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ABSTRACT. In this overview we show by examples, how to associate certain
sequences in the higher-dimensional unit cube to suitable dynamical systems.
We present methods and notions from ergodic theory that serve as tools for the
study of low-discrepancy sequences and discuss an important technique, cutting-
and-stacking of intervals.

Communicated by W. G. Nowak

Dedicated to the memory of Gérard Rauzy

Contents

1. Introduction 12

2. The dynamical point of view 15

2.1. Irregularities of distribution 16

2.2. Halton sequences 18

2.3. Basic notions of dynamical systems 22

2.4. An example: the compact group of b-adic integers 25

2.5. µ-continuity, quasi-continuity, and uniform quasi-continuity 29

2.6. Spectral properties 30

2.7. Product construction 33

2.8. Skew products 33

2000 Mathematics Subject Classification: Primary: 11K38, 11K41; Secondary: 28D05.
Keyword s: low-discrepancy sequences, b-adic integers, irregularity of distribution, discrep-
ancy, dynamical systems.
† This author is supported by the Austrian Science Foundation FWF, project S9605, part of
the Austrian National Research Network “Analytic Combinatorics and Probabilistic Number
Theory”.
†† This author is supported by the University of Salzburg, projects P1884/5-2009 and P1884/4-
2010.
††† This author is supported by CNRS (latp-umr 6632).

11



PETER J. GRABNER — PETER HELLEKALEK — PIERRE LIARDET

2.9. Spectral properties of cocycles 38

2.10. An application: bounded remainder sets 40

2.11. Dynamics behind (m, s)-digital sequences 44

3. New constructions 46

3.1. Interval exchanges 47

3.2. Cutting-stacking 48

3.3. Kakutani-von Neumann transformation in base 2 revisited 50

3.4. Chacon transformation 52

3.5. Transformations of rank one 53

3.6. Substitution maps on the unit interval 56

3.7. Applications 62

REFERENCES 66

1. Introduction

Let X be some nonempty set, let ω = (xn)n≥0 be a sequence in X , and let
f be a real or complex valued function on the domain X . In several areas of
mathematics, one is interested in the difference between the mean of the values
of f taken at the first N points of ω,

SN (f, ω) =
1

N

N−1∑

n=0

f(xn),

and an integral I(f) =
∫
X f of f in some sense (Here, we assume that I(f) is

well-defined). For example, in the theory of dynamical systems, ω is the orbit
(T nx)n≥0 of a point x ∈ X under some measure-preserving transformation T ,
and I(f) is the integral of f with respect to the underlying T -invariant measure
(see, for example, [76]). In numerical mathematics, in the Monte Carlo method,
ω is a sequence of random points in X , and in quasi-Monte Carlo methods, so-
called low discrepancy sequences ω (see [51]) are employed. In both fields, one is
interested in the behaviour of the difference SN (f, ω)− I(f):

(i) Under which conditions on ω and f does the limit relation

lim
N→∞

SN (f, ω) = I(f)

hold?

(ii) For a finite sequence ω = (xn)
N−1
n=0 , what can be said about the integration

error (quadrature error) | SN(f, ω)− I(f) |?
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In the language of stochastics, this error corresponds to the difference between
the sample mean SN (f, ω) and the expectation I(f) of the random variable f . It
is clear that, in order to provide answers, some measure-theoretic or topological
structure on the domainX is required and we restrict our attention to functions f
that satisfy some regularity conditions, in addition to integrability. Interestingly
enough, the theory of uniform distribution of sequences modulo one, a subfield
of metric number theory, provides the most detailed answers to both questions.
We refer the reader to the monographs [11, 13, 43] for background information.

In this survey paper, we will deal with a relation between the theory of uniform
distribution of sequences and dynamical systems, for particular low-discrepancy
sequences.

In Section 2, we will introduce the language and basic notions of ergodic
theory. While introducing the theory we will present examples from the theory
of uniform distribution in the language of dynamical systems. These will serve as
illustrations and motivation. As a motivating problem, bounded remainder sets
are investigated for certain constructions of low-discrepancy point sequences.
The problem of finding such sets can be directly translated into the language of
dynamical systems and can be solved by applying coboundary theorems.

Many constructions of low-discrepancy sequences are based on digital expan-
sions. Possibly, the most prominent example is the classical van der Corput
sequence defined by reflecting the digital expansion of an integer at the decimal
point to give a real number in [0, 1) (a precise definition will be given later).
Several new developments of low-discrepancy sequences are based on this and
other classical constructions:

(1) the Halton sequence [29] is produced by taking van der Corput sequences
with respect to s pairwise coprime bases to form the components of an
s-dimensional vector. In terms of dynamical systems this construction is a
product of dynamical systems, which satisfy an independence property in
terms of their spectra (cf. Section 2.7).

(2) Several constructions of one- and higher-dimensional sequences are based
on “manipulating” the digits before using the van der Corput idea to reflect
at the decimal point: one idea studied by Faure and Sobol [16, 73] is to
apply matrices to the sequence of digits (viewed as a vector), another idea
is to apply a permutation to the digits (cf. [17]). These constructions have
proved fruitful for getting better estimates for the discrepancy of such
sequences.

(3) The most prominent example of a uniformly distributed sequence is the
Kronecker sequence (nα mod 1)n≥0 for irrational α. The study of this
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sequence in Weyl [77] marks the beginning of the theory of uniform distri-
bution of sequences.

(4) Combinations of different types of sequences like combining the sequences
in (3) with the constructions in (1) and (2) are called “hybrid sequences”
(cf. [33]). From the dynamical point of view this is again a product of
dynamical systems (cf. Section 2.7).

In order to model the different constructions of low-discrepancy sequences by
dynamical systems, we need various notions and ideas.

(i) The simplest and most transparent example of the van der Corput sequence
provides us with two basic constructions from ergodic theory:
(a) take the compact abelian group of b-adic integers Zb (cf. [37] and

Section 2.4) with the addition-by-one map τ (called odometer). Then
(Zb, τ) is a topological dynamical system with a unique invariant prob-
ability measure, the normalised Haar measure µ on the group Zb. The
map (called “b-adic Monna-map” later)

ϕb : Zb → [0, 1), ϕb(z) =

∞∑

k=0

zkb
−k−1 (mod 1),

where
∑∞

k=0 zkb
k is the Hensel expansion of z with zk ∈ {0, 1, . . . , b−

1} for all indices k, is continuous and transports µ to the Lebesgue
measure on [0, 1). Furthermore, (ϕb(τ

n0))n≥0 is the van der Corput
sequence;

(b) a different approach, which will provide us with a wealth of new con-
structions in Section 3, is to recognise the van der Corput sequence
as the orbit of the real number 0 under application of an interval ex-
change known as the Kakutani-von Neumann map (see Sections 2.10
and 3.3).

(ii) A natural and attractive generalisation of Kronecker sequences consists in
the family of nonperiodic polynomial sequences (p(n) mod 1)n≥0 previ-
ously studied by Weyl [77]. In the past, an efficient tool for studying the
distribution of these sequences and also many other sequences ω = (xn)n≥0
was to consider the sequences of differences ∆h(ω)n = xn+h − xn (mod 1)
and the correlation coefficients

γω,k(h) = lim
N→∞

N−1
N−1∑

n=0

e2iπk(∆h(ω)n),

assuming these limits exist. By the Bochner-Herglotz theorem, a correla-
tion map is the Fourier transform of a positive Borel measure on [0, 1). This
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leads to a spectral analysis of bounded complex valued sequences which
can be interpreted in a dynamical context as it is explained in Section 2.6
with useful incidence in uniform distribution theory. For our example, the
first dynamical description of (p(n) mod 1)n≥0 is due to Furstenberg in
a general framework [22] and explicitly exhibited in [23] by introducing
the uniquely ergodic transformation Tα of the s-dimensional torus [0, 1)s

defined by

Tα(x1, . . . , xs) = (x1 + α, x2 + x1, x3 + x2, . . . , xs + xs−1),

with α irrational; see also [59] for a conjugate transformation. The Fursten-
berg example is built from the translation x 7→ x+α (mod 1) by successive
group extensions involving the fundamental notion of a skew product that
will be introduced and studied in Section 2.8.

(iii) Some of the matrix constructions such as the Sobol-Faure sequences de-
scribed above can also be modeled as in (i)a. If the matrices have infinite
rows, then the corresponding map ϕb cannot be defined on Zb. The concept
of skew products will play a fundamental role to describe these sequences
by dynamical systems and to study their spectral properties. An impor-
tant combinatorial construction of low discrepancy sequences in dimension
s was introduced by Sobol’ [73] in binary numeration systems and widely
generalized by Niederreiter [50] under the name of (t,m, s)-sets and (t, s)-
sequences (see [51] for an extensive study). We show how these sequences
are connected with skew products and derive additional properties by em-
ploying results from ergodic theory.

As usual in the context of exponential and character sums, we will use the
notation

e(x) = e2πix, x ∈ R,

for the complex exponential function throughout this paper. In particular, e(·)
denotes the generator of the character group of the torus T = R/Z. Frequently,
the torus T will be identified with the half-open interval [0, 1).

2. The dynamical point of view

In this section we will show, how certain constructions of low-discrepancy
sequences can be seen from the point of view of dynamical systems. This point of
view will give a conceptual and unified approach to prove uniform distribution of
such sequences. It also allows to answer questions of irregularities of distribution
of certain sequences that would be difficult to attack by elementary methods.
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2.1. Irregularities of distribution

Let ω = (xn)n≥0 be a sequence on the torus [0, 1)s. For a subset A of [0, 1)s,
let 1A denote the indicator function of A, 1A(x) = 1 if x ∈ A and 1A(x) = 0
otherwise. If A is Lebesgue measurable, then let λs(A) stand for its Lebesgue
(Haar) measure. In the one-dimensional case, we will simply write λ, instead of
λ1. Put f = 1A − λs(A). The quantity

RN (A,ω) =

N−1∑

n=0

f(xn)

is called the local discrepancy of the first N points of ω for the set A or, in short,
the remainder of A.Definition 1. Let J denote the family of subintervals (or boxes) J of [0, 1)s,
J =

∏s
i=1[αi, βi[, 0 ≤ αi < βi ≤ 1, 1 ≤ i ≤ s, and let J ∗ be the subfamily of

subintervals J anchored at the origin, i.e., αi = 0, 1 ≤ i ≤ s. A sequence ω is
called uniformly distributed in [0, 1)s, or uniformly distributed modulo 1, if, for
all J ∈ J ,

lim
N→∞

N−1RN (J, ω) = 0. (1)

The elements of J ∗ are called corners with vertex β = (β1, . . . , βs). Some-
times, one also speaks of anchored boxes in [0, 1)s. As a simple fact, sequences
ω that verify (1) restricted to corners J are also uniformly distributed in [0, 1)s.
The reader will notice that the expressionN−1RN (J, ω) is equal to the difference
between the relative frequency of hits in J and the volume of J , which is given
by the number N−1♯{n, 0 ≤ n < N : xn ∈ J} − λs(J).

The following numerical quantity is one of the most important figures of merit
in the theory of uniform distribution of sequences. In statistics, it is known
as the two-sided Kolmogorov-Smirnov test statistic (see [42]). We refer to the
monographs [43] and [51] for extensive background information and to [9] for
the statistical context.Definition 2. The star discrepancy D∗N (ω) of the first N points of a sequence
ω is defined as the following quantity:

D∗N (ω) = sup
J∈J ∗

∣∣N−1RN (J, ω)
∣∣ .

It is well-known that ω is uniformly distributed in [0, 1)s if and only if
limN→∞D∗N (ω) = 0 (for a proof see [13] or [43]).

We also consider the extreme discrepancy of the first N elements of a sequence
ω = (xn)n≥0 in [0, 1)s,

DN (ω) = sup
J∈J

∣∣N−1RN (J, ω)
∣∣ .
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In certain contexts, like with dynamical systems, we will writeDN(x0, . . . ,xN−1)
for the quantity DN (ω).

It is elementary to show that, for any sequence ω in [0, 1)s,D∗N (ω) ≤ DN (ω) ≤
2sD∗N (ω). Concerning the order of discrepancy, it is one of the most famous
conjectures in the theory of irregularities of distribution of sequences that for
any sequence ω in [0, 1)s, the inequality D∗N (ω) > N−1(logN)s holds for infin-
itely many N and D∗N (ω) > N−1(logN)s−1 for all N . Sequences ω that satisfy
D∗N (ω) = O(N−1(logN)s), where the implied constant depends only on the
dimension s, are called low-discrepancy sequences in the literature.

Roth [64] has shown the bound D∗N (ω) > CsN
−1(logN)(s−1)/2, where the

constant Cs > 0 depends only on s. For s > 1 this implies that the sequence
(ND∗N (ω))N≥1 is always unbounded.

For a given sequence ω, is there any hope that the remainders RN (J, ω) stay
bounded in N? In an impressive series of papers, W. M. Schmidt investigated
this question (cf. [68]).

Define the family of corners with bounded remainder associated with ω as

B(ω) = {J ∈ J ∗ : sup
N

|RN (J, ω)| <∞}.

More generally, a (Lebesgue-) measurable subset A of [0, 1)s with

sup
N

|RN (A,ω)| <∞

is called a set with bounded remainder for ω. W. M. Schmidt [67] has shown
that, for any sequence ω, the set of so-called admissible volumes

Λ(ω) = {λs(J) : J ∈ B(ω)}

is at most countable. Hence, we will be interested in the following two questions:
(i) determining the admissible volumes, and (ii) identifying the family B(ω) of
corners with bounded remainder.

Question (i) is related to topological dynamics and ergodic theory in a general
framework (cf. [24, 70]): the set of admissible volumes comes from eigenvalues
of an isometric operator. We will sketch this relation in the following sections.

Answers to the two questions above are only known in several special cases
for ω. For example, this is the case for Kronecker sequences (nα mod 1)n≥0 in
[0, 1)s (see [41] for s = 1 and [48] for s > 1), for polynomial sequences (p(n)
mod 1)n≥0 (cf. [48]), and for Halton sequences (cf. [31]). For the latter type of
sequences, we will exhibit how the theory of dynamical systems allows us to
answer the two questions. The keyword will be ‘coboundaries’.

17



PETER J. GRABNER — PETER HELLEKALEK — PIERRE LIARDET

2.2. Halton sequences

A classical family of low-discrepancy sequences are the Halton sequences.
They are defined via the b-adic representation of real numbers.

Throughout this section, b denotes a positive integer, b ≥2, and b=(b1, . . . , bs)
a vector of s integers bi ≥ 2, 1 ≤ i ≤ s, not necessarily distinct. N stands for the
set of positive integers, and we put N0 = N ∪ {0}.

For a nonnegative integer a, let a =
∑

j≥0 aj b
j, aj ∈ {0, 1, . . . , b − 1}, be the

unique b-adic representation of a in base b. With the exception of at most finitely
many indices j, the digits aj are zero.

Every real number x ∈ [0, 1) has a b-adic representation of the form x =∑
j≥0 xj b

−j−1, xj ∈ {0, 1, . . . , b− 1}. If x is a b-adic rational, which means that

x = ab−g, a and g integers, 0 ≤ a < bg, g ∈ N, and if x 6= 0, then there are
two such representations, one of them with the property that xj = 0 for all j
sufficiently large, the other one with xj = b− 1 for all j sufficiently large. The b-
adic representation of x is uniquely determined under the condition that xj 6= b−
1 for infinitely many j. In the following, we will call this particular representation
the regular (b-adic) representation of x. When appropriate, we will write the
regular b-adic representation of x ∈ [0, 1) in the form x = 0.x0x1x2 . . .

