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DISTRIBUTION FUNCTIONS OF
THE SEQUENCE ¢(n)/n, n € (k,k + N]

V. BALAZ — P. LIARDET — O. STRAUCH

ABSTRACT. It is well known that the sequence ¢(n)/n, n = 1,2,... has a singular
asymptotic distribution function. P. Erdds in 1946 found a sufficient condition on the
sequence of intervals (k, k 4+ NJ, such that ¢(n)/n, n € (k, k+ NJ, has the same singular
function. In this note we prove a sufficient and necessary condition. For simplification
of necessary condition we express the sum Y-, _, <, n(w(n) —loglog N)?, where w(n)
is the number of different primes divided n.

1. INTRODUCTION

Many papers have been devoted to the study of the distribution of the sequence

M, n=12...,
n

where ¢ denotes the Euler phi function. I. J. Schoenberg [S1, S2] established that
this sequence has a continuous and strictly increasing asymptotic distribution function
(basic properties of distribution functions can be found in [KN, p. 53], [DT, p. 138—
157] and [SP, p. 1-7]) and P. Erdds [E1] showed that this function is singular (i.e.
has vanishing derivative almost everywhere on [0, 1], see [SP, p. 2-191]). Here the
asymptotic distribution function gg(z) of the sequence ¢(n)/n, n =1,2,..., is defined
as

N
1 p(n)
go(z) = lim N 321 Clo,2) (T) , for every z € [0,1],

where ¢y ;)(t) is the characteristic function of a subinterval [0,z) of [0,1]. For an
interval (k,k + N] and z € [0, 1] define the step distribution function

1 p(n)
Fl () = I Z [o,z) (T) :
k<n<k+N
P. Erd6s [E2] proved that the limit

. logloglogk
lim ————— =

N—oo N 0
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implies that

Fiperny(x) = go(z), (z €[0,1]) (1)
as N — oo. In opposite case he found N and k such that limy_, % = % and
Fii k+n1(2) 7 go(z). In this note we give necessary and suffice condition for (1).

2. NECESSARY AND SUFFICIENT CONDITION

Theorem 1. For any two sequences N and k of positive integers we have (1) if and
only if for every s =1,2,...,

AU SR o R ®

k<n<k+N N<dn

oo-TI((-1) )

pld

where

for square-free d, ®(d) = 0 otherwise, and p are primes.

Proof. Applying Weyl’s limit relation (see [SP, p. 1-12, Th. 1.8.1.1]) we see that (1)
holds if and only if, for every s =1,2,...,

1 em)\* [,
ngnooﬁ Z (T) —/0 z*dgo(x), (4)
k<n<k+N

where [P, p. 363]

[t = 3 () (- et (- 1)),

S
1
We express « D cp<iin (T) by means of

o ()

d|n

We have

B Ero-seo (5] [7)
k+N

v Ea((-2)).

d=1 d=1
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where [x] is integer part and {z} fractional part of z. Since

B e

the boundary k£ + N of summations can be reduced to N and following equality holds

R 5 e ()2

k<n<k+N
1
+ > o(d). (6)
N<d<k+N

{5}+421

We begin by proving

> ij@ (7)

N<d<k+N J=1 d|k+j
{&}+5>1 d>N
for every k,N = 0,1,2,.... Proof: Expressing k = mgyd + r4, where 0 < ry < d,

mg > 0 are integers, we see that

d d

where 0 < iy < N. This gives k = (mgq+ 1)d — N + ig4, thus dimg+ 1) =k + N — iq4
and, for d > N, we have {%} + % > 1 if and only if

d<[§]+1)=k+]’ (8)

for some 57 = 1,2,...,N. In the following we see that for every d|k + j we have
that (8) <= j < d. Really, put d = k+ j — x and express k + j = p{"*...po",
k+j—x= pf o pgn, where p; are primes. Now d satisfies (8) if and only if

k N
{—}+—21<:>rd+N2d<:>rd:d—N+id

k x
k | — R EEEE— 1) =k | <—> =
b+ x)({k+j—r1+ ) i [’f+j—fﬁ] ktj—w
= T ! g =
pl ...Pn

<:>j§p?1...pg"

Since j < N and d > N, we have j < d and we conclude that (8) hods and applying
it in (6) we get the following basic equality

Loy (H) o L (B

k<n<k+N d=1 d=1

&.

