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Network internal signal feedback and injection: Interconnedion matrix
redesign

Mykhailo Zarudniev, Anton Korniienko,
Gérard Scorletti, Patrick Villard

Abstract— The design of systems defined as networks (inter- involving LMI constraints. With the proposed framework, we
connections) of identical subsystems emerges as an interestingreveal that it is possible to use convex optimization in orde
engineering problem, with some open issues. One of these issuesq 5qdress some control problems which are not convex when

is how to “retune” the interconnection in order to ensure the f lated in the stat tation f lati
stability and the performance of the system. Based on the LFT ormulated In the state space representation formulation.

representation and on the input-output framework, we propose 10 this purpose, we use the Linear Fractional Repre-
in this paper some efficient “retuning” methods using convex sentation modeling usually referred to as LFT modeling.
optimization involving LMI constraints. The proposed approach  This modeling allows to represent general block diagrams,
can be interpreted as an extension of usual state space methods .1, ding the block diagrams corresponding to state space
Its application is investigated for the design of a network of re . 121 Thank h - f h
PLLs. presentations [12]. Thanks to the separation of grap
theorem and the S-procedure, this modeling is a nice repre-

I. INTRODUCTION sentation to systematically derive stability and perfanoe

In Automatic Control, a popular and successful paradigrionditions [13]. Roughly speaking, if the performance is
for Linear Time Invariant (LTI) systems is the state spac€xpressed as a(n integral) quadratic constraint on thet inpu
representation approach. In this approach, a large nuniberand output signals, the S-procedure allows to evaluate the
efficient analysis and synthesis methods were obtainedusiperformance of the overall system from the performance of
matrix computation and more recently convex optimizatiothe subsystems. Though the general framework has been
over Linear Matrix Inequality (LMI) constraints [1], [2]. largely investigated from the 90's, its potential interést
Another interest is the physical realization of a state epadtill largely unexplored, even if many interesting results
model as a block diagram involving integrators and constattere obtained. The contribution of this paper is then the
gains. An interesting application of the Automatic Controppplication of this framework for the design of systems ex-
methods is the design of systems, see e.qg. [3]-[5]. From thessed as the interconnection of subsystems. In our pivio
point of view, the well-known state feedback control prable work, we focus on the design of the subsystems in order
can have an interesting interpretation: for a system redlizto ensure a certain level of performance for the (overall)
as a block diagram involving integrators and constant gainsystem [14], [15]. In this paper, we focus on the systematic
how to retune some gains in order to achieve stability and“&€tuning” of the interconnection in order to improve the
certain level of performance. system performance. A related problem was considered in

Recently, a strong interest emerged in Microelectronics féghe paper [16] with a strong emphasis on the performance
the design of networks of phase locked loops (PLL), wheranalysis. Nevertheless, in contrast with our approacinceast
the PLLs are identical [6]. The purpose is to achieve th@ive only some recommendations for the interconnection
synchronization of the PLLs with the design specificationgetuning.
formulated in terms of frequency constraints which can b
expressed using thd, norm [7]. This problem more gener-
ally pertains to the oscillator synchronization [8]-[1These =~ The paper is organized as follows: some important defini-
networks can be interpreted as block diagrams invo|vin§0n5 used in the paper are introduced in Section Il. Section
constant gains and identical dynamical LTI systems. Thed# introduces the problem of the interconnection design. |
dynamical systems are usually different from integrattns. Section IV the main result is presented in terms of sufficient
this paper, we investigate the extension of some feedbasl@bility and performance conditions for the interconadct
synthesis methods usual for the LTI state space approag8ystem. The result is discussed in Section V. A numerical
to the case of models which can be realized as blogkxample is investigated Section VI in order to validate the
diagrams involving (a matrix of) constant gains, in the squ method. Finally, the conclusion paves the way for further
referred to as the interconnection, and dynamical LTI sygesearches.
tems, referred to as the subsystems. The proposed methads
are efficient, since they are based on convex optimization

i_ Structure of the paper

Notations

The identity matrix ofR"™" is denotedl,, and the zero
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and transpose conjugate Afrespectively. The symbole#”  with B, € R"*™, C, ¢ Rm®>nd D, ¢ R**1d achieves some
denotes the Kronecker product [18k"“the Redheffer star properties. This problem can be interpreted as a control one
product [12], [19]. Given matriceX and M of compatible where the to-be-controlled plant is defined by:
dimensions[]TXM denotesM XM and ()T + X, XT +X.