If n ∈ N0 has the b-adic representation n = n0 + n1b + n2b
2 + · · · with

digits nj , then the radical-inverse function in base b is defined as the function
ϕb(n) = 0.n0n1n2 . . .. It assigns a number in [0, 1) to the nonnegative integer n.
We will encounter this function again in a more general context, under the name
‘Monna’ map.Definition 3. Let b = (b1, . . . , bs) be such that the bases bi are pairwise
coprime. Put ϕb(n) = (ϕb1(n), . . . , ϕbs(n)). The sequence ωb = (ϕb(n))n≥0 is
called the Halton sequence in base b.

It can be shown by elementary counting arguments that every Halton sequence
is uniformly distributed in [0, 1)s (cf. [43]). For a short proof, see [35]. Halton
sequences are an important prototype of low discrepancy sequences, see [11] and
[51] for comprehensive background information on this topic.Definition 4. A b-adic elementary interval in [0, 1)s or b-adic elint in [0, 1)s

for short, is a subinterval Ic,g of [0, 1)s of the form

Ic,g =

s∏

i=1

[
ϕbi(ci), ϕbi(ci) + b−gii

)
,

where the parameters are subject to the conditions g = (g1, . . . , gs) ∈ Ns
0, c =

(c1, . . . , cs) ∈ Ns
0, and 0 ≤ ci < bgii , 1 ≤ i ≤ s.
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In the ‘classical’ form, the b-adic elementary interval Ic,g is written as

Ic,g =

s∏

i=1

[
aib
−gi
i , (ai + 1)b−gii

)
,

where ϕbi(ci) = aib
−gi
i , with ai ∈ N0, 0 ≤ ai < bgii , 1 ≤ i ≤ s.Definition 5. A b-adic interval in [0, 1)s is a nonempty interval I with b-adic

rational corners, which means I =
∏s

i=1

[
aib
−gi
i , dib

−gi
i

)
, where ai, di, gi ∈ N0,

0 ≤ ai < di ≤ bgii , 1 ≤ i ≤ s. Let Jb denote the family of b-adic intervals and
write J ∗b = Jb ∩ J ∗ for the family of b-adic corners.

Every b-adic corner clearly is a finite disjoint union of b-adic elints. It is
elementary to show that a sequence ω is uniformly distributed in [0, 1)s if and
only if, for all I ∈ J ∗b , limN→∞N−1RN (I, ω) = 0.

The following result is well-known and easy to verify by counting. For a proof,
see for example [31, Lemma 2.4]. A different proof involving dynamical systems
will be given later.Theorem 6. Let I be a b-adic corner. Then, for the Halton sequence ωb,

sup
N

|RN (I, ωb)| <∞.Corollary 7. Every b-adic corner is a bounded remainder set for the Hal-
ton sequence ωb. In particular J ∗b ⊆ B(ωb) and, for the admissible volumes,

{
∏s

i=1 dib
−gi
i : di, gi ∈ N0, 0 ≤ di ≤ bgii , 1 ≤ i ≤ s} ⊆ Λ(ωb).

Since the indicator function of any b-adic interval is a finite linear combination
of indicator functions of b-adic corners, we derive that every b-adic interval is
a bounded remainder set for ωb.

In view of these results, we may conjecture that equality holds in the relations
between the sets in Corollary 7. How to prove this conjecture? The following
remark provides a clue, it will be our starting point into the theory of dynamical
systems.Remark 8. We observe the following. An interval J ∈ J ∗ is a BRS for the
Halton sequence ωb = (xn)n≥0 in base b, i.e. J ∈ B(ωb), if and only if, for the
function f = 1J − λs(J),

sup
N

∣∣∣∣∣
N−1∑

n=0

f(xn)

∣∣∣∣∣ <∞. (2)
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This is the point where dynamical systems come into play. Boundedness con-
ditions like (2) have been studied in the theory of dynamical systems, under the
keyword ‘coboundary theorems’.

The following measure-theoretic coboundary theorem is due to Petersen [56]
and was generalized to the Lp(µ)-case by Liardet [48]. For readers not familiar
with the underlying concepts, we provide an introduction to these notions from
the theory of dynamical systems in Section 2.3.Theorem 9 (Measure-theoretic coboundary theorem). Let (X,B, µ) be a proba-
bility space and let T : X → X be measure preserving. Then, for any f ∈ L2(µ),

sup
N

∥∥∥∥∥
N−1∑

n=0

f ◦ T n

∥∥∥∥∥
2

<∞ ⇔ ∃ g ∈ L2(µ) : f = g − g ◦ T in L2(µ). (3)

This theorem exists also in a topological version, as we shall exhibit in the
next theorem, due to Gottschalk and Hedlund [25]. For a newer proof, we refer
the reader to [49].Theorem 10 (Topological coboundary theorem). Let X be a compact Hausdorff
space and let S : X → X be a homeomorphism. Suppose that the dynamical
system (X,S) is minimal (for this notion see Definition 15). Then, for any f
belonging to the space C(X) of continuous complex-valued functions on X,

∃x ∈ X : sup
N

∣∣∣∣∣
N−1∑

n=0

f(Snx)

∣∣∣∣∣ <∞ ⇔ ∃g ∈ C(X) : f = g − g ◦ S. (4)Definition 11. A function f with the property f = g − g ◦ T in L2(µ) (see
Theorem 9) or f = g− g ◦ S in C(X) (Theorem 10) is called a coboundary. The
function g is called a transfer function (or cobounding function) for f under T
or S.

We note that the transfer function g is unique up to an additive constant.

Obviously, if f is a coboundary, the sums
∑N−1

n=0 f ◦T
n are telescopic and collapse

to g−g◦TN. Refinements of the coboundary theorems cited above and a relation
to certain spectral measures have been established in [48].

The statements in (3) and (4) closely resemble condition (2). Hence, in order to
apply one of the above coboundary theorems, we have to find (i) an appropriate
dynamical system (X,T ), and (ii) an appropriate function ϕ : X → [0, 1)s such
that the Halton sequence ωb = (xn)n≥0 is the image under ϕ of the orbit under
T of some suitable element x of X :

∀n ∈ N0 : xn = ϕ(T nx).
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Both versions of the coboundary theorem have their advantages and disadvan-
tages. In the topological version, a single point x ∈ X with

sup
N

|
N−1∑

n=0

f(T nx)| <∞

suffices to make f into a coboundary. On the other hand, S has to be a homeo-
morphism and f has to be continuous.

As a matter of fact, in our case the function f is discontinuous, f = 1J−λs(J),
J ∈ J ∗. Hence, the measure-theoretic coboundary theorem, Theorem 9, seems
more appropriate for our purposes, but, due to its nature as a statement in
L2(λs), we will only get an ‘almost everywhere’ result in the relation f = g−g◦T .
If s = 1, one can overcome the difficulty that f is discontinuous, as has been
exhibited by Schoissengeier [69, Theorem 1] for left continuous functions f with
finitely many discontinuities.Remark 12. The following observation will prove itself useful: suppose that
we are able to show that f = 1J − λs(J), J ∈ J ∗, is an L2-coboundary, which
is to say, f = g − g ◦ T in L2(λs). If we put G = e(g), we obtain the identity
G◦T = e(λs(J))G in L2(λs). This says that the number e(λs(J)) is an eigenvalue
of the isometry UT on L2(λs) induced by the transformation T , UT (h) = h ◦ T .
Hence, admissible volumes are related to eigenvalues of the operator UT , in the
above sense. For many maps T , the eigenvalues of the induced operator UT are
known (see Section 2.6).

The reader might be interested to know the following variant of Theorem 9
(cf. [48]). We assume that X is a compact topological space and B is the Borel
σ-algebra BX on X . Now, we introduce a regular measure preserving transforma-
tion T on the probability space (X,BX , µ) by requiring that T is µ-continuous,
that is to say the set of points of discontinuity of T is of µ-measure 0.Theorem 13 (Pointwise coboundary theorem). Let T be a regular measure
preserving transformation on (X,BX , µ) and let x be a (T, µ)-generic point, i.e.,
the limit

lim
N→∞

N−1
∑

0≤n<N

ϕ(T nx) =

∫

X

ϕdµ

holds for all µ- continuous maps ϕ : X → C. If f : X → C is µ-continuous and
bounded with

sup
N

∣∣∣
∑

0≤n<N

f(T nx)
∣∣∣ <∞ ,

then there exists g ∈ L∞(µ) such that f = g − g ◦ T µ-almost everywhere.
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In the discussion above, we have outlined how to employ certain results from
the theory of dynamical systems. In the following section, we will explore these
notions in more detail.

2.3. Basic notions of dynamical systems

We start with a collection of notions and definitions that will be used in the
sequel. As general reference for an introduction as well as for further reading
we refer to [8, 14, 28, 57, 55, 71, 76]. Discrete dynamics studies the behaviour
of functions under iteration. Thus the following definition is in the core of the
subject.Definition 14. Let X be a non-empty set and T : X → X a map (without
any further requirements on X and T ). For x ∈ X the sequence (T nx)n≥0 is
called the orbit of x (under T ).Definition 15. A flow (or topological dynamical system) is a couple F =
(X,T ), where X is a compact metric space and T : X → X is a continuous
map. The flow is called minimal, if the only closed subsets Y of X , which satisfy
T (Y ) = Y are Y = X or Y = ∅.

A simple characterisation of minimality of a F = (X,T ) is that for all x ∈ X
the orbit (T nx)n∈N is dense in X .Definition 16. Let (X,B, µ) be a probability space and T : X → X a measur-
able transformation, which preserves the measure µ (i. e. µ ◦ T−1 = µ). Then
T = (X,T,B, µ) is called a measure theoretical dynamical system.

If the underlying measure space of T is clear from the context, we write again
(X,T ) for short or just T .Definition 17. The system T is called ergodic, if for all B ∈ B equality
T−1(B) = B implies µ(B) = 0 or µ(B) = 1. The system T is called aperi-
odic, if

µ ({x ∈ X ; ∃n ∈ N, T nx = x}) = 0.

In many situations, different dynamical systems are very similar according to
the following definition.Definition 18. Two measure theoretical dynamical systems (Xi,Bi, µi, Ti)
(i = 1, 2) are called isomorphic, if there exist two sets A1 ∈ B1 and A2 ∈ B2

with µi(Ai) = 1 (i = 1, 2) and a bijection ϕ : A1 → A2 such that

∀x ∈ A1, T2 ◦ ϕ(x) = ϕ ◦ T1(x).

Ergodicity is preserved under isomorphism and has several useful equivalent
characterisations:
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(E1) T is ergodic.

(E2) All T -invariant measurable functions ( i. e. f◦T = f) are constant µ-almost
everywhere.

(E3) For all A ∈ B, µ(A) > 0 implies µ(
⋃∞

n=1 T
−nA) = 1.

(E4) for all A ∈ B, µ(A△T−1A) = 0 implies µ(A) = 0 or µ(A) = 1.

The following two lemmas collect basic properties of transformations, which
give an intuitive insight into the consequences of measure-preservation and er-
godicity.Lemma 20 (Poincaré recurrence lemma). Let T be a measure-preserving trans-
formation of a probability space (X,B, µ) and let A ∈ B with µ(A) > 0. Then, for
µ-almost all points in A, T n(x) belongs to A for infinitely many integer n ≥ 1.

With notations and assumptions of Lemma 20 the integer nA(x) := min{k ≥
1 ; T kx ∈ A}, called return time of x to A, exists for µ-almost all x ∈ A.Definition 21. The map TA : A→ A defined µ-almost everywhere by TA(x) =
T nA(x)(x) is called the induced map of T on A.

In dynamic number theory, but not exclusively, this construction plays a fun-
damental role. Readily, TA preserves the probability induced by µ on A.Lemma 22. Let T be an aperiodic invertible measure-preserving transformation
on a Lebesgue space (X,B, µ). For all ε > 0 and all integer N > 0 there exists a
set F ∈ B such that the sets F , TF, . . . , TN−1F are mutually disjoint and

µ
(
X \

N−1⋃

i=0

T i(F )
)
≤ ε.

The hypothesis on (X,T,B, µ) in Lemma 22 means that the dynamical system
is isomorphic to the one defined by a measure preserving transformation on the
torus [0, 1) equipped with the Lebesgue σ-algebra and the Lebesgue measure
λ. The family Θ(F,N) := {T iF ; 0 ≤ i < N} is called a Rokhlin tower of
base F , height N and measure at least 1 − ε. The proof of this lemma in the
particular case of ergodic transformations goes back to Kakutani and Rokhlin
independently. See also Halmos [28] for a proof in full generality. The lemma can
be derived from induced transformations.Remark 23. Let X be a compact metric space, BX the σ-algebra of Borel
subsets of X and let M(X) be the set of Borel probability measures on X .
It is well known that M(X) is convex and a compact metrisable space in the
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week topology. Let T : X → X be a Borel-measurable map. Then the set of
T -invariant probability measures on X forms a convex set:

Inv(T ) =
{
µ ∈M(X) ; µ ◦ T−1 = µ

}
.

The set Erg(T ) of measures µ such that (X,B, µ, T ) is ergodic is precisely the set
of extremal points of Inv(T ). If T is continuous, or even only quasi-continuous
(see this notion in Section 2.5) the set Inv(T ) is a convex non empty compact
subset of M(X) in the weak topology. Hence, in that case, Inv(T ) is the weak
convex closure of Erg(T ) according to the Krein-Milman theorem.Definition 24. Let X be a compact metric space and T : X → X be Borel-
measurable. If Inv(T ) = Erg(T ) = {µ} (there is only one T -invariant measure,
which is therefore ergodic), we call (X,B, T, µ) uniquely ergodic. If the setting is
clear, we simply call the transformation T uniquely ergodic.

For measure theoretical dynamical systems we recall the famous individual
ergodic theorem:Theorem 25 (Birkhoff 1931). Let T be a measure theoretical dynamical system,
then for all f ∈ L1(X,µ) the limit

f̃(x) = lim
N→∞

1

N

N−1∑

n=0

f(T nx)

exists for µ-almost all x ∈ X. If T is ergodic, this limit equals
∫
X
f(x) dµ(x)

µ-almost everywhere.

Assume that X is a compact topological space, BX is the σ-algebra of Borel
subsets of X and let T = (X,B, µ, T ) be an ergodic dynamical system. Recall
that a point x ∈ X , for which

lim
N→∞

1

N

N−1∑

n=0

f(T nx) =

∫

X

f(y) dµ(y)

holds for all continuous functions f : X → C, is called (T, µ)−generic. The
following theorem will show how unique ergodicity can be used.Theorem 26. Let (X,T ) be a flow. Then the following are equivalent:

(1) (X,B, T, µ) is uniquely ergodic,

(2) all points x ∈ X are (T, µ)-generic

(3) for all f ∈ C(X) the relation

lim
N→∞

1

N

N−1∑

n=0

f(T nx) =

∫

X

f(y) dµ(y)
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holds uniformly in x.

Notice that a minimal and uniquely ergodic flow is called strictly ergodic.

2.4. An example: the compact group of b-adic integers

For an integer b ≥ 2, let Zb denote the compact group of b-adic integers. We
refer the reader to [37] for details.