®(d). 9)

n

+
2=

k<n<k+N N<d
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Because (see A. G. Postnikov [P, p. 361-363])

w(d)
S
P(d)| <

()] <

, where w(d) is the number of different primes which divide d,

D_ﬂz

®(d)] = O((1 + log N)*),

. |®(d)] _ 3°(1+log N)*

PRt

B (i (1Y

; d _1;[(1 p+p<1 p))’ o)

(9) shows that (1) holds if and only if

1

~ YD) ®d)—0

kE<n<k+N N<d|n

as N — oo and the proof of Theorem 1 is complete. [J

Notes 1. Using the basic equation (9) and

1 1 1 o(n)\’
= > Z@(dwﬁ > > B(d) = > (—n )
k<n<k+N N<d|n k<n<k+N d|n,d<N k<n<k+N
we obtain
1 N, 3(d) (1+log N)®
~ O(d) =) — +0 < ~ )
k<n<k+N d|n,d<N d=1

and thus, as N — oo, the left hand side converges to Hp (1 -1 % ( — l) > uni-
formly with respect to k.

3. ERDOS’ APPROACH

For any positive integer n and real ¢ > 2, denote

nt)=[]p. w'(t)=]]p. and P(t) =[] ». (11)
pln pln p<t

where p are primes and the empty product is 1. P. Erdés in [E2] proved (without an
explicit error term and for s = 1) the following lemma:
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Lemma 1. For every integer k, N and t = N we have

FRL ) AR o)

k<n<k+N n=1

fors=1,2,...
Proof. We have

2 ) - 2, T e 2[5 [6])

k<n<k+N k<n<Ek+N d|n(t) d|P(t)
B (d) k k+ N
PV S LCICEIRE S
d|P(t) d|P(t)

Bearing in mind

1_1+1(1_1) )+O(3 (1+10gN))
P D P N

I Bt

we obtain (12). O

Next in his method Erdés used implicitly the following theorem:

Theorem 2. For every two sequences k and N and t = N we have

L
N

1 p(n'(1))

v | 1 Ferm (@) = go(2) (14)

k<n<k+N
for all z € [0, 1].

Proof. Let x,, n = 1,2,..., be a sequence in the interval (0,1) and define the step
— #{n=N }f,”e[o’x)}. By Riemann-Stiltjes integration for

distribution function Fy(z)
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every continuous function f(z) on [0, 1] we have < Zn L flxn) fo z)dFy(z). By
Helly theorem, if Fiy(z) — g(z), then fo z)dFy(x fo

Now, assume that - anl z, — 1. If Fy(z) — g( ), then fo :cdg ) = 1, which is
equivalent to g(x) = ¢o(x) (it has step 1 in = 1). But F(x) — ¢o(x) is equivalent to
statistical convergence z,, — 1, i.e. for every ¢ > 0 and A. = {n < N;x,, > 1 —¢c} we
have #TAS — 0. From statistical convergence z,, — 1 follows statistical convergence
f(xn) — f(1) for every continuous f(x). Furthermore,

N 1 1
%;f(xn)Z /0 F(x)dFy(x) — /0 f(z)deo(z) = f(1).

Thus the limit Z _1 Tn — 1 is equivalent any of the following limits
(i) % Zn:1 log(xn) — 0,

N 1/N
() (o o) =1,

(i) L 2N, — 1.
The limits (i)—(iii) also hold assuming restriction n € (k, k + N].

Put z,, = ‘pgg;(g)). Then

B R ()

k<n<k+N k<n<k+N

and for A, {n € (k,k + NJ; (M&g”)s <1 —5} we have #]‘ée — 0 for every € > 0.

