1 = uA2 =
−2
√
d− 2

√
(d+ u)

2
= −
√
d−

√
(d+ u) < 0(refused)

uA1 = uA2 =
−2
√
d+ 2

√
(d+ u)

2
= −
√
d+

√
(d+ u)

0 < uA1 = uA2 = −
√
d+

√
(d+ u) < 1 (accepted solution)

ut ut

4. The mathematical proof of the relation a in case of splitting a node into 2 indepen-
dent nodes:

Lemma 22. (aA1 ∨ aA2 = a) ∧ (aA1 = aA2)⇒ aA1
= aA2

=
√
1−b−

√
1−b−au√

d+u−
√
d
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Proof.

aA1 ∨ aA2 = a⇒
uA1

aA1
+ uA2

aA2
− bA1

uA2
aA2
− bA2

uA1
aA1
− uA1

aA1
uA2

aA2

uA1 + uA2 − bA1uA2 − bA2uA1 − uA1uA2

= a⇒

uA1
aA1

+ uA1
aA1
− bA1

uA1
aA1
− bA1

uA1
aA1
− uA1

aA1
uA1

aA1

uA1 + uA1 − bA1uA1 − bA1uA1 − uA1uA1

= a⇒

[2− 2bA1
]uA1

aA1
− u2A1

a2A1

2uA1
− 2bA1

uA1
− u2A1

= a⇒

2[1− (1−
√
(1− b))][−

√
d+

√
(d+ u)]aA1 − [−

√
d+

√
(d+ u)]2a2A1

2[−
√
d+

√
(d+ u)]− 2[1−

√
(1− b)][−

√
d+

√
(d+ u)]− [−

√
d+

√
(d+ u)]2

= a⇒

2[
√
(d+ u)][−

√
d+

√
(d+ u)]aA1

− [−
√
d+

√
(d+ u)]2a2A1

[−
√
d+

√
(d+ u)][2− 2[1−

√
(d+ u)]− [−

√
d+

√
(d+ u)]

= a⇒

2[
√
(d+ u)]aA1

− [−
√
d+

√
(d+ u)]a2A1

[2− 2[1−
√

(d+ u)]− [−
√
d+

√
(d+ u)]

= a⇒

[
√
d−

√
(d+ u)]a2A1

+ 2[
√
(d+ u)]aA1

[2
√
(d+ u)] + [

√
d−

√
(d+ u)]

= a⇒

[
√
d−

√
(d+ u)]a2A1

+ 2[
√
(d+ u)]aA1

= [
√

(d+ u) +
√
d]a⇒

[
√
d−

√
(d+ u)]a2A1

+ 2[
√
(d+ u)]aA1 − [

√
(d+ u) +

√
d]a = 0⇒

This is an equation from the second degree

∆ = 4(d+ u)− 4[
√
d−

√
(d+ u)][−

√
(d+ u)−

√
d]a

∆ = 4d+ 4u+ 4[d− d− u]a
∆ = 4[d+ u− ua]
∆ = 4[1− b− ua]

aA1 = aA2 =
−2[
√
(d+ u)] + 2

√
(1− b− ua)

2[
√
d−

√
(d+ u)]

=
[
√

(1− b)] +
√
(1− b− ua)

[
√

(d+ u)−
√
d]

> 1(refused)

aA1 = aA2 =
−2[
√

(d+ u)]− 2
√

(1− b− ua)
2[
√
d−

√
(d+ u)]

=
[
√

(1− b)]−
√
(1− b− ua)

[
√

(d+ u)−
√
d]

0 < aA1 = aA2 =
[
√
(1− b)]−

√
(1− b− ua)

[
√

(d+ u)−
√
d]

< 1 (accepted solution)

ut ut
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A.3.2 The mathematical proof of Relations 14: Relations 14 can be proved by
induction. In this section, we will limit ourselves to verfying the following relations.