An element z of Zb will be written as z =
∑

j≥0 zj b
j , with digits zj ∈

{0, 1, . . . , b − 1}. In certain circumstances, z will also be viewed as a column
vector (zj)j≥0. If z 6= 0 (0 being the neutral element of Zb or as well the null
vector), then the b-adic order ordb(z) of z is defined as the first index j such that
zj 6= 0. The order of the element 0 is defined as ∞. The b-adic absolute value of
z 6= 0 is given by |z|b = b−v, v = ordb(z), and we put |0|b = 0. Finally, we obtain
a metric d on Zb by defining d(z, z′) = |z−z′|b. For an element z = z0+z1b+ · · ·
of Zb, the coset z+ b

gZb can be identified with the cylinder set [z0, z1, . . . , zg−1].
These sets are closed and open in the metric space (Zb, d) and they generate
the Borel σ-algebra on Zb. Zb is a compact abelian group. We will denote the
uniquely determined normalised Haar measure on Zb by µ.

The set of integers Z is embedded in Zb. If z ∈ N0, then at most finitely many
digits zj are different from zero. If z ∈ Z, z < 0, then at most finitely many
digits zj are different from b− 1. In particular, −1 =

∑
j≥0(b− 1) bj.Definition 27. An element z ∈ Zb will be called regular if infinitely many

digits zj are different from b− 1. Otherwise, z is called irregular.

It is easy to see that the set of irregular elements of Zb coincides with the set
{−1,−2, . . .} of negative integers and that N0 is contained in the set of regular
elements of Zb.Definition 28. We define the b-adic Monna map ϕb by

ϕb : Zb → [0, 1), ϕb


∑

j≥0
zj b

j


 =

∑

j≥0
zj b
−j−1 (mod 1).

The restriction of ϕb to N0 is the radical-inverse function in base b that
we have considered before. The Monna map is continuous and surjective, but
not injective. The function ϕb maps particular cosets of Zb to closed b-adic
elementary intervals in [0, 1), ϕb(z + bgZb) = [0.z0 . . . zg−1, 0.z0 . . . zg−1 + b−g].
In particular, ϕb(b− 1 + bZb) = {0} ∪ [(b − 1)b−1, 1) = [1− b−1, 1](mod 1).

The b-adic elints Ic,g generate the Borel σ-algebra on the torus [0, 1). We have

the relation µ(ϕ−1b (Ic,g)) = µ(c + bgZb) = b−g, hence the map ϕb is measure
preserving from Zb onto [0, 1). It ‘transports’ the normalised Haar measure from
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Zb to normalised Haar measure (Lebesgue measure) on [0, 1). Furthermore, ϕb

gives a bijection between the subset N of Zb of positive integers and the set
{ab−g : 0 < a < bg, g ∈ N, b ∤ a} of all reduced b-adic fractions. This will prove
useful to enumerate the dual group of Zb.

The Monna map may be inverted in the following sense.Definition 29. We define the pseudo-inverse ϕ+
b of the b-adic Monna map ϕb

by

ϕ+
b : [0, 1) → Zb, ϕ+

b


∑

j≥0
xj b
−j−1


 =

∑

j≥0
xj b

j ,

where
∑

j≥0 xj b
−j−1 stands for the regular b-adic representation of the element

x ∈ [0, 1).

The image of the torus [0, 1) under ϕ+
b is the set of regular elements of Zb.

Furthermore, we have the identities x = ϕb(ϕ
+
b (x)), for all x ∈ [0, 1), and z =

ϕ+
b (ϕb(z)), for all regular elements z of Zb, but, in general, z 6= ϕ+

b (ϕb(z)),

z ∈ Zb. For example, if z = −1, then ϕ+
b (ϕb(−1)) = ϕ+

b (0) = 0 6= −1.Remark 30. In our notation, the dual group Ẑb of Zb is given by Ẑb = {χk :
k ∈ N0}, where

χk : Zb → {c ∈ C : |c| = 1}, χk


∑

j≥0
zjb

j


 = e (ϕb(k)(z0 + z1b+ · · · )) , (5)

see [35]. If infinitely many digits zi are different from zero, we will interpret
the value of χk as an infinite product of complex numbers. All factors of this
product with the exception of at most finitely many factors will be equal to one
and, hence, the value of χk is well-defined.

The dual group Ẑb is an orthonormal basis of L2(µ), see [65] and [37] for the
background in abstract harmonic analysis. We now ‘lift’ the characters χk to
the torus. As in [32], the following function system will be the main tool in our
analysis.Definition 31. For a nonnegative integer k, let

γk : [0, 1) → {c ∈ C : |c| = 1}, γk(x) = χk(ϕ
+
b (x)).

Let Γb = {γk : k ∈ N0}. It is easy to show that

∀ k ∈ N :

∫

[0,1)

γk dλ = 0,
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and that Γb is an orthonormal system,

∀ k 6= ℓ :

∫

[0,1)

γk(x)γℓ(x) dx = 0.

There is an obvious generalisation of the preceding notions to the higher-
dimensional case. In the following, let b = (b1, . . . , bs) be a vector of s not
necessarily distinct integers bi ≥ 2, let x = (x1, . . . , xs) ∈ [0, 1)s, and let k =
(k1, . . . , ks) ∈ Ns

0. We define

ϕb(k) = (ϕb1(k1), . . . , ϕbs(ks)),

ϕ+
b (x) = (ϕ+

b1
(x1), . . . , ϕ

+
bs
(xs)),

γk(x) =

s∏

i=1

γi,ki
(xi), where γi,ki

∈ Γbi , 1 ≤ i ≤ s,

Γb = {γk : k ∈ Ns
0} .

Furthermore, for n ∈ N0, we will write ϕb(n) for the vector (ϕb1(n), . . . , ϕbs(n)).

It is elementary to show that the family of functions Γb is an orthonormal
system in L2(λs). It is even an orthonormal basis, see [35] for a proof. For an
integrable function f on [0, 1)s, the k-th Fourier coefficient of f with respect to
the function system Γb is defined as

f̂(k) =

∫

[0,1)s
fγk dλs.

Let Zb denote the direct product of the compact groups Zbi , 1 ≤ i ≤ s, and
define

τ : Zb → Zb, τ(z) = z+ 1 = (z1 + 1, . . . , zs + 1), (6)

where z = (z1, . . . , zs), and 1 = (1, . . . , 1). The transformation τ is a translation
of the compact group Zb. The following result is well-known, see, for example,
[76, Ch.6] for background information and [31, Prop. 2.1] for details. The reader
might also want to review Theorem 26.Theorem 32. Let the integers bi be pairwise coprime. Then the dynamical sys-
tem (Zb, τ) has the following properties:

(1) τ is a homeomorphism on Zb,

(2) (Zb, τ) is minimal,

(3) (Zb, τ) is uniquely ergodic, the uniquely determined τ-invariant probability
measure being the normalised Haar measure,

(4) the sequence (τn0)n≥0 is well-distributed in Zb, 0 = (0, . . . , 0).

The following corollary is a straightforward consequence.
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n0))n≥0 .

It is uniformly distributed in [0, 1)s. In fact, ωb is even well-distributed (for this
notion, see [43]).

In this context, we refer to recent results of Fan, Li, Yao and Zhou [15] where,
in the case s = 1, the transformation τ is generalised to an affine map on Zb.
Some of these results are already contained in [31] and [34].

The following examples show how the facts and notions we have collected up
to now give a rather simple proof for the uniform distribution of the classical
van der Corput and more general sequences.Example 34. Let b ≥ 2 and Zb denote the group of b-adic integers. Then
the addition-by-1 map τ on Zb is uniquely ergodic with respect to the Haar
measure on Zb, which can be seen by applying Theorem 26 (3) to the continuous
characters of Zb. The continuous map ϕb transports the Haar measure on Zb

to Lebesgue measure on [0, 1). Now, by unique ergodicity of τ , the sequence
(τnz)n≥0 is uniformly distributed in Zb for all z ∈ Zb, especially for z = 0. Thus
the van der Corput sequence (ϕb(τ

n0))n≥0 = (ϕb(n))n≥0 in base b is uniformly
and even well distributed modulo one.Example 35. The ring Z/bZ is identified to {0, . . . , b− 1}. Let C = (cij)i,j∈N0

be a N0 × N0-matrix over Z/bZ with finite rows, that means for all i ∈ N0

there is an mi ∈ N0 be such that cij = 0 for j > mi. For any column vector
x = (xn)n∈N0 ∈ {0, . . . , b− 1}N0 define the column vector y = Cx, with entries

yn :=

∞∑

j=0

cnjxj (mod b) =

mn∑

j=0

cnjxj (mod b)

and

f(x) =

∞∑

n=0

yn
bn+1

.

Then f : Zb → [0, 1] is continuous by the following observation: fix an integer
I ≥ 0 and set

MI = max{mi | i ≤ I}.

For two points x, z ∈ [ε0, . . . , εMI
] the coordinates yi coincide for i ≤ I, which

gives |f(x) − f(z)| ≤ b−I . Keeping in mind the last example, f maps the Haar
measure on Zb to Lebesgue measure, if the transformation x 7→ y preserves the
Haar measure on Zb. By linearity, this is the case, if and only if the transforma-
tion is surjective. This is the case, if and only if the the rows of C are linearly
independent over Z/bZ. Notice that f corresponds to the Monna map ϕb if C is
the unit matrix.
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2.5. µ-continuity, quasi-continuity, and uniform quasi-continuity

Let X be a compact metric space, BX the σ-algebra of Borel subset of X and
T : X → X a Borel-measurable transformation. For our purposes continuity of
the transformation T is too strong a requirement; thus we have to introduce
concepts which allow T to have discontinuities, but preserve the statement of
Theorem 26 or at least let us keep control on the generic points. Let µ be a Borel-
measure on X . We have already encountered the notion of regular dynamical
system (X,T,BX , µ) meaning that T is µ-continuous. We remark that regularity
requires the presence of a measure a priori. This is not the case for the following
notions.Definition 36. A subset A of X is called T -neglectable, if for all ε > 0 there
exists a continuous function f : X → [0, 1], such that 1A(·) ≤ f(·) on X and

sup
x∈X

(
lim sup
N→∞

1

N

N−1∑

n=0

f(T nx)
)
≤ ε.Definition 37. Let X and Y be compact metric spaces and T : X → X be

a Borel-measurable transformation. A Borel-measurable function f : X → Y is
called T -quasi-continuous, if its set of discontinuity points is T -neglectable. If T
itself is T -quasi-continuous, we call it quasi-continuous.

This definition was introduced in [60]. The advantage of quasi-continuity
is that its definition does not require any measure. Moreover, if T is quasi-
continuous, then for all T -invariant measures µ, T is also µ-continuous. The
following notion of uniform quasi-continuity was introduced in [46].Definition 38. A map T : X → X is called uniformly quasi-continuous, if for
all ε > 0 there exists a f : X → [0, 1] with f(x) = 1 for all discontinuity points
x of T and

lim sup
N→∞

(
sup
x∈X

1

N

N−1∑

n=0

f(T nx)
)
≤ ε.

This notion allows to generalise Theorem 26 (cf. [46]) by relaxing the conti-
nuity assumption.Theorem 39. Let T : X → X be uniformly quasi-continuous. Then the follow-
ing statements are equivalent:

(1) T is uniquely ergodic

(2) for every real valued f ∈ C(X) there exists a real number λ(f) such that

lim
N→∞

1

N

N−1∑

n=0

f(T nx) = λ(f)
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holds uniformly in x ∈ X.Remark 40. Certainly, λ is a positive linear functional on C(X), which can be
expressed as λ(f) =

∫
X f(x) dµ(x) for a Borel-measure µ. Then µ is the unique

T -invariant measure on X and T is µ-continuous.Example 41. A quasi-continuous transformation can be uniquely ergodic with-
out satisfying statement (2) in Theorem 39. The following example is due to
I. Abou in her thesis [1]. Let F : [0, 1] → [0, 1] be a continuous map strictly
increasing with F (0) = 0, F (1) = 1 and F (x) < x for 0 < x < 1. Now define
T : [0, 1] → [0, 1] by T (0) = 1 and T (x) = F (x) otherwise. It is clear that T
has the only discontinuity point 0 and is quasi-continuous. Moreover, for any
continuous map f : [0, 1] → R, the sequence of means 1

N

∑
0≤n<N f(T n+m(x))

converges uniformly in m to f(1). In particular T is uniquely ergodic with in-
variant measure the Dirac measure δ{1}, but T is not uniformly quasi-continuous
due to

sup
0≤x≤1

∣∣∣ 1
N

∑

0≤n<N

f(T n(x)) − f(1)
∣∣∣ ≥ |f(0)− f(1)| .

If we are only concerned to relax continuity but conserving genericity for all
points (without claiming for uniformity), the following theorem is useful.Theorem 42. A quasi-continuous transformation T : X → X is uniquely er-
godic if and only if there is a T -invariant Borel probability µ on X such that all
points x in X are (T, µ)-generic.

2.6. Spectral properties

For a measure theoretic dynamical system T = (X,T,B, µ) the transforma-
tion T induces an isometry UT : L2(X,µ) → L2(X,µ) given by UT f = f ◦ T .
Usually, in the context of dynamical systems which are not necessarily invert-
ible, the spectral measure ρf associated to a function f in L2(µ), orthogonal to
the constants (

∫
X
f dµ = 0) is studied. In fact, the sequence γf : n 7→ 〈Un

T f, f〉

extended on negative integers by γf (−n) := 〈f, Un
T f〉 = γf (n) is positive defi-

nite. By the Bochner-Herglotz theorem, γf is the Fourier transform of a Borel
measure on the torus [0, 1) which is by definition the spectral measure ρf above.
Therefore

ρ̂f (k) = 〈Uk
T f, f〉 = 〈f ◦ T k, f〉 (7)

In case T is regular and f is µ-continuous and bounded, for any generic point
x the spectral measure ρf is the one associated to the complex valued sequence
n 7→ f(T nx). Therefore

ρ̂f (k) = lim
N

1

N

∑

0≤n<N

f(T n+kx)f(T nx)

30



THE DYNAMICAL POINT OF VIEW OF LOW-DISCREPANCY SEQUENCES

and in term of weak convergence

ρf (dt) = ∗-lim
N

1

N

∣∣∣
∑

0≤n<N

f(T nx)e(−tn)
∣∣∣
2

dt .

Properties of spectral measures are usually established for unitary operators U
on Hilbert spaces but most of them are also true for isometry. Here we quote
properties of ρf which are of interest for our purpose.Remark 43. Let f and g be functions in L2(X,µ). Let |||·||| be the total variation
for Borel measures on [0, 1) and let δ{α} (α ∈ [0, 1)) denote the Dirac unit point
mass at {α}. The spectral measures have the following properties.

(i) ρUT f = ρf , ρf (X) = ‖f‖22 and the dependence of ρf on f is continuous by
the inequality

|||ρf − ρg||| ≤ ‖f + g‖2‖f − g‖2.

(ii) The dependence on f is homogeneous: ρcf = |c|2ρf and

ρf+g ≤ 2(ρf + ρg) .

(iii) ρf has a point mass at α (i.e., ρf ({α}) > 0) if and only if e(α) is an
eigenvalue of UT whose eigenspace is not orthogonal to f .

(iv) If H1 and H2 are UT -stable subspaces (i.e., UT (Hi) ⊂ Hi, i = 1, 2) and
H1⊥H2, then for hi in Hi on has ρh1+h2 = ρh1 + ρh2 .