Replace in 9051") ;"(g)) “P(Tf(g)) the @(Tf(g)) by 1 — ¢ we see

v 2,00 2w, 2, ) Jemaaate o

k<n<k+N k<n<k+N

and the other hand + D k<n<kiN (@) <4 S hen<hinN (cpﬁ;z%))) and Lemma 1

gives
1 s 1
i 1 n s
(1—5)/ z*dgo(x) < lim > (#) S/ z°dgo(x).
0 Y h<n<k+N 0

Thus we have

% > SOES;S)) — 1= Fgk1n(z) — go(2) (16)
k<n<k+N

and then we use (ii). O
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Note 2. In (14) we have only implication, since the right-hand side of (15) has the
following precise form

b,z ) oo (3 z ()

k<n<k+N k<n<k+N,n€A.

and it can be (% D k<n<hiNmeA. (LPE:ES))> ) — 0 and % — > 0.

Finally Erdés prove
Theorem 3. For every sequence of intervals (k,k + N| we have

log loglog k

i — 0= Fi rp+n)(T) — go(z). (17)

Proof. For t = N, the n/(t), k < n < k+ N are pairwise relatively prime, because
the interval (k, k + N] cannot contain two different positive integers divisible by the
same prime p > N. Denote M(t) = [, ,<p ny 7' (t) and x = w(M(t)). Using the

expression
1 e 7 1
1——-) = 1 1
() =i 0o () ®

p<z
see [MSC, p. 259, VII. 29]) we have
Mt 1 log N
A T (1-1) 5 k2
t P log
N<p<lz

1/N 1/N
and (a) (ﬁ%ig) — 1 implies (b) <‘F’(MM—(§§))> — 1. Since

e < [ p<k+1)(k+2)...(k+N) < (k+N)N
N<p<lz

1/N
we have coz < Nlog(k + N) and (c) (W) — 1 implies (a) and (b)

and finally F r4+n)(z) — go(z). But

log N log loglog k
— (1 0= ——FF—"——0
N ( % Jog(N log(k + N))) - N

(¢) =

OJ

Note 5. Assume that P(t)|k, where P(t) = [[,.,pand ¢t = N. Analogically as in (11),
for a divisor d|n denote d(t) = [],4,<; p and d'(t) = [ 4>, p- Since d(t)|n = k+j,
d(t)|k then d(t) < N and if we assume d > N, then must be d’(t) > 1. Hence

’ )\ (e )\
ST e = > o) > e@m) = (o LAUECH N
N<d|n d(t)|n(t) d;l(/t()t|)n/(1t) ( n(t) > <( n(t) ) >
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which gives

PLUENCT

N<d|n

Applying Theorem 1 we see that limy_,oc + > hen<hinN (%:}’(%))) = 1 implies (1).

Since @%g)) < “DSZES;)) also “D(MM—(?))) — 1 implies (1). These results directly follows
from Erdés Theorem 2 and moreover for general k.

Using Erd6s’ Lemma 1 we prove the following quantitative form of Theorem 1.

Theorem 4. For any two sequences N and k of positive integers and for every s =
1,2,..., we have

Ly Yoew-k y (M) Ly (s

k<n<k+N N<d|n k<n<k+N

L0 (33(1 —I—]ifog]\/)s) (19)

Proof. Replace n by n(t) in (9). Then

%k<n§2k+N d%t) = %kmﬁzﬂf\’ (¢§L7l(ffl;))>s :
-3 20 L5 e ({5} - {454))
+% Z Z O (d).

kE<n<k+N N<d|n(t)

Erdos’ Lemma 1 implies that for every k, N, N — oo

% > > ®(d)—o. (20)

k<n<k+N N<d|n(t)

Since

dYood= > ed+ Y. ()

N<d|n N<d|n(t) d|n(t)n’(t)
(dn(t))>1

and the second sum is equal to (ﬁ?ﬁ) <<“05:f/(g))) — 1) we see (19). O

4. EXAMPLES

For the optimality of logloglog k in Theorem 3, Erdds gave the following example.