M M P = (In®Ty)q,
The matrix{ M Mz } denotes{ o }
* M 22 M 12 M22 q A BW Bu p (5)
II. DEFINITIONS z = Cz Dzw Dz w
An important concept used in this paper is the dissipativ- y G 0 0 u
ity [14]. S - and the static feedback controller is defineduoy: Ky.
Definition 1 (Dissipativity): A causal operatoH with in- For a more detailed view of the general block diagram see

put q and outputp is strictly {X,Y,Z} —dissipative if there Fig. 1.
exist £ > 0 and real matriceX =XT<0,Y,Z=2ZT>0

such that{ éT ; ] is a full rank matrix and for alf > 0 q @) Dy
with p=H(q): Q, P
T T
q(t) X Y 11a()
/o [ p(t) } {YT z ] [ p(t) | q, P,
. T @) q (Y
e { aft) } { at) ]dt.
= TJo [ PO p(t) A B B
If the inequality (1) is satisfied witls = 0, the operator is 2 W o u
then called{X,Y,Z} — dissipative. E ! ! W
Definition 2: The H, norm of a stable LTI systent is _(EEJ'_D_Z_"!_:PZ_{
defined ag|T||,, = sup o(T (jw)). —C'0 '0 e
weR*t I \ A 1 I
1. PROBLEM STATEMENT Yi 1 u
A block diagram of constant gains and identical LTI ---> K ---=-

systems is first defined as an LFT model. The retuning

problem is then presented.
. . Fig. 1. General block diagram of the subsystem interconorect
A. Subsystem interconnection model

A systemT, ., defined by a block diagram of constant WhenTs(s) = £, (2) and (3) define a state space represen-
gains (the interconnection) and identical LTI systefaéthe tation. In this case, for general matridds andCy, compute
subsystems) can be expressed as an LFT model [14], [15ihe matrixK such that (4) achieves a basic property such as

1) the subsystems: stability is known to be NP-hard [20]: there is no "efficient”

p=(In®Teq @) general algorithm for this case [21]. Nevertheless, for two
’ cases of matriceB, andCy, the computation oK can be
whereTs(s) is one subsystem modeled ad ad-block efficiently solved:(i) the state feedback cas€(=1) [22],
transfer function; (i) the output injection caseB(, = 1) [23].
2) the interconnection: . . .
B. Interconnection Matrix Design Problems
l : ] = { A | Bw } [ P } i (3) In this paper, we investigate how the state feedback case
z Cz | Daw w and the output injection case can be extended to the system

The signalsw € R andz € R¥ are the system input and (4) WhereTs is assumed to bgX,Y,Z} —dissipative Note
output,q € R andp € R™ are the internal signals. Using that an integrator is actuall{0,—1,0} —dissipative We

the Redheffer star product, (2) and (3) a more compaf€fine two problems. _
formulation is readily obtained: Problem1 (Internal signal feedback)Given an LTI sys-

tem Tw; With Cy =1 and Tg(s) that are {X,Y,Z}-
Twoz=(n®@Te)x [ é‘ SW } ) dissipative, givery > 0, find K such that:
z |z 1) the systenT,_., defined by (4) is stable;
The retuning of the interconnection is formulated as find 2) [ Twoszlle < V-

: dxmd : .
a matrixK € R*™% such that the system defined by: Problem2 (Output injection):Given an LTl system

p = (In®Ty)q, Twoz with By =1,Dz, =0 and Tg(s) that are{X,Y,Z}-
. dissipative, givery > 0, find K such that:
Twozi) |91 | ATBKCy  Bu I[P 1) the aystenla ., defined by (4) i siable
. C,+DuKCy Day ERE ) the systenil,,_,, defined by (4) is stable;

(4) 2) [[Twozlle <V



IV. MAIN RESULTS with:

My = —(Q&l)(I&X),

(Q®1)+ByG) (I ®X),

®X) Buw,

) +(AQ®1)+B,G)T(1®Y)
®2Z),

This section presents a solution Rroblem 1 (Internal (A
(1
(
Q

Mzs = (C(Q®1)+DyG)T,
Mg

signal feedback) andProblem 2 (Output injection). Both
results are based on the following Lemma.