One eigenfunction h in property (iii) can be built naturally from f . In fact,
let Pα be the orthogonal projection to the closed subspace fixed by the isome-
try e(−α)UT . By a well known von Neumann theorem, the sequence of means
1
N

∑
0≤n<N e(−nα)Un

T f converges in L2 to Pαf and h = Pαf verifies (iii). Then,

one has the orthogonal decomposition f = g + h (with 〈Un
T g, h〉 = 〈g, Un

Th〉 = 0
for all n ≥ 0) giving ρf = ρg + ‖h‖2δ{α} with ρg({α}) = 0. For more details and
complements about this approach of the spectral measure of UT we refer to [58].
Furthermore, continuity of ρf can be characterised by the Wiener-Schoenberg
theorem:Theorem 44 (Wiener-Schoenberg). Let λ be a measure on T and (λ̂(n))n∈Z
denote its sequence of Fourier-coefficients. Then one has

lim
N→∞

1

N

N−1∑

n=0

∣∣∣λ̂(n)
∣∣∣
2

=
∑

z∈T
λ({z})2.

Thus the measure λ is continuous, if and only if this limit is 0.

Whereas the Fourier coefficients of the spectral measure ρf are rather easy to
compute, the finer properties, such as continuity, absolute continuity, or mutual
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singularity with some other spectral measure are not easy to obtain. By Theo-
rem 19, (X,T,B, µ) is ergodic, if and only if the eigenspace of 1 of the operator
UT is one-dimensional (and therefore contains only the constants). Equivalently:Theorem 45. A measure theoretical dynamical system (X,T,B, µ) is ergodic if
and only if for all functions f in L2(X,µ) equality 〈f, 1〉 = 0 implies equality
ρf ({0}) = 0.Definition 46. A dynamical system (X,T,B, µ) has a discrete spectrum (or
pure point spectrum) if all spectral measures are purely atomic. This is equiva-
lent to the fact that there exists an orthonormal basis for L2(X,µ) which consists
of eigenfunctions of UT .

A fundamental result of Halmos [28] says that a dynamical system has a
discrete spectrum if and only it is isomorphic to a translation x 7→ x + g on a
compact metrisable abelian groupG which has in turn the same set of eigenvalues

{χ(g) | χ ∈ Ĝ} of T .Example 47. The b-adic integers Zb form a group under addition. Therefore
the spectrum of the addition-by-one map τ (see Equation (6)) is discrete. The
continuous characters of Zb (cf. [37]) are given by (5):

χk


∑

j≥0
zjb

j


 = e


ϕb(k)

K−1∑

j=0

zjb
j


 , if k < bK .

The character χk is then an eigenfunction of Uτ with eigenvalue χk(1). Therefore,
the eigenvalues of the operator Uτ are given by the set

{
z ∈ C | ∃k ∈ N : zb

k

= 1
}
.Example 48. Let α be irrational. Then the rotation Rα : x→ x+ α mod 1 is

an ergodic transformation on the torus T and the spectrum of (T, Rα) is discrete.
The eigenfunctions are simply the characters e(ℓ·) and the eigenvalues are the
numbers e(ℓα), ℓ ∈ Z (cf. [76]).

For a detailed study of the spectral properties of digital functions we refer to
[58].

Bounded remainder sets are related to spectral measures through Theorem 9
and the following general result is easy to prove:Theorem 49. Let U be an isometry of a Hilbert space H (with scalar product
〈·|·〉) and let x be a vector in H. Then x = y − U(y) for some y ∈ H, if and
only if the map t 7→ 1/ sin2 πt from [0, 1) to R, defined as +∞ for t = 0, is
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integrable with respect to the spectral measure ρx associated to x and U defined
by its Fourier coefficients: ρ̂x(k) = 〈Ukx|Unx〉 and ρ̂x(−k) = ρ̂x(k) for k ≥ 0.

2.7. Product construction

Assume that we have two ergodic dynamical systems Ti = (Xi, Ti,Bi, µi)
(i = 1, 2). It is natural to consider the product T1×T2 = (X1×X2, T1×T2,B1⊗
B2, µ1 ⊗ µ2), where T1 × T2(x, y) = (T1x, T2y). The following theorem gives a
complete answer to the question, when the product of two ergodic dynamical
systems is again ergodic. The proof derives from Theorem 43 and Theorem 45.Theorem 50. Let Ti = (Xi,Bi, µi, Ti) (i = 1, 2) be two ergodic dynamical
systems. Then the dynamical system T1×T2 is ergodic, if and only if the discrete
parts of the two spectra intersect only at 1.Example 51. Let b1 and b2 be positive integers and let τbi denote the addition-
by-one map on Zbi , i = 1, 2. We want to study, when the two dynamical systems
(Zb1 , τb1) and (Zb2 , τb2) are spectrally disjoint. By Example 47 the corresponding
spectra intersect only at 1, if and only if b1 and b2 are coprime.

A different way to view this result is a projective version of the Chinese
remainder theorem, which reads as

Zb1b2 ≃ Zb1 ⊕ Zb2 ,

if b1 and b2 are coprime. This provides the idea of the proof of Theorem 32.Example 52. Let b ≥ 2 be an integer and α an irrational. Let f(n) be a
digital function as in Example 35. Then the sequence (f(n), nα mod 1)n≥0 is
well distributed in T2. This is an immediate consequence of the disjointness of
the spectra computed in Examples 47 and 48 that implies the ergodicity of the
translation (x, t) → (x + 1, t + α) of the group Zb × [0, 1) and consequently its
unique ergodicity. The result now follows from Theorem 26. In the same manner,
the sequence (f(n), p(n) mod 1)n≥0 with any non periodic polynomial sequence
n 7→ p(n) mod 1 is well distributed modulo 1.

2.8. Skew products

Examples 34 and 35 represent the simplest way of applying ideas from ergodic
theory to low-discrepancy sequences. For more complicated sequences, such as
the various modifications of the van der Corput sequence, the construction used
in these two examples breaks down. In most cases where this happens, the map
f (see Example 35) cannot be defined on a large enough set. In order to cope
with this problem, we introduce the concept of cocycles and associated skew
products, which allows to replace the map f by its first differences, which can
be defined almost everywhere on X .
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In this section, let (X,B) be a standard measure space i.e., X is a compact
metric space and B is the Borel σ-algebra. Let µ be a Borel probability measure
on (X,B). Let T : X → X be a Borel automorphism of (X,B, µ) and let A be a
compact metrisable abelian group with normalised Haar measure hA.Definition 53. A T -cocycle (or simply a cocycle, if the underlying action T is
fixed) is a Borel map

a : Z×X → A

such that

(i) ∀m,n ∈ Z : a(m+ n, x) = a(m,T nx) + a(n, x) µ− a.e.

(ii) µ

(⋃

n∈Z
({x | T nx = x} ∩ {x | a(n, x) 6= 0})

)
= 0 .

Notice that condition (i) implies a(0, x) = 0 µ-a.e. We usually assume that T
is aperiodic so that condition (ii) is satisfied automatically.Remark 54. Relation (i) in Definition 53 is the source of the general definition
of TG-cocycles where G is a group (usually discrete) and TG a G-action on X
(the action of g ∈ G being an automorphism denoted by T g). For G = Z, the
corresponding action is given by an automorphism T of (X,B, µ) and the T
cocycle a is constructed from the Borel map γ(·) := a(1, ·):

a(n, x) =





∑n−1
k=0 γ ◦ T k(x) for n > 0,

0 for n = 0,

−
∑−1

k=n γ ◦ T k(x) for n < 0.

(8)

Notice that in [34] page 113, Formula (10) must be corrected according to (8).Definition 55. A cocycle a(·, ·) is called a T -coboundary if there exists a Borel
map c : X → A, such that

∀n ∈ Z : a(n, x) = c(x)− c(T nx) µ− a.e. (9)

It is called trivial, if it is the sum of a T -coboundary and a cocycle which only
depends on n.

From now on we assume that the action T is ergodic on (X,B, µ) and fix a
T -cocycle a : Z×X → A.Definition 56 (K. Schmidt [66]). An element α ∈ A is said to be an essential
value of the cocycle a if for every neighbourhood N(α) of α in A and for every
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B ∈ B with µ(B) > 0,

µ

(⋃

n∈Z

(
B ∩ T−n(B) ∩ {x | a(n, x) ∈ N(α)}

)
)
> 0. (10)

Let E(a) denote the set of essential values of the cocycle a (the reader should
note that these definitions do not require ergodicity of T ).Theorem 57 (K. Schmidt [66]). The set of essential values E(a) has the fol-
lowing properties:

(1) If b : Z×X → A is a coboundary then E(a+ b) = E(a).

(2) E(a) is a closed subgroup of A.

(3) E(a) = G if and only if there exists a G-valued cocycle a′ such that a− a′

is a coboundary. If E(a) = {0} this means that a is itself a coboundary.

We assume that (X,B, µ) is non-atomic. Recall that hA denotes the Haar
measure on A. Let

X̃ = (X ×A,B ⊗ BA, µ⊗ hA),

where BA is the Borel σ-algebra of A. We define the Z-action Ta on X̃ by
Ta(x, α) = (Tx, α+ a(1, x)). Therefore, by definition

T n
a (x, α) = (T nx, α+ a(n, x)). (11)

Clearly, Ta is an automorphism of X̃. The action Ta is called the skew product
of T with respect to a.Theorem 58 (K. Schmidt [66]). If T is ergodic, then

Ta is ergodic ⇔ E(a) = A.Remark 59. Let a be a T -cocycle and c : X → A be a Borel-map. Then a and

a′(n, x) = a(n, x) + c(x)− c(T nx)

define isomorphic skew product actions: let ϕc : X × A → X × A be given by
ϕc(x, α) = (x, α − c(x)). Then, by a straightforward computation,

ϕc ◦ Ta(x, α) = Ta′ ◦ ϕc(x, α),

which defines an isomorphism between the dynamical systems (X ×A, Ta) and
(X ×A, Ta′).

The following theorem was first proved in special cases by Conze (unpub-
lished) and in a series of papers by Veech[74, 75]. A complete proof with A not
necessary abelian is given in [47].
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PETER J. GRABNER — PETER HELLEKALEK — PIERRE LIARDETTheorem 60. Let (X,T,B, µ) be a dynamical system, and let a : Z×X → A be
a T -cocycle. Then the dynamical system (X ×A,B ⊗BA, µ⊗ hA, Ta) is ergodic,
if and only if T is ergodic and the functional equation

f(x) = χ(a(1, x))f ◦ T (x) µ-almost everywhere (12)

has no measurable non-zero solution f for any non-trivial character χ ∈ Â.Remark 61. Notice that equation (12) is equivalent to the coboundary rela-
tion (9) with cocycle χ ◦ a, if there exists a non-zero solution f . By ergodicity of
T , we can and do assume that the measurable transfer function f is unimodular.

Let

Ψ = {χ ∈ Â | ∃fχ 6= 0 : fχ(x) = χ(a(1, x))fχ ◦ T (x)}. (13)

Then we have

E(a) = {g ∈ A | ∀χ ∈ Ψ : χ(g) = 1} = AnnΨ. (14)

The following theorem was proved in a more general setting in [26]. We present
it in a version appropriate for our present purposes.Theorem 62. Let X be a compact metric space and assume that T acts µ-
continuously on (X,B, µ). Further, let a : Z × X → A be a µ-continuous A-
valued cocycle for a compact group A. Assume further that Ta is ergodic for
µ⊗hA (hA the Haar measure on A). If x is (T, µ)-generic, then the point (x, α)
is (Ta, µ⊗ hA)-generic for all α ∈ A.Example 63. In the context of digital functions f : N → R, such as modified
versions of the van der Corput sequence, the cocycle is usually defined as

af (n, x) = lim
m→x
m∈N

(f(m+ n)− f(m)).

The reason behind this definition is the following. For given n ∈ N, the sum
n + x in Zb involves only a finite number of carries except in the case where
x = −n. Thus, for any n ∈ N, the above limit may exist except eventually at
x = −1,−2, . . .. In that latter case, af should be extended from af (1, x), x 6= −1,
by assigning an arbitrary value to af (1,−1). In our case, we put a(1,−1) = 0.
Actually, there is a dichotomy in this context: either f admits an extension to
Zb (as in Example 34), which implies that the cocycle is trivial, or f cannot be
extended continuously to Zb, which makes the cocycle the object to be studied.
The prototype of such a function f is the classical sum-of-digits function sb(·)
in base b, which certainly has no meaningful extension to Zb. Nevertheless, the
associated cocycle is defined almost everywhere and has been studied in [40, 39,
38].
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THE DYNAMICAL POINT OF VIEW OF LOW-DISCREPANCY SEQUENCESExample 64. As in Example 35 we take an N0 × N0-matrix C over Z/bZ
with linearly independent rows. Assume that at least one of the rows contains
infinitely many non-zero entries. Taking the b-ary expansion of n ∈ N, n =∑

k≥0 nkb
k, we compute

yi =

∞∑

k=0

ciknk (mod b)

and put

f(n) =

∞∑

i=0

yib
−i−1.

There exists no continuous extension of f from N to Zb for the following reason:
clearly, yi can only be computed for a sequence (xk)k≥0 ∈ (Z/bZ)N0 , if there are
only finitely many non-zero xk. Nevertheless, the limit

af (n, x) = lim
m→x
m∈N

(f(m+ n)− f(m)) (15)

exists for all x ∈ Zb if n = 0, and for all x ∈ Zb \ {−n} if n ∈ N. We now define
the skew product transformation on (Zb × T, hZb

⊗ hT) by

Ta(x, z) = (x+ 1, z + af (1, x) (mod 1)).

This transformation is hZb
⊗ hT-continuous, since the set of its points of discon-

tinuity is {−1} × T, which is a hZb
⊗ hT-negligible set. In fact, Ta is uniformly

quasi-continuous.

The following example will show that Ta need not be ergodic.Example 65. Let C = (cij)i,j∈N0 be the matrix given by c0j = 1 for all j ∈ N0

and cij = δij for i ≥ 1. For x 6= −1 set m(x) = min{k ∈ N0 | xk < b− 1}. Then
the cocycle af satisfies

af (1, x) =
m(x) + 1 (mod b)

b
+

m(x)∑

i=1

1

bi+1
.

We have for n ∈ N0

f(n) = ϕb(n)−
n0

b
+
sb(n)

b
,

where ϕb(n) denotes the n-th term of the van der Corput sequence and sb(n)
the b-adic sum of digits function. Thus

af (1, x) =
asb(1, x)− 1

b
+ ϕb(x+ 1)− ϕb(x),
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where
asb(1, x) = lim

m→x
m∈N

(sb(m+ 1)− sb(m)),

which exists for x 6= −1. Thus af is the sum of a 1
bZ/Z-valued cocycle and a

continuous coboundary. The essential values of 1
basb are {0, 1b , . . . ,

b−1
b }. This

shows that the skew product is not ergodic in this case.

Now ((T nx, z + a′f (n, x)))n≥1 is uniformly distributed in Zb × (1bZ/Z) by

Theorem 62. Furthermore, c : Zb → [0, 1b ], c(x) =
∑∞

k=1 xkb
−k−1, transports the

Haar-measure on Zb to the Lebesgue measure on [0, 1b ]. Taking the orbit of (0, 0)

under the action of Ta′
f
we get that ((c(n), 1b sb(n)))n≥1 is uniformly distributed

in [0, 1b ) × (1bZ/Z). Finally, this implies that (f(n))n≥1 = (c(n) + 1
b sb(n))n≥1 is

uniformly distributed in [0, 1).

The computations can be generalised to the case that only finitely many rows
of the matrix are infinite.Example 66. Consider now a matrix C as in Example 64 with infinitely many
infinite rows. Assume that all rows of C are linearly independent. Assume fur-
thermore that C has infinitely many different columns. Then the cocycle af is
hZb

⊗ hT-continuous. In order to compute its essential values we first consider
a cylinder set B = [a0, a1, . . . , aK ] and take L > K. Then for x ∈ B with

0 < xL < b− 1 (let b > 2 for simplicity) we have x ∈ B ∩ τ−b
L

(B). On the other
hand we have

af (b
L, x) =

∞∑

i=0

ciL
bi+1

= f(bL).