bA1 ∨ bA2 ∨ . . . ∨ bAn = b

0 ≤ 1− (1− b)
1
n ≤ 1

dA1
∨ dA2

∨ . . . ∨ dAn = d

0 ≤ d 1
n ≤ 1

uA1
∨ uA2

∨ . . . ∨ uAn = u

0 ≤ (d+ u)
1
n − d 1

n ≤ 1
aA1
∨ aA2

∨ . . . ∨ aAn = a

0 ≤ aAi =
(1−b)

1
n−(1−b−au)

1
n

(d+u)
1
n−d

1
n

≤ 1

bAi + dAi + uAi = 1

Lemma 23. bA1 ∨ bA2 ∨ . . . ∨ bAn = b

Proof. {
From Relations 9 : b∨{Ai} = 1−

∏n
i=1 (1− bAi)

From Relations 13 : bAi = 1− (1− b)
1
n

⇒

b∨{Ai} = 1−
n∏
i=1

(1− (1− (1− b)
1
n ))

= 1−
n∏
i=1

((1− b)
1
n )

= 1− (1− b)
= b

ut ut

Lemma 24. 0 ≤ 1− (1− b)
1
n ≤ 1

Proof.

0 ≤ b ≤ 1⇒
0 ≤ 1− b ≤ 1⇒

0 ≤ (1− b)
1
n ≤ 1⇒

0 ≤ 1− (1− b)
1
n ≤ 1

ut ut

Lemma 25. dA1 ∨ dA2 ∨ . . . ∨ dAn = d

Proof. {
From Relations 9 : d∨{Ai} =∏n

i=1 dAi
From Relations 13 : dAi = d

1
n

⇒



Graph-Based Trust Model for Evaluating Trust Using Subjective Logic 43

d∨{Ai} =
n∏
i=1

d
1
n

= d

ut ut

Lemma 26. 0 ≤ d 1
n ≤ 1

Proof.

0 ≤ d ≤ 1⇒

0 ≤ d 1
n ≤ 1

ut ut

Lemma 27. uA1
∨ uA2

∨ . . . ∨ uAn = u

Proof. 
From Relations 9 : u∨{Ai} =∏n

i=1(dAi + uAi)−
∏n
i=1(dAi)

From Relations 13 :

{
dAi = d

1
n

uAi = (d+ u)
1
n − d 1

n

⇒

u∨{Ai} =
n∏
i=1

[(d
1
n ) + ((d+ u)

1
n − d 1

n ))]−
n∏
i=1

d
1
n

=

n∏
i=1

(d+ u)
1
n −

n∏
i=1

d
1
n

= d+ u− d
= u

ut ut

Lemma 28. 0 ≤ (d+ u)
1
n − d 1

n ≤ 1

Proof. The left side:

d ≤ d+ u⇒

d
1
n ≤ (d+ u)

1
n ⇒

0 ≤ (d+ u)
1
n − d 1

n

The right side:
d+ u = 1− b
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0 ≤ b ≤ 1⇒

d+ u ≤ 1⇒

(d+ u)
1
n ≤ 1⇒

(d+ u)
1
n ≤ 1 + d

1
n ⇒

(d+ u)
1
n − d 1

n ≤ 1⇒
u ≤ 1

ut ut

Lemma 29. aA1
∨ aA2

∨ . . . ∨ aAn = a

Proof. 
From Relations 9 : u∨{Ai} =∏n

i=1(dAi + uAi)−
∏n
i=1(dAi)

From Relations 13 :


aAi =

(1−b)
1
n−(1−b−au)

1
n

(d+u)
1
n−d

1
n

dAi = d
1
n

uAi = (d+ u)
1
n − d 1

n

⇒

a∨{Ai} =

∏n
i=1(d

1
n + ((d+ u)

1
n − d

1
n ))−

∏n
i=1[(d

1
n + ((d+ u)

1
n − d

1
n )− ((d+ u)

1
n − d

1
n )(

(1−b)
1
n −(1−b−au)