Lemmal: Giveny> 0, the system:

M1
My =
Mo, =

A|B
(|n®Ts)* ) M2s = oY )BW7
c|b Msz = Ma=¥l,
. . . M3s = Du.
with {X,Y,Z} —dissipative is stable with arH., norm less
thany if there exists & = PT > 0<c R™" such that: FurthermoreK = G(Q1®1).

Proof: By applying Lemma 1 to the system defined

PoX 0 PeY 0 A B by (4) with Cy =1, we obtain: there exist8 = PT > 0 such
1 L that (6) is verified.
T *x == 0 © c D By applying twice the Schur complement lemma, see
[+ y >0 0 g7 7] to (6) is equivalent to:
N « P®Z 0 | 0 .g. [27, page 7] to (6) is equivalent to:

* * * vi 0 |

Proof: In [15, proof of Theorem 1], it is proved ~Ptax7lo A+BuK Bw
that if Ts is {X,Y,Z}—dissipative then (I,®Ts) is * v C+DuK Dw
{PeX,PRY,P®Z}—dissipative Furthermore, note that P®Z T >0
. . . * * T T (P®Y )BW
the H, norm of a system is strictly less thay if and +() +(P®Y")(A+BuK)
only if the system is strictly {—y?l,0,1} —dissipative * * * 2

which is  straightforwardly equivalent to  strictly
B 1 Aicaimat By post-multiplying and pre-multiplying the latter inedina
{-w1,0,y 11} —dissipative ~ Afterwards, by applying by the matrix:

[13, Lemma 3.2], the inequality (6) is obtained. Note
that [13, Lemma 3.2] is proved using the separation of

graph theorem [22], [24], [25] combined with the so-called lex 0 0 O
S-procedure [26]. [ ] T 0 0 Plwl 0

Remark 1:In the case of an LTI system modelled by N 0 I 0 0
a state space representation, thatTits) = é Lemma 1 0 0 0 |

corresponds to the well-known bounded-real lemma [27].

and by its transpose and by performing the change

of variables with Q=P! and G=K(Q®Il) <—
A. Internal signal feedback K =G(Q 1®1l), inequality (7) is obtained, which completes

the proof. ™

Remark 2:Find Q > 0, G such that (7) is satisfied is a

LMI optimization problem [27]. Find the smallest such
that there exisQ > 0, G such that (7) is satisfied is another
standard LMI optimization problem which can be solved
efficiently. Theorem1 then presents an efficient solution to
the Problem 1 in the form of a sufficient condition.

By applying Lemma 1, a solution foProblem 1 is
presented in the following Theorem.

Theoreml: Giveny > 0 and the LTI systenT,_,; with
Cy =1 andTs(s) that are{X,Y,Z}-dissipative withX < 0,
giveny > 0, there existK such that:

1) the systent,._,, defined by (4) is stable; Remark 3:WhenX =0, a theorem similar tdheorem1
2) |Twozlle <V is readily obtained with (7) replaced by:
if there existG € R"*" andQ = Q" > 0e R™" such that: M 22| M 23|M 24
*  |[Ma3M3g | >0
M11 | M2 | O M4 * o x Ma
* [ M2z | Ma3 | Mas >0, @) In the case wheiT(s) = £, this theorem reduces to the
x|k Mas | M4 well-known solution of theH,, control using state feedback,

* * * M 44 see e.g. [27, Page 109].