Every measurable set B can be approximated in proportion arbitrarily closely
to 1 by finite unions of cylinder sets. Thus every value attained by f(bL) is
indeed essential for the cocycle af . Since there are infinitely many different
columns of the matrix C and every real number in [0, 1) has at most two different
expansions to base b, af (b

L, x) attains infinitely many different values in T. Since
the essential values form a closed subgroup of T, this shows that E(af ) = T.
Thus the transformation τaf

is ergodic.

Since (τn0)n≥1 is uniformly distributed in Zb, Theorem 62 implies that the se-
quence (τn0, af(n, 0))n≥1 is uniformly distributed in Zb×T. Hence (f(n))n∈N =
(af (n, 0))n≥1 is uniformly distributed in [0, 1).

For b = 2 the argument has to be adapted slightly.

2.9. Spectral properties of cocycles

We will now investigate the spectrum of the operator UTa
given by

UTa
Φ(x, z) = Φ(Tx, z + af (1, x))
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for functions f as in Example 64 and we assume throughout this section that
the matrix C has infinitely many infinite rows. Since the Hilbert space L2(Zb ×
T, µb ⊗ hT) decomposes as a Hilbert orthogonal sum

L2(Zb × T, µb ⊗ hT) =
⊕

ℓ∈Z
L2(Zb, µb)⊗ e(ℓ·),

we can study the spectrum separately on each summand. The operator UTa
acts

on Φ = ϕ⊗ e(ℓ·) for ϕ ∈ L2(Zb, µb) as

UTa
ϕ(x)e(ℓz) = ϕ(Tx)e(ℓz)e(ℓaf(1, x)) = e(ℓz)UTa,ℓϕ(x).

The Fourier coefficients of the spectral measure ρϕ,ℓ associated with UTa,ℓ are
given by

ρ̂ϕ,ℓ(n) =

∫

Zb

ϕ(T nx)e(ℓaf (n, x))ϕ(x) dµb(x).

By [26, Theorems 4 and 5], which are consequences of results in [36], the spectral
measure ρϕ,ℓ is either purely absolutely continuous, purely singular continuous
with respect to Lebesgue measure, or purely discrete.Remark 67. If the spectrum of UTa,ℓ is discrete for ℓ ∈ mZ, then there exist a
1
mZ/Z-valued cocycle a′, a measurable function g and a real number ξ such that

a(n, x) = a′(n, x) + g(x)− g(T nx) + nξ.

This case (with ξ = 0) occurs, if the matrix C has only finitely many infinite
rows.

In the following we will show that ρϕ,ℓ can never be absolutely continuous, if
b > 2. For this purpose we investigate the behaviour of the sequence (ρ̂χ,ℓ(b

k))k≥1
for a character χ of Zb. We compute

ρ̂χ,ℓ(b
k) =

∫

Zb

χ(x+bk)χ(x)e(ℓaf (b
k, x)) dµb(x) = χ(bk)

∫

Zb

e(ℓaf(b
k, x)) dµb(x).

We notice that χ(bk) = 1 for k large enough. Thus it remains to compute the
integral. For this purpose we define the sets

BK = {x ∈ Zb | xk = · · · = xK−1 = b− 1, xK < b− 1} .

Then (by slight abuse of notation)

ym(x+ bk)− ym(x) = −
K∑

r=k

cmr (mod b), for x ∈ BK .

Therefore af (b
k, ·) is constant on every BK . For b > 2 we estimate

39



PETER J. GRABNER — PETER HELLEKALEK — PIERRE LIARDET

∣∣ρ̂χ,ℓ(bk)
∣∣ ≥

∣∣∣∣
∫

Bk

e(ℓaf (b
k, x)) dµb(x)

∣∣∣∣ −
∞∑

r=k+1

∣∣∣∣
∫

Br

e(ℓaf(b
k, x)) dµb(x)

∣∣∣∣

= µb(Bk)−
∞∑

r=k+1

µb(Br) = 1−
2

b
.

Thus for b > 2 the Fourier coefficients (ρ̂χ,ℓ(b
k))k do not tend to zero. Therefore

the measure ρχ,ℓ cannot be absolutely continuous by the Riemann-Lebesgue
lemma.

2.10. An application: bounded remainder sets

We are now in a position to solve the problem posed in Section 2.2 concerning
the bounded remainder sets for the Halton sequence ωb.Remark 68. Due to the simple fact that χk(τ(z)) = χk(1)χk(z), for all z ∈ Zb,
1 = (1, . . . , 1), all characters χk are eigenfunctions of the operator Uτ on L2(µ).
For this reason, the eigenvalues of Uτ are given by the set {χk(1) : k ∈ Ns

0},
which is equal to the set of complex numbers {

∏s
i=1 e(aib

−gi
i ) : ai, gi ∈ N0, 0 ≤

ai < bgii , 1 ≤ i ≤ s}.

The following transformation T on the torus [0, 1)s will allow us to apply
the measure-theoretic coboundary theorem to solve the problem of bounded
remainder sets in the class J ∗ for Halton sequences. For readers interested in the
mixing properties of T and in its measure-theoretic background, we recommend
Silva [72, Ch.3.8].Definition 69. Let b ≥ 2 be an integer. We define the b-adic Kakutani-von
Neumann odometer (or b-adic adding machine transformation) on [0, 1) as the
map

T : [0, 1) → [0, 1), T (x) = ϕb ◦ τ ◦ ϕ
+
b (x).

We observe that the Kakutani-von Neumann map T is a piecewise translation
map given by

T (x) = x− 1 + b−k + b−k−1 for x ∈
[
1− b−k, 1− b−k−1

)
,

with k = 0, 1, 2, . . .. Let us write λ instead of λ1 in dimension s = 1. Clearly, T
is continuous at all points distinct of the points 1 − bk, k = 0, 1, 2, . . . . In fact,
T is uniformly quasi-continuous. Furthermore T preserves the Haar measure λ
and the dynamical system ([0, 1), T ) is ergodic. It is in fact uniquely ergodic and
isomorphic to the system (Zb, τ). As a consequence, the associated operator UT

has the same eigenvalues as Uτ , which means that the eigenvalues of T are given
by the set {e(ab−g) : a, g ∈ N0, 0 ≤ a < bg}, see Remark 68.
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Figure 1. The graph of the Kakutani-von Neumann map for b = 2

The generalisation to the s-dimensional case is simple. We define T : [0, 1)s →
[0, 1)s, T (x) = ϕb ◦ τ ◦ϕ+

b (x). The orbit of 0 i.e., the sequence (T n0)n≥0, is the
Halton sequence ωb in base b. We are now in a position to apply the above
theory to the problem of bounded remainder sets.Theorem 70. Let the corner J =

∏s
i=1[0, βi) be a bounded remainder set for the

Halton sequence ωb in base b, b = (b1, . . . , bs), with pairwise coprime integers

bi. Then every side-length βi of J is a bi-adic rational, βi = aib
−gi
i , where

0 ≤ ai ≤ bgii , ai, gi ∈ N0, 1 ≤ i ≤ s.

P r o o f. Put f = 1J−λs(J) and write fN(x) =
∑N−1

n=0 f◦T
n(x), x ∈ [0, 1)s. The

fact that J belongs to the set B(ωb) may be written as C = supN |fN(0)| <∞.

The function f is Riemann-integrable on [0, 1)s. Due to the fact that the
transformation T is continuous almost everywhere and measure preserving, the
function f ◦T is also Riemann-integrable. Hence, the uniform distribution of the
Halton sequence ωb = (T k0)k≥0 implies that

||fN ||22 = lim
K→∞

K−1
K−1∑

k=0

|fN (T k0)|2 = K−1
K−1∑

k=0

|fN+k(0)− fk(0)|
2 ≤ (2C)2.

An application of Theorem 9, the measure-theoretic coboundary theorem, proves
the existence of g ∈ L2(λs) with f = g − g ◦ T almost everywhere.

Without loss of generality, we may assume that g has integral zero. Further-

more, for any index k, we have the identity (̂g ◦ T )(k) = χk(1)ĝ(k) between the
Fourier coefficients of g ◦ T and g. Hence, the equality f = g − g ◦ T in L2(λs)
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yields

‖g‖22 =
∑

k 6=0

|f̂(k)|2/|1− χk(1)|
2 <∞. (16)

We notice that f̂(k) = 1̂J(k) and that χk(1) 6= 1, for all k 6= 0.

The s-dimensional corner J is the Cartesian product of one-dimensional cor-
ners, J =

∏s
i=1 Ji, Ji = [0, βi[, 0 < βi ≤ 1. As a consequence, the k-th Fourier

coefficient of the function 1J is given by1̂J (k) =

s∏

i=1

1̂Ji
(ki).

We now consider one-dimensional projections. Suppose that the index k is of
the special form k = (0, . . . , 0, ki, 0, . . . , 0), where ki 6= 0. In this case,

f̂(k) = 1̂J(k) = 1̂Ji
(ki)

∏

j 6=i

λ(Jj).

Put fi = 1Ji
− λ(Ji). Identity (16) implies that

∑

k 6=0

|f̂i(k)|
2/|1− χi,k(1)|

2 <∞, (17)

where the s-dimensional character χk, k = (k1, . . . , ks), is the product of the
one-dimensional characters χi,ki

, χk =
∏s

i=1 χi,ki
. This proves that, for every

coordinate i, there is a function gi ∈ L2(λ) such that fi = gi − gi ◦ Ti in L2(λ),
where Ti stands for the Kakutani-von Neumann transformation in base bi. From
Remark 12 we derive that e(λ(Ji)) is an eigenvalue of Ti, which implies that

λ(Ji) is of the form aib
−gi
i , 0 ≤ ai ≤ bgii , with ai, gi ∈ N0. This proves the

theorem. �Remark 71. As noted in Section 2.2, we will give a proof of Theorem 6 in
a dynamical context. To this aim we notice that by additivity it is enough to
show that a functions of the form f = 1I − a where I is a b-adic elint, i.e.,
I =

∏s
i=1[aib

−gi
i , (ai + 1)b−gii ) with 0 ≤ ai < bgii , 1 ≤ i ≤ s and a = λs(I), is

coboundary. The family of such elints I with fixed gi forms a partition of [0, 1)s

into g = bg11 · · · bgss elements and T acts cyclically on this family. This means that

1 =

g−1∑

j=0

1I ◦ T
j λs − a.e.,

and a straightforward computation shows that

f = 1I − a = ϕ ◦ T − ϕ, λs − a.e., with ϕ =

g−1∑

j=1

ja1I ◦ T
j . (18)

42



THE DYNAMICAL POINT OF VIEW OF LOW-DISCREPANCY SEQUENCES

Theorem 70 allows us to characterize the family of sets with bounded remain-
der as well as the set of admissible volumes for the Halton sequence in base
b.Corollary 72. For the Halton sequence ωb in base b, the set B(ωb) is equal
to the family of b-adic corners and the set Λb(ωb) of admissible volumes is equal

to the set {
∏s

i=1 aib
−gi
i ; ai, gi ∈ N0, 0 ≤ ai ≤ bgii , 1 ≤ i ≤ s}.Remark 73. For a b-adic corner I in [0, 1)s, the series expansion Sf of the

function f = 1I − λs(I) in the orthonormal basis Γb (see Section 2.4) is finite
(see [35]). Since any non-constant function χ in Γb is an eigenfunction for T ,
it is also a coboundary with transfer function γ = 1

χ(1)−1χ. This leads easily

to the series expansion Sϕ of the transfer function ϕ given in (18); see [32] for
additional results.

An extension of these results to certain Cantor series representations of real
numbers is known, see Hellekalek [31], where it is proved in particular that
intervals I in [0, 1) of bounded remainder for the analogous Halton sequence
are exactly those of length ℓ such that e(ℓ) is an eigenvalue of the underlying
add-one transformation.

Historically, the question of bounded remainder sets has been studied first
for sequences (nα (mod 1))n≥0. For any irrational translation Rα : x 7→ x + α
(mod 1) on [0, 1), bounded remainder intervals I = [a, b) (0 ≤ a < b < 0) are
those of length in αZ+Z. This condition is clear since the eigenvalues of Rα are
e(nα), n ∈ Z. The fact that if b − a belongs to αZ + Z then the interval I is a
bounded remainder set was first observed by Hecke [30]. A simple proof derives
directly from the relation 1[a,b)(x)− (b− a) = 〈x− b〉 − 〈x− a〉, x ∈ [0, 1), with
〈t〉 = t − ⌊t⌋, that leads easily to a transfer function. The converse was proved
by Kesten [41] with a complicated proof. The case of an ergodic translation
R(α1,...,αs) on the s-dimensional torus [0, 1), s ≥ 2, is more difficult. In fact,
in dimension 2, some particular examples of bounded remainder sets are due
to Rauzy [63]. Non-empty intervals I1 × · · · × Is with bounded remainder have
been characterised in [48]. They are of the form Ij = [0, 1) for all j except for
at most one index j0 for which Ij0 is of bounded remainder for the translation
x 7→ x + αj0 (mod 1). The proof use the spectral criterion (see Theorems 9
and 49) and simultaneously diophantine properties of the αi. The same spectral
criterion also can be used to prove that non-empty bounded remainder intervals
[a, b[ are just [0, 1[ in cases of the non-periodic polynomial sequences n 7→ p(n)
(mod 1) and sequences n 7→ αsb(n) where sb(·) denotes the b-adic sum of digits
function and α is any irrational real number (see [48]).
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2.11. Dynamics behind (m, s)-digital sequences

The functions f : n 7→ f(n) studied in Examples 35 and 64 in base b verify
the remarkable equality

f(m+ bkn) = f(m) + f(bkn), 0 ≤ m < bk, k ∈ N0,

that characterises b-additive real-valued functions (or sequences). The most fa-
mous example is the sequence n 7→ sb(n)α, which is known to be well distributed
modulo 1 if α is irrational. For a given abelian group A, the definition of b-
additivity (or b-multiplicativity if the law of A is noted multiplicatively) is easily
extended to A-valued sequences. In this section A is assumed to be the infinite
metrisable compact product group Ab = (Z/bZ)N0 . Elements z of Ab are columns
with entries zj in Z/bZ, j ∈ N0. Notice that the b-adic Monna map ϕb can be also
defined on Ab, analogously to Zb, by setting ϕb(z) =

∑∞
j=0 zjb

−j−1. Characters

of Ab are in one-to-one correspondence with t-tuples (k0, . . . , kt−1) ∈ (Z/bZ)t,
t ∈ N, by

χ(z) =

t−1∏

j=0

e(kjzj/b) .

Let πj be the projection map πj : Ab → Z/bZ at rank j, defined by πj(z) = zj.
An Ab-valued b-additive function F is given by the coordinate functions fj =
πj ◦ F and clearly the maps fj : N0 → Z/bZ are b-additive. We use F to define
a cocycle aF : Zb → Ab in the same way as above:

aF (n, x) = lim
m→x
m∈N

(F (m+ n)− F (m))

for x 6= −n if n 6= 0 (and set the value aF (1,−1) = 0Ab
if the corresponding limit

does not exist). Now we introduce the skew product TaF
: Zb×Ab → Zb×Ab by

TaF
(x, z) = (x+ 1, z + aF (1, x)) .