1
n

(d+u)
1
n −d

1
n

))]

∏n
i=1(d

1
n + ((d+ u)

1
n − d

1
n ))−

∏n
i=1(d

1
n )

a∨{Ai} =
∏n
i=1 (d+ u)

1
n −

∏n
i=1[(d+ u)

1
n − ((1− b)

1
n − (1− b− au)

1
n )]∏n

i=1 (d+ u)
1
n −

∏n
i=1(d

1
n )

=

∏n
i=1 (d+ u)

1
n −

∏n
i=1[(1− b− au)

1
n ]∏n

i=1 (d+ u)
1
n −

∏n
i=1(d

1
n )

=

∏n
i=1 (1− b)

1
n −

∏n
i=1[(1− b− au)

1
n ]∏n

i=1 (d+ u)
1
n −

∏n
i=1(d

1
n )

= a

ut ut

Lemma 30. 0 ≤ aAi =
(1−b)

1
n−(1−b−au)

1
n

(d+u)
1
n−d

1
n

≤ 1

Proof. (d+ u)
1
n − d 1

n = u ∧ 0 ≤ u ≤ 1. Thus, we just have o prove that:
0 ≤ (1− b)

1
n − (1− b− au)

1
n ≤ 1 with the condition that u 6= 0

The left side:
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0 ≤ a ≤ 1 ∧ 0 ≤ u ≤ 1⇒ 0 ≤ au ≤ 1⇒

1− b ≥ 1− b− au⇒

(1− b) 1
n ≥ (1− b− au)

1
n ⇒

(1− b) 1
n − (1− b− au)

1
n ≥ 0

The right side:

b+au = E(O)⇒ 0 ≤ b+au ≤ 1⇒ 1 ≥ 1−(b+au) ≥ 0⇒ 1 ≥ (1− b− au)
1
n ≥ 0

0 ≤ b ≤ 1⇒ 1 ≥ 1− b ≥ 0⇒ 1 ≥ (1− b)
1
n ≥ 0

The substraction of two values that are less than one is less than one⇒

(1− b)
1
n − (1− b− au)

1
n ≤ 1

ut ut

Lemma 31. bAi + dAi + uAi = 1

Proof. 
bAi = 1− (1− b) 1

n

dAi = d
1
n

uAi = (d+ u)
1
n − d 1

n

⇒

b+ d+ u = 1− (1− b) 1
n + d

1
n + (d+ u)

1
n − d 1

n

= 1− (d+ u)
1
n + d

1
n + (d+ u)

1
n − d 1

n

= 1

ut ut

A.4 Comparing M1 to M2

Let m be the number of paths in a graph α that have some common nodes between the
paths. if we follow the M2, and we denote the opinion about α by Oα(M2), we have:

Oα(M2) =


bα(M2) = b∨{σi} = 1−

∏m
i=1 (1− bσi)

dα(M2) = d∨{σi} =∏m
i=1 dσi

uα(M2) = u∨{σi} =∏m
i=1(dσi + uσi)−

∏m
i=1(dσi)

aα(M2) = a∨{σi} =
∏m
i=1(dσi+uσi )−

∏m
i=1(dσi+uσi−uσiaσi )∏m

i=1(dσi+uσi )−
∏m
i=1(dσi )

If we follow M1, and we denote the opinion toward α by Oα(M1), we have:

Oα(M1) =


bα(M1) = b∨{σi} = 1−

∏l
i=1 (1− bσi)

dα(M1) = d∨{σi} =∏l
i=1 dσi

uα(M1) = u∨{σi} =∏l
i=1(dσi + uσi)−

∏l
i=1(dσi)

aα(M1) = a∨{σi} =
∏l
i=1(dσi+uσi )−

∏l
i=1(dσi+uσi−uσiaσi )∏l

i=1(dσi+uσi )−
∏l
i=1(dσi )
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In this section, we show that M2 is more optimistic than M1 by proving the following
relations:  bα(M2) ≥ bα(M1)

dα(M2) ≤ dα(M1)
E(Oα(M2)) ≥ E(Oα(M1))

1. Comparing bα in M1 and M2:
bα(M2) = 1−

∏m
i=1 (1− bσi)

bα(M1) = 1−
∏l
i=1 (1− bσi)

Lemma 32. bα(M1) ≤ bα(M2)

Proof. m ≥ l because M1 is based on deleting uncertain paths thus the number
of paths in M2 is greater than M1. The opinions about the remaining paths are the
same because in M2, the split nodes have the same opinion of the original node.