B. Output injection In the Problem 1, we hav&€, = I,. The size ofC
A similar solution can be proposed Rroblem2. is nd x nns. Except ifd =1 andns = 1, the computation of
Theorem2: Giveny > 0 and the LTI systenT,,_,, with the matrixK such that the system defined by the state space
By =1 andT«(s) that are{X,Y,Z}-dissipative withX < 0, ~€Presentation (8) is stable can not be solved efficienty, [2
given y > 0, there existX such that: see e.g. [28] f_or_the_ formulation of _th|s problem as a
1) the systent ., defined by (4) is stable; non convex optimization problemThe first benefit of our
2) [Twosll <y - ’ approach is then to propose a convex approach to Problem 1.
_ e rdxnd T nxn The second benefit is that the number of decision variables
if there existG € R andP=P" >0 R™ such that g gramatically reducedWith the (non convex) approach

(7) is satisfied with: of [28], instead of the decision variabl® of dimension
M1y = —(P®X), ’“”—2“) in our approach, a decision variable of dimension
M1z = (IeX)((P®I1)A+GCy), %”SH) is introduced, which is much larger. Another nice
M = (PoX)B point is that the number of decision variables does not dizpen
w on the order ofT s, but only on the number of repetitions of
M2z (P§)Z)+ - Ts. This point is important with respect to the dimension
() +(I@Y ) ((PI)A+GCy), of the typical engineering problems. The same benefits are
Moz = CJ, attributable to the output injection approach. Nevertsgle
M2y = (P®YT)By, in contrast to the state-space approach, our approach could
Mss = Mas=yl introduce some conservatism since the conditions are only
M b 4 ’ sufficient.
34 = w-
_1 B. Performance evaluation using a weighted horm con-
FurthermoreK = (P®1)™"G. _ . straint.
Proof: The proof of Theorem 2 is obtained by a ) ) _
modification of the proof offheorem1. - From a practical point of view, the performance can not

Remark 4:As in the case offheorem 1. the conditions be evaluated as a constraint on tHg norm of the system

of Theorem 2 can be applied using convex optimization{l Tw—zll» <) but as a constraint on theeighted K
involving LMI constraints. norm of the system|W,Tw_;Wi|l, <y [7]. For the sake

of discussion, let us assume that we have a single weighting
V. DISCUSSION function, that is,W, =W and W; = 1. In order to apply
In the first subsection, we explain the benefits of thd heorem1 to Problem 1 (or Theorem 2 to Problem 2),
proposed approach with respect to an approach based bz IS replaced byWTy,.,. The first consequence is that

the state space representation. In the second subsectifls Weighting functionW has to be expressed as a linear
we discuss the introduction of weighting functions for thdractional transform oh subsystem3's(s), that is, there exist
evaluation of the performance. matricesAw, Bw Cw andDy such that

Aw | Bw
Cw|Dw |
An alternative approach for finding a solution to Problem For some simple cased/ can be easily found in the form of

is to recast it as a control problem for a system modeled by | FT representation. For more complex cases, an extension

a state space representation. To this purpose, we firstepre filter design methods were proposed for the choics\of
Tw—z as a state space model, that is an LFT representatigge [29].

. 1 . . . ) ) )
with 5. LetAs, Bs, Cs, Ds be the matrices of a minimal state  The second consequence is that the use of the weighting
space representation @, that is [12]: function introduces in the retuned systérextra subsystems

1 As | Bs Ts, in addition to retune the gains.

Ts(S) = lp—x
s(9) s Cs | Dg VI. APPLICATION

s
where ng is number of state variables. For the sake of Letus evaluate the interest of our approach on the example
simplicity and without any loss of generality, we assum@f the interconnection of subsystems introduced in [14]
in the sequel thabs = 0. ThenTy_,, defined by (4) has the and [15]. Each subsystem is the feedback connection of an

A. Benefits of the proposed approach with respect to the state W = (Ih®Ts(s)*
space one.

b

following state space representation: oscillator with a (local) dynamical controller, referreal &s
- PLL in Electronics, see e.g. [30]. For the sake of illustrafi
1 A+BKC | B we focus on a similar interconnection of= 9 PPLs. Fig. 2a
g' nr x c.pkelo (8) presents the initial Cartesian interconnection (with audar
+ form). The subsystem is defined by:

C=Cy(In®Cs). SY T R tastap’



where by = 6.923x 10P, by = 3.8 x 10, ap = 6.923x 10F,
a; = 3.8 x 10%. This transfer function verifies théx,y, z}-
dissipativity condition withx=—-0.01,y=—-1.5,z=3.

The objective is to achieve the phase synchronization
of 9 PLLs with a ramp reference input £ 1) with a
certain time response, using a predefined Cartesian (niétwor
interconnection.