Naturally, TaF
is an automorphism of the probability space (Zb × Ab, µ) where

µ denotes the normalised Haar measure on the compact group Zb × Ab. In ad-
dition, TaF

is uniformly quasi-continuous. In order to give a characterisation of
the ergodicity of Ta (that implies its unique ergodicity) we consider the Z/bZ-
module Φ of all Z/bZ-valued b-additive functions and the sub-module Φ0 of those
functions g such that there exists a positive integer ℓ with

g(n+ bℓ) = g(n)

for all integers n ≥ 0. A family E := {ej ; j ∈ N0} of elements in Φ is said to be
independent modulo Φ0 if for all integersm ≥ 0 and all (m+1)-tuple (λ0, . . . , λm)
in (Z/bZ)m+1, the relation

∑
0≤k≤m λkek ∈ Φ0 implies λ0 = λ1 = · · · = λm = 0.

We are ready to state the important theorem proved in [34]:

44



THE DYNAMICAL POINT OF VIEW OF LOW-DISCREPANCY SEQUENCESTheorem 74. With the above notations, the skew product TaF
is ergodic if and

only if the family of function F := {fj ; j ∈ N0} is independent modulo Φ0.Example 75. We return to Examples 35 and 64 but with an arbitrary N0×N0-
matrix C over Z/bZ. Let F : N0 → Ab be the b-additive function with coordinate
functions fj : N0 → Z/bZ given by

fj(n) =
∑

k≥0
εk(n)cjk,

where n =
∑

k≥0 εk(n)b
k is the b-adic expansion of n. By construction f =

ϕb ◦ F =
∑∞

j=0 fjb
−j−1 where f is the function defined in the examples. But

the cocycle af is generally not equal to ϕ(aF ) since ϕa : Ab → T is not a group
homomorphism. Moreover, Example 66 shows that TaF

can be non-ergodic while
Taf

is, so that the sequence n 7→ F (n) is not uniformly distributed in Ab while
its image n 7→ f(n) by ϕa is uniformly distributed modulo 1.Remark 76. If TaF

is ergodic, we readily deduce that the sequence n 7→
(ϕb(n), ϕb(F (n))) is well distributed in [0, 1)2. Moreover, from n 7→ ϕb(F (n)) we
can construct, for any positive integer s fixed, sequences in [0, 1)s which are well
distributed. For example, with the family of functions F (i) := {fi+js ; j ∈ N0}
(1 ≤ i ≤ s − 1) one constructs the b-additive (Ab)

s−1-valued sequence G :
n 7→ (F (1)(n), . . . , F (s−1)(n)). Then the cocycle aG = (aF (1) , . . . , aF (s−1)) : Zb →
(Ab)

s−1 leads to an ergodic skew product transformation TaG
on Zb × (Ab)

s−1.
As before, by a standard argument, the sequence

n 7→ (ϕb(n), ϕb(F
(1)(n)), . . . , ϕb(F

(s−1)(n)))

is well distributed in [0, 1)s.

An interesting and non-trivial problem is to find families of b-additive func-
tions {fi : N0 → Z/bZ ; i ∈ N0} that satisfy the independence condition of
Theorem 74. Once such a family has been found, we may apply the construction
in Remark 76 to get the uniquely ergodic skew product TaG

on Zb × (Ab)
s−1.

This problem is related to the construction of (t, s)-sequences that we are going
to define.Definition 77. A set Y of N = bm points y in [0, 1)s is said to be a (t,m, s)-net
in base b if ∑

y∈Y
(1J (y)− λs(J)) = 0

for every interval J of the form

J =

s∏

i=1

[ ai
bdi

,
ai + 1

bdi

)
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with integers di and ai such that di ≥ 0, 0 ≤ ai < bdi (1 ≤ i ≤ s), and
λs(J) = 1/bm−t (i.e.,

∑
i di = m− t).

This definition expresses the fact that Y has many local discrepancies equal
to 0.Definition 78. An infinite sequence ω = (xn)n≥0 of points in [0, 1)s is called
a (t, s)-sequence in base b if for all integers k ≥ 0 and m > t, the set

{xn | kbm ≤ n < (k + 1)bm}

forms a (t,m, s)-net in base b.

A necessary condition for existence is that t ≥ s
b − logb

(b−1)s+b+1
2 . For an

extensive study of these notions we refer to [51, 50].Remark 79. A (0, s)-sequence exists if and only if s ≤ b.Theorem 80 (see [34]). With notations of Remark 76, if

n 7→ (ϕb(n), ϕb(F
(1)(n)), . . . , ϕb(F

(s−1)(n))), n ∈ N0,

is a (t, s)-sequence, then the skew product T(a
F (1) ,...,aF (s−1) ) : Zb × (Ab)

s−1 →

Zb × (Ab)
s−1 is uniquely ergodic.

The usual approach to construct (t, s)-sequences is to chose s − 1 N0 × N0-

matrices C(i) over Z/bZ and s−1 families of bijections {ψ
(i)
j : Z/bZ → Z/bZ ; j ∈

N0} (1 ≤ i ≤ s−1). For simplicity we assume that ψ
(i)
j (0) = 0 for all indices. Let

F (i) : N0 → Ab be defined by the coordinate maps f
(i)
j (n) =

∑
k≥0 ψ

(i)
k (εk(n))cjk

which are b-additive and take xn = (ϕb(n), ϕb(F
(1)(n)), . . . , ϕb(F

(s−1)(n))). For
conditions on matrices C(i) such that n 7→ xn is a (t, s)-sequence we refer to the
monograph [51].

3. New constructions

In this section we study constructions of one-to-one maps T : [0, 1) → [0, 1)
which are given by a partition of [0, 1) into a family of non-empty intervals
[a, b) and such that the restrictions of T on these intervals are translations.
We always identify the interval [0, 1) with the one dimensional torus T, hence
[0, 1) is equipped with the compact metrisable topology given by the metric
d(x, y) := ‖x− y‖ where ‖t‖ := min{|t− n|; n ∈ Z}, t ∈ R.

We study in particular the cutting-stacking construction applied to rank-one
transformations and maps deduced from cutting-stacking processes associated
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to appropriate substitutions. Then connections with the previous sections are
investigated. This will yield classical as well as new sequences arising from these
dynamical systems, with good discrepancy.

3.1. Interval exchanges

3.1.1. Main definitions and basic constructionsDefinition 81. A map T : [0, 1) → [0, 1) is said to be an interval exchange
on [0, 1) (or a piecewise translation map) if there is a family F of non empty
subintervals In := [an, bn) of [0, 1) and a family of corresponding real numbers
tn (0 ≤ n < N = card(F)) such that:

(i) Im ∩ In = ∅ and (Im + tm) ∩ (In + tn) = ∅ if m 6= n,

(ii) T (x) = x+ tn if x ∈ In,

(iii) λ
(⋃

0≤n<N In
)
= λ

(⋃
0≤n<N (In + tn)

)
= 1.

By construction, any interval exchange T preserves the Lebesgue measure λ,
is one-to-one and invertible up to a set of λ-measure 0.

One interest of this construction is that every aperiodic invertible measure-
preserving transformation T on a Lebesgue space (X,B, µ) can be identified with
a possibly infinite interval exchange [2]. Such constructions play a fundamental
role for our purpose and are deeply related to Rokhlin towers (cf. Lemma 22).

3.1.2. Irrational translation modulo one

We illustrate the Rokhlin tower constructions in the case of a translation τα :
[0, 1) → [0, 1) by an irrational number α modulo one. As usual, we identify [0, 1)
with the torus R/Z and assume 0 < α < 1 so that, by definition, τα(t) := t+α−
⌊t+α⌋. It appears readily that τα is an interval exchange between [0, 1−α) and
[1−α, 1). To go deeply inside the combinatorial and diophantine properties of τα
it is instructive to construct τα from a sequence of pairs of Rokhlin towers derived
from the regular continued fraction expansion α = [0; a1, a2, a3, . . . ], where the
an are integers ≥ 1. A straightforward computation shows that the return time
map n[0,α)(·) takes the values a1 and a1+1, leading to the induced transformation
on the interval [0, α), which exchanges intervals [0, 1 − a1α) and [1 − a1α, α).
Therefore, [1−a1α, α) is translated to [0, (a1+1)α−1) so that τα|[0,α)

corresponds

to the translation by (a1+1)α−1 modulo αZ. Let T : (0, 1) → (0, 1) be the Gauss
transformation given by T (x) = 1

x −
⌊
1
x

⌋
and S : x 7→ 1−x the reflection map on

(0, 1). Then, after normalisation, the induced transformation τα|[0,α)
corresponds

on [0, 1) to the translation τS◦T (α). Notice that the transformation T1 := S ◦ T
corresponds to the so-called semi-regular continued fraction expansion of an
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irrational number x in (0, 1), given by

x =
1

b(x)− T1(x)
=

1

a(x) + 1− (1− T (x))

where a(x) :=
⌊
1
x

⌋
. In other words,

α =
1

b1 −
1

b2 −
1

b3 −
1

. . .

with b1 = a1 + 1 and bn = b(T n−1
1 (α)). Also, τα induces a translation on [α, 1)

which corresponds, after normalisation, to the translation τT◦S(α). These facts
was investigated for interval exchanges by Rauzy in two seminal papers [61, 62].
The induced map on [0, α) (but also on [α, 1) as well as on [0, 1−α) and [1−α, 1))
allows to identify τα to the discrete special flow Sα built above the translation
τα|[0,α)

and under the map f : [0, α) → N defined by

f(t) :=

{
a1 if 0 ≤ t < 1− a1α,

a1 − 1 if 1− a1α ≤ t < α.

More precisely, Sα is defined on

Ωα :=
( ⋃

0≤j≤a1

τ jα[0, 1− a1α) × {j}
)
∪
( ⋃

0≤j<a1

τ jα[1− a1α, α)× {j}
)

by Sα(x, j) = (x, j + 1) if 0 ≤ j < f(x) and Sα(x, f(x)) = (τα|[0,α)
(x), 0). The

special flow Sα for α with a1 = 2 is depicted by the left graphics in Figure 2 and
the same construction is continued but now with the induced translation τα|[0,α)

in place of τα, leading to a new special flow representing τα and depicted by the
right graphics in Figure 2.

3.2. Cutting-stacking

The cutting-stacking method given below is quite general and useful to con-
struct step by step interval exchanges. It was used initially in 1940 by von
Neumann and Kakutani, then generalised and popularised by Friedman in his
monograph [20] and used by many authors to produce various examples and
counterexamples of dynamical systems. We intend to use this construction to
build sequences in the unit interval with good discrepancy.

The basic objects of this method are columns C = (I1, . . . , Ih) (also called
towers) of disjoint subintervals Ij := [cj , dj) of [0, 1) of same length called the
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0 1− 2α 1− αα 2α 1

α 2α

2α 1

0 1− 2α
3α− 1

α

α 2α

2α 1

3α− 1 α

4α− 1 2α

Figure 2. Geometric representations of τα as special flows in the case
α = [0; 2, . . . ]. On the left, the special flow is above the induced map on
[0, α) which is a translation of 3α− 1 modulo αZ. On the right, the special
flow is above the induced transformation of τα on [0, 3α − 1).

width of C and denoted by ℓ(C). The interval I1 is called the bottom of C, the
interval Ih is called the top of C, the union supp(C) :=

⋃
1≤j≤h Ij is the support

of C and the integer h its height. With the column C is associated a translation
map TC : supp(C) \ Ih → supp(C) \ I1 defined by TC(x) = x + (cj+1 − cj)
if x ∈ Ij , 1 ≤ j < h. It is convenient to represent a column C = (I1, . . . , Ih)
by drawing each interval Ij+1 (1 ≤ j < d) above the interval Ij completed if
necessary by vertical arrows to figure the map TC , the arrow issuing from the
top interval Ih being labelled with an interrogation mark.

For a given finite set of columns S := {C1, . . . , Cs} with disjoint supports we
associate the map TS which coincides with TCi

for 1 ≤ i ≤ s. Also, by definition,
supp(S) :=

⋃
1≤i≤s supp(Ci) is the support of S and ℓ(S) :=

∑
1≤i≤s ℓ(Ci) is the

width of S. In the sequel, we usually assume that the columns Ci of S are indexed
according to the order of their bottoms, the one induced by the natural order of
[0, 1). A cutting of a column C := (I1, . . . , Ih) in t columns is by definition a set
of columns Ci := {Ii,1, . . . , Ii,h} such that

⋃
1≤i≤t Ii,1 = I1 and each map TCi

is
the restriction of TC on Ci. More generally, a cutting of a set S of columns is
obtained by collecting all columns resulting by cutting part or all columns from S
and then producing a new set of columns S′ := {C′1, . . . , C

′
s′}. Now, a stacking of

a column C′ := (I ′1, . . . , I
′
h′) above a column C := (I1, . . . , Ih) having same width

and disjoint support is by definition the column C ∗C′ = (I1, . . . , Ih, I
′
1, . . . , I

′
h′).

The map TC∗C′ extends both TC and TC′ and TC∗C′ translates Ih onto I ′1.

Notice that the stacking law ∗ is associative but not commutative. It is con-
venient to introduce the empty column ( ) of height 0 and to set by definition
C ∗ ( ) = ( ) ∗ C = C for any column C. A sequence Σ := (Sm)m≥0 of sets
Sm of columns is said to be complete if supp(S0) = [0, 1), limm ℓ(Sm) = 0 and
for each m ≥ 1, Sm+1 is built from Sm by performing cutting and stacking
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1 2 4 3b c a

1

2

3

4

a

b

c

Figure 3. Cutting-stacking: an example starting from the unit interval.
On the left, the interval is cut into a set of 7 subintervals noted from left
to right I1, Ib, Ic, I2, Ia, I4, I3 and stacked following the arrows to give two
columns {I1, I2, I3, I4} and {Ia, Ib, Ic}.

but a finite number of times. By construction TSm+1 extends TSm
. Let top(Sm)

(resp. bot(Sm)) be the union of top (resp. bottom) intervals of columns in Sm.
Clearly top(Sm+1) ⊂ top(Sm), bot(Sm+1) ⊂ bot(Sm) and the intersections
top(Σ) := ∩m≥0 top(Sm), bot(Σ) := ∩m≥0 bot(Sm) are at most countable, fi-
nite if the numbers of columns in infinitely many Sn are bounded. Clearly, no
map TSm

is defined on top(Σ) but it is easy to prove that for a complete sequence
Σ there is a unique transformation T : [0, 1) \ top(Σ) → [0, 1) which extends all
TSm

. Moreover, T is a measure-preserving map of ([0, 1), λ) (well defined on
[0, 1) \ top(Σ)) and invertible on [0, 1) \ bot(Σ). We illustrate this construction
with basic examples.

3.3. Kakutani-von Neumann transformation in base 2 revisited

Let us start with the interval [0, 1) viewed as a column of height 1, cut it into
intervals [0, 1/2), [1/2, 1) and form the column S2 := ([0, 1/2), [1/2, 1)). In the
next step, cut the column S2 into two columns of equal width

{([0, 1/4), [1/2, 3/4)), ([1/4, 1/2), [3/4, 1))}

and stack the second column over the first one to get the column

S3 = ([0, 1/4), [1/2, 3/4), [1/4, 1/2), [3/4, 1)).