(m ≥ l) ∧ (0 ≤ 1− bσi ≤ 1)⇒
m∏
i=1

(1− bσi) ≤
l∏
i=1

(1− bσi)⇒

1−
m∏
i=1

(1− bσi) ≥ 1−
l∏
i=1

(1− bσi)⇒

bα(M2) ≥ bα(M1)

ut
ut

2. Comparing dα in M1 and M2:
dα(M2) =

∏m
i=1 dσi

dα(M1) =
∏l
i=1 dσi

Lemma 33. dα(M2) ≤ dα(M1)

Proof.

(m ≥ l) ∧ (0 ≤ dσi ≤ 1)⇒
m∏
i=1

dσi ≤
l∏
i=1

dσi ⇒

dα(M2) ≤ dα(M1)

ut
ut



Graph-Based Trust Model for Evaluating Trust Using Subjective Logic 47

3. Comparing E(Oα) in M1 and M2:
E(Ox) = bx + axux
From [11]: E(Ox ∨ y) = E(Ox) + E(Oy)− E(Ox)E(Oy)⇒
E(Oα) = E(O∨

{σi}) = 1−
∏m
i=1 (1− E(Oσi))

Lemma 34. E(Oα(M1)) ≤ E(Oα(M2))

Proof.

(m ≥ l) ∧ (0 ≤ 1− E(Oσi) ≤ 1)⇒
m∏
i=1

(1− E(Oσi)) ≤
1∏
i=1

(1− E(Oσi))

1−
m∏
i=1

(1− E(Oσi)) ≥ 1−
1∏
i=1

(1− E(Oσi))⇒

E(Oα(M2)) ≥ E(Oα(M1))

ut
ut

A.5 Comparing M2 to M3

In this section, we show that M2 is more optimistic than M3 by proving the following
relations:  bα(M2) ≥ bα(M3)

dα(M2) ≤ dα(M3)
E(Oα(M2)) ≥ E(Oα(M3))

To prove the previous relations, it is enough to prove that bA1
, dA1

, E(OA1
) associ-

ated to the split nodeA1 from the original nodeA in M3 satisfy the following relations:
bA1 = 1−

√
1− bA ≤ bA

dA1
=
√
dA ≥ dA

E(OA1) = bA1 + uA1aA1 = 1−
√
1− bA + [

√
dA + uA −

√
dA][

√
1−bA−

√
1−bA−aAuA√

dA+uA−
√
dA

]

= 1−
√
1− bA − aAuA ≤ E(OA) = bA + aAuA

1. Comparing bα in M2 and M3:
Lemma 35. 1−

√
1− bA ≤ bA

Proof.

0 ≤ 1− bA ≤ 1⇒√
1− bA ≥ 1− bA ⇒

1−
√

1− bA ≤ bA ⇒
bα(M3) ≤ bα(M2)

ut
ut
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2. Comparing dα in M2 and M3:

Lemma 36.
√
dA ≥ dA

Proof.

0 ≤ dA ≤ 1⇒√
dA ≥ dA ⇒

dα(M3) ≥ dα(M2)

ut
ut

3. Comparing E(Oα) in M2 and M3:

Lemma 37. 1−
√
1− bA − aAuA ≤ bA + aAuA

Proof.