The initial interconnection is defined by which denotes
the number of PLL inputs and

. 1/m, if connected;
A= [ay], witha _{ 0,/ otherwise
By = [1/3 0000 0 0 0 0], Fig. 3

The retuning possibility is defined by:
Cy == I7
B, — [00 001000 0,

whereCy implies the use of the internal signal feedback and
By implies the use of single (5th) PLL for retuning. If the
use of single PLL is not sufficient, the design should involve

Magnitude (dB)
&
o

Reference tracking performance and frequency cainsi, 1

Bode Diagram

-~ Improved Network
- - - Initial Network

—— Frequency constraint \W\_l

2

10° 10 10°

Frequency (rad/s)

Step Response

e —]

- — Improved Interconnection
- - ~Initial Interconnection
—— Uncoupled subsystem

an increased number of PLLs.

The time response of the initial PLL reference tracking is
approximatelyt, =~ 0.01 seconds. Our aim is to modify the

10°
Time (seconds)

existing interconnection in order to improve the reference

tracking.

Fig. 2.
network reference.

a) Initial Network. b) Improved Network. The signaléR’ is the

Fig. 4. Reference tracking by the uncoupled subsysigifgreen contin-
uous line), the improved network (red dash-dotted line),ititéal network
(blue dashed line).

time response of the synchronization is actually enforged b
the cutoff frequencyw ~ 9 x 10* rad/sec which corresponds
approximately to & 10~ second, see Fig. 3.

WA(Ts(s)) =di+ci1Ts(s)(1— 8.;]_-|—3(S))71b;]_7

with a; = 1, by = 0.5, ¢ = —0.331, d; = —0.7266. In
addition to the cutoff frequency, the parameters of the

The output composition matrices and performance mathyeighting functionW; are chosen in order to ensure a slope

ces are defined by:

-1/n —-1/n -1/n —1/n
c, - | -1 o 1 0 |
Daw = Ogxi,
D = [1 0000000 0,

9)

+40 dB/decin the low frequency range in order to track
ramp reference [15]. The weighting functions on the output
z for ke {2,---,9} are chosen as the same contant value
W, = 0.1. Therefore, the network output performance is
constrained by:

W=[W W W 7.

N—————

k—1
Note that the numbér of the additional subsysteng intro-
duced by the weighting function choice is equal to 1. Putting
in series the constraint®/ and the initial systenT,_,z, one

_The first outputz; is the mean of the tracking error of all gptainswWT,,_,, that corresponds to the augmented system
nine PPLsz for ke {2,---,9} is the difference between the yjith b+ n = 10 subsystems. The static feedback gdiris

output of the first PLL and the output of thé& PLL.

computed by applyindheorem1 using the Robust Control

The global dynamics is enforced by introducing a freygolhox of Matlab.

guency dependent weighting function on the first output
2z which enforces a frequency dependent constraint on th
magnitude of the frequency response between the reference
input andz; close to the continuous black line on Fig. 3. The

& — [5691664-314—226/-314 1452434 226434251



The design obtained (see Fig. 3) using flleeorem 1
allows to respect the tracking specification={ 0.91) by the
improved network tf < 7 x 10~4 seconds). A new network 10]
has been obtained (see Fig. 2b). One can observe the ret[er-
ence tracking synchronization improvement on the Fig. 4.

The final performance can be improved even more if on%“
chooses the matriceB, =1 and Cy =1 as full block. In
that case, the static feedback controller will correspand t12]
the centralized controller and the obtained referencéimmgc |13
performance for each subsystem will be more homogeneous.

VII. CONCLUSIONS [14]

New efficient interconnection matrix design methods are
introduced in the framework of the LFT modeling and the
input-output approach. The proposed methods are a genBf
alization of the well known state feedback and output in-
jection to the interconnection of identical subsystemseiiTh
efficiency is illustrated in the design of the PLL network.
The use of LFT approach allowed to recast the problen[|1,6]
which is non convex in its classical formulation, into a
convex optimization and to dramatically reduce the numbét]
of decision variables. The use of weighteld norm opens g
a practical perspective to the proposed approach. Authors
are convinced that the control design and implementatio[r119]
problems that concern interconnected oscillators, filtars
dynamical multi-agent systems can be efficiently solvedh wit[20]
the presented methods.
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