Continuing in this way, we get the sequence of columns

Sn = ([v0, v0 + 2−n), [v1, v1 + 2−n), . . . , [v2n−1, 1))

, where (vn)n is the well known van der Corput sequence. In fact, cutting Sn

into two columns of equal width and stacking the second column above the first
one leads to Sn+1 as a consequence of the classical formula vj+2n = vj +1/2n+1

for 0 ≤ j < 2n. Notice that the width of Sn is 2−n and its height is 2n.
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The map T2 : [0, 1) → [0, 1) obtained by this construction is well defined on
[0, 1), invertible on (0, 1) and corresponds to the dyadic Kakutani-von Neumann
map (see Definition 69). The above construction can be generalised in two di-
rections. The first one consisting in cutting the current column Sn into b ≥ 2
columns of equal width to get the column Sn+1 by stacking these b columns
from right to left, leading to the construction of the so-called b-adic Kakutani-
von Neumann transformation Tb (see Figure 4 for b = 3, cf. [54, 45, 44]). The
second generalisation consists in permuting the columns in every step of the
stacking procedure. In fact this is the idea behind the modification of the van
der Corput sequence introduced in [18]. It was later put into the dynamical
context in [52].

0 12
3

8
9

26
27

0

1

1
3

1
9

1
27

Figure 4. Partial graph of the Kakutani-von Neumann map in base 3 built
by cutting-stackingExample 82. The orbit of 0 under Tb is the classical Halton sequence in di-

mension 1. Notice that for b = b1 · · · bs with the bj pairwise primes, then Zb

is isomorphic to Zb1 × · · · ×Zbs so that Halton sequences in dimension 1 are
also Halton sequences in dimension s by considering the product transformation
Tb1 × · · · × Tbs .

More generally, for a given sequence q := (q1, q2, q3, . . . ) of integers qi greater
than 1, by cutting Sn into qn+1 columns and then build Sn+1 by stacking these
columns from left to right above the first to left column, we define in this way
the standard transformation Tq. Another simple generalisation is to start from
an initial column of height a ≥ 1 that plays the role of the initial interval.
The second direction is to stack the qn+1 columns Cn,1, . . . , Cn,qn+1 according
to the multi-stacking Sn+1 : Cn,σn(1) ∗ · · · ∗ Cn,σn(qn+1) where Σ := (σn)n≥0 is
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a sequence of permutations of {1, . . . , qn+1}. Hence we get a uniquely ergodic
transformation that we denote by Tq,Σ. These latter constructions include all
the previous ones and define uniquely ergodic transformations which are all
metrically isomorphic to the translation x 7→ x + 1 on the corresponding pro-
jective adic group lim← Z/q1 . . . qnZ (see [37] for details on these groups). It
is of course not so evident that, for q fixed, all transformations Tq,Σ are met-
rically isomorphic. One way to see this without exhibiting any isomorphism
consists in proving that Tq,Σ has discrete spectrum, in other words that the
family of normalised eigenfunctions of Tq,Σ form an orthonormal basis of the
Hilbert space L2([0, 1], λ). This fact follows easily from the observation that,
for any integer n ≥ 0, Tq,Σ acts as a cyclic permutation on the set of intervals
{[0, 1/pn), [1/pn, 2/pn), . . . , [(pn − 1)/pn, 1)} with pn = q1 . . . qn.Example 83. The above construction with constant base b = (b, b, b . . . ) and
any sequence Σ = (σn)n≥0 of permutations of {0, 1, . . . , b− 1} is connected with
Faure sequences SΣ

b introduced in [16]. More precisely, one has

SΣ
b (n) =

∞∑

j=0

σj(ej(n))b
−j−1 = T n

b,Σ(S
Σ
b (0)),

where n =
∑∞

j=0 ej(n)b
j is the usual b-adic expansion of n.

3.4. Chacon transformation

Another celebrated example of a transformation built by cutting-stacking is
the Chacon transformation introduced in [5]. Here S1 is formed of two columns
of one interval, precisely, S2 := {([0, 2/3)), ([2/3, 1))}. The next step leads to
(see Figure 5):

S2 := {([0, 2/9), [2/9, 4/9), [2/3, 8/9), [4/9, 2/3)), ([8/9, 1))} .

At step n, one has two columns Sn = {Θn, Cn} where Θn is of height hn = 3n−1
2 ,

Figure 5. Chacon construction: first step

with bottom Bn = [0, 2
3n ) and support supp(Θn) = [0, 1− 1

3n ), and Cn = ([1 −
1
3n , 1)). Now Sn+1 is built by cutting Θn in three columns {Θ0

n,Θ
1
n,Θ

2
n} of width
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2
3n+1 , Cn is cut in two intervals C0

n := [1− 1
3n , 1−

1
3n+1 ) and C

1
n = [1− 1

3n+1 , 1).
These columns are stacked to produce Sn+1 = {Θn+1, Cn+1} with Θn+1 =
Θ0

n ∗Θ
1
n∗C

0
n ∗Θ

2
n and Cn+1 = C1

n. The Chacon transformation C : [0, 1) → [0, 1)
defined in this way is one-to-one from [0, 1) onto (0, 1), is continuous at all points
except those which are extremities of intervals involved in the cutting-stacking
construction but is left continuous at these points. Friedman [21] proved that
the dynamical system (C, [0, 1), λ) is ergodic, weakly mixing but not strongly
mixing with singular spectrum. In addition, all points x in [0, 1) are λ-generic
for C. Moreover, the set of discontinuities of C has two accumulation points,
namely 2/3 and 1 (identified to 0). Consequently, C is quasi-continuous and
in fact, as we shall exhibit in the next section more generally, C is uniformly
quasi-continuous.

3.5. Transformations of rank one

The Chacon transformation is a particular example of a rank-one transfor-
mation introduced by Ornstein [53]. We put apart the general definition to give
an equivalent one within in the framework of interval exchanges.Definition 84. A measure-preserving transformation is said to be of rank one
if it is metrically isomorphic to an interval exchange T : [0, 1) → [0, 1) built by
cutting-stacking in the following way: there exists b0 ∈ (0, 1), a sequence (qn)n≥0
of integers and a family of integers {an,i ; n ≥ 0 & 0 ≤ i < qn} such that qn ≥ 1,
an,i ≥ 0, and the sequence (hn)n defined by the recurrence

h0 = 1, hn+1 = qnhn +
∑

0≤i<qn

an,i,

verifies

lim
n

hn+1b0
q0 · · · qn

= 1.

Furthermore, T is constructed from a sequence of two columns Sn := {Θn, Cn}
where Θn is a column of height hn of bottom Bn, Cn is a tower of height 1
(the flat column) and the cutting-stacking transformation of Sn to Sn+1 runs as
follow:

(i)∀n ∈ N0 : Bn = [0, bn), Cn = [cn, 1) and hnbn = cn; (ii) Θn is

cut in qn sub-columns Θn,i of bottoms [ ibnqn ,
(i+1)bn

qn
), 0 ≤ i < qn and Cn is

cut in an + 1 intervals with an =
∑qn−1

i=0 an,i intervals of length bn
qn

namely

I(n, j) := [cn + jbn
qn
, cn + (j+1)bn

qn
) for 0 ≤ j < an.

(iii) Let

Cn,i = I(n, dn,i) ∗ I(n, dn,i + 1) ∗ · · · ∗ I(n, dn,i+1 − 1),
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0 ≤ i ≤ qn, where dn,i :=
∑

0≤k<i an,k (dn,0 = 0, dn,qn = an), eventually Cn,i is
empty if an,i = 0. Each column Cn,i is stacked above the column Θn,i to form
the columns Θ′n,i = Θn,i ∗ Cn,i;

(iv) All columns Θ′n,i are stacked to form the column Θn+1 = Θ′n,0 ∗ · · · ∗

Θ′n,qn−1 of height hn+1 and width bn+1 = bn
qn
. In addition cn+1 = cn + anbn

qn
.

The map T built by this construction is well-defined on [0, 1), one-to-one and is
referred as a standard rank-one transformation. In Figure 6 we have represented
the n-th cutting-stacking construction that built T step by step. The dynamical

0 1 2 j qn − 1

an,0





an,1

an,2

an,j





an,qn−1





hn

︸ ︷︷ ︸
Bn

︸ ︷︷ ︸
Bn+1

Figure 6. Rank one construction: the n-th step

system (T, I, λ) is ergodic. This result follows from the observation that the
induced maps on each column Θn is nothing but a Kakutani-von Neumann-like
transformation which is ergodic. According to Chacon [6], the spectral type of
a rank one transformation is simple and Choksi and Nadkarni [7] have shown
that, with the notations of Definition 84, the spectral type T is given by the
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Riesz product

∏

n≥0

1

qn

∣∣∣
qn−1∑

j=0

e2iπx(jhn+dn,j)
∣∣∣
2

λ(dx) .

3.5.1. Discrepancy of orbit sequences of rank-one transformations

Let T be a rank-one transformation defined with notations as above. In order
to estimate the discrepancy of any orbit sequence n 7→ T nx (x ∈ [0, 1)), we
introduce the scale H := (hn)n. It is well known that any nonnegative integer n
can be expanded in a sum n = e0(n)h0 + e1(n)h1 + · · ·+ ek(n)hk with ek 6= 0.
The uniqueness of the integers ej(n) is guaranteed if all inequalities

e0(n)h0 + · · ·+ ej(n)hj < hj+1 (0 ≤ j ≤ k(n))

hold. The integer k(n) is the height of n and the digits ej(n) are equal to 0 for j >
k. The sum of digits function sH in scale H is defined by sH(n) =

∑
j≥0 ej(n).

For numeration from scales we refer to the seminal paper of Fraenkel [19] and
for more dynamical investigations, we refer to [3, 4, 27].Theorem 85 (see [12]). Let (T, [0, 1), λ) be a rank one transformation defined
by Definition 84. Assume qn ≥ 2 for all indices n, the set of all an,i is bounded,
say by M , and an,qn−1 = 0 for n large enough. Then, for any continuous map
f : [0, 1) → C, one has

lim
N→∞

sup
0≤x<1

∣∣∣ 1
N

∑

0≤n<N

f(T n(x)) −

∫ 1

0

f(t)λ(dt)
∣∣∣ = 0

This theorem has two interesting consequences: first it shows that (T, [0, 1), λ)
is uniquely ergodic and consequently the sequence (T n(x))n∈N is well distributed
modulo 1 for each x ∈ [0, 1). Moreover, using the fact that the set of discontinuity
points of T has at most two accumulation points, one gets that T is uniformly
quasi-continuous. The discrepancy is estimated by the next result.Theorem 86 (see [12]). Under the assumption of Theorem 85,

NDN (x, Tx, . . . , TN−1x) ≤
∑

j≥0
ej(N)hj

(q0 · · · qj−1
b0hj

− 1
)
+ sH(N)M.

As a consequence,Corollary 87.
lim

N→∞
sup

0≤x<1
DN (x, Tx, . . . , TN−1x) = 0.
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Moreover, we haveCorollary 88. If the sequence (qn)n and the set of integers an,j are bounded
with an,qn−1 = 0 for n large enough, then

DN (x, Tx, . . . , TN−1x) = O

(
logN

N

)
.

This result is a consequence of the assumptions which imply that the sequence
(hn(1 − cn))n is bounded and sH(N) = O(logN).Remark 89. If we omit the assumption that the set of integers an,j is bounded
or that if an,qn−1 6= 0 for infinitely many n then one can find a sequence of points

xN such that such that limN→∞DN (xN , T xN , . . . , T
N−1xN ) = 1.

3.6. Substitution maps on the unit interval

Let A be a non empty set, also called alphabet, of s elements also called
letters. Usually we take A := {1, . . . , s}. A word w of length |w| := n on A is a
string w1 · · ·wn of n letters wj in A. Formally the word of length 0 is introduced,
called empty word and denoted by ∧. For any letter a, the number of occurrences
of a in w is denoted |w|a. Hence |w| =

∑
a∈A |w|a. The set A∗ of words on A,

equipped with the concatenation law (v1 · · · vm, w1 · · ·wn) 7→ v1 · · · vmw1 · · ·wn

is the free monoid generated by A, the empty word being the neutral element.Definition 90. A monoid endomorphism σ : A∗ → A∗ is called a substitution
on A (or simply a substitution if the reference to alphabet A is unambiguous) if
|σ(a)| ≥ 1 for all letters a in A. If σ(a) = ∧ for at least one letter, we say that
σ is a pseudo-substitution.

In case A = {1, . . . , s}, the following matrix M(σ) associated with the sub-
stitution σ

M(σ) :=



|σ(1)|1 . . . |σ(s)|1

...
...

|σ(1)|s . . . |σ(s)|s




is called companion matrix of σ. It will play a fundamental role. Let Ps be the
cone of positive column vectors ℓ in Rs, that is to say all entries ℓi of ℓ are
positive. For any couple (ℓ, ℓ′) of vectors in Ps, we say that ℓ′ derives from ℓ by

σ, and we write ℓ
σ
→ ℓ′, if the relation

ℓ =M(σ)ℓ′

holds.
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3.6.1. A basic construction

Now, we apply the cutting-stacking construction to a set of column
S := {C1, . . . , Cs} according to σ to build a set of columns S′ := {C′1, . . . , C

′
s}.

To make this construction possible, let ℓ be the column vector in Ps with en-

tries ℓi = ℓ(Ci) and assume that there exists ℓ′ ∈ Ps such that ℓ
σ
→ ℓ′. Now

cut each column Cj in order to create a set of |σ|j :=
∑

1≤k≤s |σ(k)|j (sum of

entries of the j-th line of M(σ)) sub-columns Sj := {Cj,1, . . . , Cj,|σ|j} such that
|σ(k)|j of them have width ℓ′k. This cutting is of course not unique but will be
selected later. Then, for each k, build the column C′k by stacking

∑
1≤j≤s |σ(k)|j

sub-columns such that:

(i) |σ(k)|j sub-columns come from the sub-columns of width ℓ′k in Sj ;

(ii) from bottom to the top the column C′k is built according to the word
σ(k) := σk,1 · · ·σk,|σ(k)|:

C′k = T (1)
σk,1

∗ T (2)
σk,2

∗ · · · ∗ T (|σ(k)|)
σk,|σ(k)|

,

where T
(j)
σk,j is a column from Sσk,j

not yet used. The word σ(k) is called

the label of C′k. In the standard construction, we select the successive T
(j)
σk,j

in C′k from left to right.

This construction is not unique but at least a standard one exists due to
ℓ =M(σ)ℓ′. When we use a standard construction we shall say that the couple

(S′, ℓ′) derives from (S, ℓ) by taking into account the derivation ℓ
σ
→ ℓ′ and write

(S, ℓ)
σ
→(S′, ℓ′).Example 91. Figure 7 illustrates the first two steps of this construction (the

standard one) with the substitution

σ(1) = 122 σ(2) = 13 σ(3) = 4 σ(4) = 3. (19)

In that case, the companion matrix is

M(σ) =




1 1 0 0
2 0 0 0
0 1 0 1
0 0 1 0


 . (20)

Step 0 consist in cutting [0, 1) into the 4 intervals Ik := [k−14 , k4 ) producing

the initial set of columns S(0) (but we can start as well with any set S(0)

of four columns of width 1/4). Now, cut and stack twice according to σ in

a standard manner to get the sets of columns S(1) := {C
(1)
1 , . . . , C

(1)
4 } and
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S(2) := {C
(2)
1 , . . . , C

(2)
4 } with successive vectors of widths

ℓ(0) =




1/4
1/4
1/4
1/4


 , ℓ(1) =




1/8
1/8
1/4
1/8


 , ℓ(2) =




1/16
1/16
1/8
3/16


 , (21)

chosen such that ℓ(0) = M(σ)ℓ(1) and ℓ(1) = M(σ)ℓ(2). Notice that there are
many ways to stack intervals at each steps but the standard choice is tacitly
assumed in Figure 7. Now if we replace each interval J that occurs in the con-

struction of S(1) and S(2) by the letter j if J ⊂ Ij then the columns C
(1)
i and

C
(2)
i (1 ≤ i ≤ 4) are replaced by words written vertically such that from bottom

to top we can read respectively the word σ(i) for C
(1)
i and the word σ2(i) for

C
(2)
i (see Figure 7).