0 ≤ bA + aAuA ≤ 1⇒√
1− bA − aAuA ≥ 1− bA − aAuA ⇒

1−
√
1− bA − aAuA ≤ bA + aAuA ⇒

EOα(M3) ≤ EOα(M2)

ut
ut
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A.6 Proposed Survey

Opinion about a node depends on user’s negative or positive observations r, s and is
computed by Relations 1. Since our work focuses on local trust, local observations are
considered. This survey allows to collect the users’ observations in order to build an
opinion about a node. The proposed questions in this survey collect information about
the user’s usage of a node to estimate the uncertainty u. The negative observations of
using a node is also demanded to estimate the value of d for a node. The value of b is
computed by the relation b = 1− d− u.

A node in the graph represents an artifact which is controlled by persons and is
supported by physical resources.

In the following, we show the proposed survey that helps to build an opinion about
each node.

1. Have you ever used Node N?
– Yes
– No

If the answer is “No” we conclude that the user’s opinion about this node is
(0,0,1,0.5).

If the answer of Question 1 is “Yes”:
2. At which frequency do you use Node N?

– Everyday
– From time to time

If the answer is “Everyday” we conclude that the u = 0 since the user is used
to use the node.

If the answer of Question 2 is “From time to time”:
3. More precisely, how many times have you used Node N?

– 1 time⇒ u = 0.67
– 2 times⇒ u = 0.5
– 3 times⇒ u = 0.4
– Around 5 times⇒ u = 0.28
– Around 10 times⇒ u = 0.17
– Around 20 times⇒ u = 0.09
– Around 50 times⇒ u = 0.04
– Around 100 times⇒ u = 0.02
– More than 100 times⇒ u = 0

The answer of this questions allow to conclude the value of u from the relation
u = 2/(total observations+2) in subjective logic.
By the end of these questions we conclude the value of u, now we need to conclude
d or b. Since users remember their negative observations more than their positive
ones, the following questions are launched:
If the answer of Question 2 is “From time to time” or “Everyday”:

4. Have you ever had a problem with the Node N?
– Yes
– No

If the answer is “No” we conclude that the d = 0 since the user has not
negative observations.
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If the answer of Question 4 is “Yes” and the answer of Question 2 is “Everyday”:
5. How much do you estimate that you had problems with this node comparing to the

total times you use this node (the answer should be given as a percentage)?
The given value is the value of d
If the answer of Question 4 is “Yes” and the answer of Question 2 is “From time to
time”:

6. How many times you had a problem with the node N?
d can be computed from the relation d = the value given by Question 4

((The value given by Question 3)+2))

By the end of these questions we have the value of d and u⇒ b can be computed
from the relation b = 1− d− u

We modeled a subpart of the LINA research laboratory system4 using SOCIOPATH.
We applied the rules of SOCIOPATH on this system for the activity “a user accesses
a document toto that is stored on the SVN server of LINA”. Figure 8 presents the
WDAG for this activity, with renamed nodes A,B,C,D,E, F,G for privacy issues.
For sack of clarity, we simplify this graph as much as possible.

A

B

toto

E

P

C

G

D

F

Fig. 8. LINA’s WDAG for the activity “accessing a document toto on the SVN”

20 members of LINA participated and answered these questions for each node. The
value of a is equal to 0.5 for each node since it is a prior probability in the absence of
the evidence. For instance, P1 answers the questions about G as following:

– Question 1: Yes.
– Question 2: From time to time.
– Question 3: Around 10 times⇒ u = 0.17.
– Question 4: No⇒ d = 0⇒ b = 0.83.

Thus, OG = (0.83, 0, 0.17, 0.5) for P1.
Another example is the opinion of P10 about G. P10 answers the questions about G

as following:

– Question 1: Yes.
– Question 2: Everyday⇒ u = 0.
– Question 4: Yes.
– Question 5: 20%⇒ d = 0.2⇒ b = 0.8.

Thus, OG = (0.8, 0.2, 0, 0.5) for P10.
4 https://www.lina.univ-nantes.fr/