Step 0

S(0) C
(0)
1 C

(0)
2 C

(0)
3 C

(0)
4

Step 1

S(1) C
(1)
1

1

2

2

σ(1)





C
(1)
2

1

3
σ(2)





C
(1)
3

σ(3) = 4

C
(1)
4

σ(4) = 3

Step 2

S(2) C
(2)
1

1

2

2

1

3

1

3

σ2(1)





C
(2)
2

1

2

2

4

σ2(2)





C
(2)
3

σ2(3) = 3

C
(2)
4

σ2(4) = 4

Figure 7. The two initial steps with the adapted substitution σ defined

in (19) and the vectors of widths given in (21). Columns C
(k)
i are built

with intervals labelled from bottom to top according to σk(i).

3.6.2. Adapted substitutions

In order to identify a substitution σ for which the above derivation process can be
iterated to produce a suitable transformation Tσ, we introduce some definitions
attached to any substitution on A. For any part B of A we associate the pseudo-
substitution τB defined on A by τB(x) = x if x ∈ B and τB(x) = ∧ otherwise.
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The map τB is obviously extended to a morphism of monoids from A∗ to B∗.
Now we define the pseudo-substitution σB : B → B∗ induced by σ on B by
σB(b) = τB(σ(b)). For any substitution σ : A → A∗, the following definition is
classical:Definition 92. A letter a is said to be expansive for σ if the increasing sequence
n 7→ |σn(a)| is unbounded.

Now we associate to σ the sets:

E(σ) := {a ∈ A ; a is expansive},

L(σ) := {a ∈ A ; ∀n, |σn(a)| = 1},
B(σ) := A \ (E(σ) ∪ L(σ)).

Notice that if E := E(σ) is non-empty, the pseudo-substitution σE induced by
σ on E is a substitution but E(σE) could be empty (for example, the substitution
σ given by σ(a) = ab and σ(b) = b verifies E(σ) = {a}, L(σ) = {b} and σE has
no expansive letter). The substitution σ is said to be expansive if E(σ) = A.

According to Dekking [10] the substitution σ is called semi-primitive if E(σ) 6=
∅ and the substitution induced by σ on E(σ) is primitive, that is to say, there
exists an integer k ≥ 1 such that |σk(a)|b ≥ 1 for all couples (a, b) of expansive
letters. We shall use a somewhat weaker form of this definition, namely:Definition 93. A substitution σ is called adapted if E(σ) 6= ∅ and for all
expansive letters a and all letters x from the alphabet, there exists an integer
k ≥ 1 such that |σk(a)|x ≥ 1.

Notice that from the definition, if σ is adapted then σE(σ) is irreducible. The
next definition is related to the period of irreducible matrices:Definition 94. Let σ be an adapted substitution. The period h of σ is the
period of the companion matrix of σE(σ).

Therefore, h is given from any expansive letter a by

h := gcd{k ≥ 1 ; |σk
E(a)|a ≥ 1} .

Primitive substitutions are adapted and characterised by all letters expansive
and h = 1. Semi-primitive substitutions are not adapted if there is an expansive
letter a and a letter b such that |σk(a)|b = 0 for all integers k ≥ 1.Examples 95.

95.1 If A = {1}, the substitution 1 → 1b for any integer b ≥ 1 is primitive
and is expansive if b ≥ 2.

95.2 The Thue-Morse substitution µ on {0, 1} given by

µ(0) := 01 µ(1) := 10
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is primitive and expansive (and so expansive since the alphabet has more than
one letter). In particular µ is adapted.

95.3 The Rudin-Shapiro substitution ρ on {a, b, c, d} defined by

ρ(a) := ab ρ(b) := ac ρ(c) := db ρ(d) := dc

is also primitive.

95.4 The Fibonacci substitution

f1(0) = 01 f1(1) = 0

is primitive. More generally, all substitutions of the form

fa(0) = 01a fa(1) = 01a−1

are primitive.

95.5 The so-called period-doubling substitution

σ(0) = 11 σ(1) = 10

is primitive.

95.6 The Chacon substitution c(0) := 0010 c(1) := 1 is not primitive, but
semi-primitive and adapted with E(c) = {0} and L(c) = {1}.

95.7 The substitution 0 → 002, 1 → 2, 2 → 2 is semi-primitive but not
adapted.

95.8 The substitution 0 → 11, 1 → 00 is adapted but not semi-primitive. Its
period is 2.

95.9 All letters of the substitution 0 → 00, 1 → 01 are expansive but the
substitution is neither adapted nor semi-primitive.

The following theorem generalises the classical Perron-Frobenius relative to
primitive matrices with non-negative entries:Theorem 96 (Frobenius theorem revisited). Let σ be an adapted substitution
with companion matrix M :=M(σ). Then

(i) M has an eigenvalue θ > 1 and θ ≥ |λ| for all eigenvalues λ of M ,

(ii) θ has an eigenvector with positive entries,

(iii) θ is simple.

The eigenvalue θ of the above theorem is called the dominant eigenvalue of
M(σ) or of σ and the unique eigenvector associated with θ such that the sum
of its entries is equal to 1 is called the unitary dominant eigenvector of M(σ),
or of σ. If σ has p expansive letters we may assume that they form the set
E = {1, . . . , p} so that the matrix M(σ) takes the form

M =

(
M(σE) 0

A B

)
.
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The dominant eigenvalue θ of M is also the dominant eigenvalue of M(σE) and
the first p entries of the dominant eigenvector ℓ of M , after normalisation is the
dominant eigenvector of M(σE).

3.6.3. The cutting-stacking process

We are ready to construct an interval exchange Tσ : [0, 1) → [0, 1) by a cutting-
stacking process associated to an adapted substitution σ with dominating eigen-
value θ. The construction is generally not unique but all of them lead to met-
rically conjugate transformations. We use the above notation and denote by
ℓ the unitary dominant eigenvector of M(σ). We start by cutting [0, 1) in s
intervals Ir = [

∑
1≤j<r ℓj ,

∑
1≤j≤r ℓj ) (1 ≤ r ≤ s) to form the set of column

S0 := {I1, . . . , Is} and then apply the basic standard construction of Section 3.6.1

to build a set of columns S1 := {C
(1)
1 , . . . , C

(1)
s } such that (S0, ℓ)

σ
→(S1, θ

−1ℓ). We

iterate this derivation to built successive sets of columns Sn := {C
(n)
1 , . . . , C

(n)
s }

given by successive derivations (Sn, θ
−nℓ)

σ
→(Sn+1, θ

−n−1ℓ). The resulting se-
quence Σ := (Sn)n≥0 is complete and defines a map Tσ : [0, 1) \ top(Σ) → [0, 1).Remark 97. In general, even if we choose each derivation

(Sn, θ
−nℓ)

σ
→(Sn+1, θ

−n−1ℓ)

standard it may happen that top(Σ) is not empty but in any case if at each step of
the derivation we form columns of label σn+1(k) by selecting first all expansive
letters k and end with a non expansive letter, then T will be well-defined on
each interval Ij with non expansive letter j. Concerning the construction of
columns issuing from expansive letters, we can select each derivative and order
which lead to top(Σ) = ∅. This is clear in the case one has only one expansive
letter and there are just one possible standard construction. In the other cases,
we use the following fact true for every expansive letter k: there are infinitely

many integers n such that the derivation (Sn, θ
−nℓ)

σ
→(Sn+1, θ

−n−1ℓ) puts at

least one sub-column, say C
(n)
k,1 , below a sub-column coming form the other sub-

columns produced by the cutting of Sn. Since we are free to manage the cutting

of C
(n)
k we may assume that C

(n)
k,1 is the left most sub-interval of top(C

(n)
k ).

This construction repeated infinitely many times for each expansive letter k
determines a sequence Σ := (Sn)n≥0 such that the resulting map Tσ is defined
on [0, 1) (hence top(Σ) = ∅).

From the above remark, for any adapted substitution σ there exists a map Tσ
which is defined on [0, 1). The following theorems classify the ergodic structure
of Tσ.
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PETER J. GRABNER — PETER HELLEKALEK — PIERRE LIARDETTheorem 98 (see [12]). Let σ be an adapted substitution, let E be the set
of expansive letters, and let Tσ be a map built by the cutting-stacking process
associated to σ. Let h be the period of the substitution σE . Then Tσ has h ergodic
components and is uniquely ergodic on each such component.

The substitution τ on {1, 2} given by 1 → 112 and 2 → 2 generates a trans-
formation Tτ which also corresponds to the construction of a rank one trans-
formation viewed before. Then Tτ is uniquely ergodic but notice that, with the
notations of the above construction, for any integer N ≥ 1 there exists xN in
the interval I2 (= [0, 1/2)) such that T n

τ (xN ) belongs to I2 for all integers n
with 0 ≤ n < N . Hence Tσ is not uniformly quasi-continuous. Nevertheless, Tτ
is quasi-continuous.

3.7. Applications

We return to the previous examples to illustrate the cutting-stacking process.

3.7.1. Kakutani-von Neumann transformation once again

The standard construction of Tσ in case of the substitution 0 → 0b with b ≥ 2
is unique and corresponds to the construction of the Kakutani-von Neumann
transformation described in Section 3.3. The variation presented in Example 83
according to a sequence of permutations σn of {0, . . . , b − 1} is obtained by a
cutting-stacking process where the n-th derivation is determined by the permu-
tation σn.

3.7.2. Thue-Morse transformation Tµ.

Recall that µ(0) = 01 and µ(1) = 10. The current n-th derivation in the cutting-
stacking process used to define Tµ is given in Figure 8. The map Tµ is defined
on [0, 1), is uniquely ergodic and uniformly quasi-continuous. The interest of our
choice of derivation is to get rather easily that Tµ is metrically conjugate by the
map F : [0, 1) → [0, 1)× {+1,−1} with

F (x) = (2x− ⌊2x⌋, (−1)⌊2x⌋),

to the skew product Tϕ : [0, 1)× {+1,−1} defined by

Tϕ(t, ε) = (Tx, εϕ(t)),

where T is the Kakutani-von Newmann transformation in base two and ϕ :
[0, 1) → {+1,−1} is the cocycle defined by

ϕ(t) =

∞∑

k=1

(−1)k1Ik(t),
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Figure 8. The current derivative in the cutting-stacking process associated
to the Thue-Morse substitution µ

with Ik := [1− 1
2k−1 , 1−

1
2k
) (see [12]). The points T n

µ (0) are related to the van
der Corput sequence vn by the formula

T n
µ (0) =

vn
2

+
1− (−1)s2(n)

4
,

where s2(n) denote the sum of digits of n in base 2. It is easy to see that there
is an absolute constant c such that for all x ∈ [0, 1),

DN ((T n
µ (x))n) ≤ c

logN

N
.

3.7.3. The Rudin-Shapiro transformation Tρ

We consider the substitution ρ of the Example 95.3. and use the derivation
depicted in Figure 9 to define Tρ by cutting-stacking. Notice that the selected
derivation is regular and Tρ is defined on [0, 1). The map is also uniformly quasi-
continuous.

Figure 9. The current derivative in the cutting-stacking process associated
to the Rudin-Shapiro substitution ρ
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Let R := R0R1R2 . . . be the fixed infinite word under the substitution ρ with
R0 = a, that is to say R = ρ(R0)ρ(R1)ρ(R2) . . . . The binary Rudin-Shapiro
sequence r := (rn)n≥0 is derived from R by substituting 0 to a and b, and 1 to

c and d. Hence r = 00010010 . . . . It is well known that rn = 1−(−1)s11 (n)
2 where

s11(n) count the number of occurrence of the block-digit 11 in the usual binary
expansion of n. According to the construction of Tρ one has also

rn = 1[1/4,1)(T
n
ρ (0)) .

3.7.4. The Fibonacci transformation

With the Fibonacci substitution f = f1 (see example 95.4) the companion matrix

is

(
1 1
1 0

)
with dominant eigenvalue the golden ratio θ = 1+

√
5

2 and normalised

dominant eigenvector the transpose of the line [α, 1 − α] with α = θ−1 = θ − 1.
Consequently, one has the relation 1 = Fn+1α

n+1 + Fnα
n+2 where (Fn)n≥0 is

the usual Fibonacci sequence F0 = 1, F1 = 1, Fn+2 = Fn+1 + Fn. We also have
by induction αn+1 = (−1)n(Fnα − Fn−1) = ‖Fnα‖. Since we want to build a
Fibonacci transformation Tf that is related to the translation x 7→ x+α modulo

1 we use the cutting-stacking derivations (Sn, ℓ
(n))

f
→(Sn+1, ℓ

(n+1)) where the
first two steps are

S(0) = {[1− α, 1), [0, 1− α)} , ℓ(0) =

(
α
α2

)

S(1) =

{
[0, 1− α)
[1− α, 2− 2α) , [2− 2α, 1)

}
, ℓ(1) =

(
α2

α3

)
.

S(2) =





[2 − 2α, 1)
[2− 3α, 1− α) [0, 2− 3α)
[3− 4α, 2− 2α) , [1− α, 3 − 4α)



 , ℓ(1) =

(
α3

α4

)
.

The next derivation depends on the parity of n. Sn is constituted by two

columns C
(n)
0 and C

(n)
1 of height respectively Fn+1 and Fn with ℓ(C

(n)
0 ) = αn+1,

ℓ(C
(n)
1 ) = αn+2. Moreover, defining 〈x〉 := x− ⌊x⌋ one as

top(C
(2m)
0 ) = [〈−F2mα〉, 1), top(C

(2m)
1 ) = [0, 〈−F2m+1α〉)

and

top(C
(2m+1)
0 ) = [0, 〈−F2m+1α〉), top(C

(2m+1)
1 ) = [〈−F2m+2α〉, 1).

Figure 10 depicts S(n) for n = 2m and n = 2m+ 1. In the figure only the tops
and bottoms of the columns are depicted.
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α− 〈αF2m〉 α− 〈αF2m+2〉

0 1− 〈αF2m+1〉

α− 〈αF2m+1〉

1− 〈αF2m〉 1

F2m+1

F2m

S(2m)





S(2m+1)





α− 〈αF2m+2〉 α− 〈αF2m+1〉α− 〈αF2m+3〉

1− 〈αF2m〉 11− 〈αF2m+2〉

1− 〈αF2m+1〉0

Figure 10. The derivation S2m
f
→S2m+1: the small tower is put left above

the big one. The derivation S2m+1
f
→S2m+2 is similar: the small tower is

put right above the big one

Notice that in this construction Tf is not defined at the point 0. If we
translate the construction of Sn by Fn+2 we get two Rokhlin towers with bot-
toms [1 − ‖F2m+1α‖, 1) and [0, ‖F2mα‖) if n = 2m and [1 − ‖F2m+1α‖, 1) and
[0, ‖F2m+2α‖) if n = 2m + 1. We let the interested reader to extend this con-
struction with the substitutions fa given in Example 95.4 and then the general
case of any irrational translation modulo one. Also the classical theorem of three
lengths clearly is obtained through such a construction.Aknowledgment. The authors are grateful to Gerhard Larcher for sharing
his insight into the different new constructions of low-discrepancy sequences,
which were the motivation for this paper and the basis for the examples presented
in the text. The second author would like to express his gratitude to Pierre
Liardet for his hospitality during a stay in September 2010.
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