DISTRIBUTION FUNCTIONS OF THE SEQUENCE ¢(n)/n, n € (k,k + N]| 9

Example 1. Divide P(t) = Hpgtp into N numbers Ay, Ao, ..., Ay such that
(i) 4;,i=1,2,..., are relatively prime,
(i) 4 < L fori=1,2,...,

A;
(iii) if p is the maximal prime in A;, then for A} = A;/p we have (p%i) >

N

The part (iii) implies %’éi) > 1 and thus

(1) (- 1) -2 s ()"

From it, applying (18), we find N < ¢; loglogt. By Chinese theorem there exists ko <
Aj ... AN such that kg = —i (mod A); fori =1,2,...,N. Put k = ko + Ay ... An,
then we have

e < P(t)=A;... Ay <k
which implies t < c3log k and loglogt < c4logloglog k. Thus

logloglogk:> 1 loglogt

N cicq loglogt

Furthermore for these k and N we have Fy, ;4 n)(z) / go() since by (ii)

N
1 en) 1 1 o(n) 6 log N
— o 2 o NP 0 ,
¥ 2 h i<y a —=toly
k<n<k+N n—1

In the following Example 2 we find integer sequences k, N, for which (1) holds and
logloglogk __

limpy oo B85 = o0.
Example 2. Let x = x(N) be increases arbitrary quickly as N — oo, e.g. z(N) =

N
e® . The left boundary point kK = k(N) of the interval (k,k + N] we put as k =
Hpg;c p, where p are primes. Let M* =[] p having the same number of

z<p<lz+y(x)
prime divisors as M (t) (t = N). Clearly, to prove ‘p(MM—(g)) — 1 it suffices to show
pM™) _ 1
= 1T (1—5 —1 (21)

z<p<zty(x)
as ¢ — 00. Using the expression (18) we have that (21) holds if

log (1 + @)
log =

—0 (22)

as x — oo. The inequality

M <M= ][] »@t)<E+NN <@V
k<n<k+N
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leads to Zx<p§m+y(l,) logp < 2N Zpéfr log p and thus

> logp< (2N +1)) logp. (23)

p<z+y(zx) p<z

Applying the well known inequality (see [L, p. 83])

lo lo
X

T—00 x T—00

< 2log?2

into (23), then we have, for x > z¢(¢e), that y(x) satisfies
(log2 —¢e)(z +y(z)) < (2N +1)(2log2 + ¢)x

which implies @ < ¢N, where ¢ is a constant. Thus (21) and consequently (1) holds,
N
if z =2(N) > eN. Since k(N) = [<evyp = ec1®WN) for 2(N) = e we have

. logloglogk

what we asked for.

4. NORMAL ORDER OF w(n), n € (k,k + N]

To simplify (2) we study the normal ordering of w(n)-the umber of distinct prime
divisors of n- in the interval (k,k + N| (compare with V.A. Plaksin, see [MSC, p.
156]).

Theorem 4. For every positive integers k and N we have

Z (w(n) —loglog N)? = O(N loglog N) + Z Z 1.

k<n<k+N k<n<k+N N<p-?q£|k+n
P#q

A proof follows from the following lemmas.

Lemma 2. For every positive integers k and N we have

Z w(n):NloglogN+B.N+O<bgiN)+ Z Zl,

k<n<k+N E<n<k+N N<p|n

where the constant B = limy_, o ((ZpgN %) — log log N).
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Lemma 3. For every positive integers k and N we have

N
Z (w(n))? = N(loglog N)? + O(N loglog N) + Z Z 1

k<n<k+N k<n<k+N N<:D q|n

+ > >

k<n<k+N N<p|n
Proof of Lemma 1.

5o 5 B 5.5 5005

k<n<k+N p<k+N p§k—|—N p<k+N

The final sum we divide into two parts; > _n and > n_, 4. n- The first sum is
O(m(N)) and for the second we use (5) and the summation method in (7) which gives

SN O RCU P

N<p<k+N N<p<k+N k<n<k+N N<p|n
Thus N
Yoowm) = =+0=N)+ D> > L (24)
k<n<k+N p<N p k<n<k+N N<p|n

Bearing in mind

1
> —zloglogN+B+O(

p<N
the proof is finished. [

logN>

Notes 2. Similarly to Notes 1 we have

Zzl—z—+0(( )

j=1 plk+j p<N p
p<N

uniformly on k.

Proof of Lemma 2.

Z w?(n) = Z Z 1

k<n<k+N all pairs of primes (p,q) k<n<k+N
- p,q<k+N p|n and g|n

-5 A B

Y B\ (kN
= 2 p-q+p,q;w {p-q} { P-q }

p.q<k+N
P#q P#4q

IR R N

p<k+N p<k+N
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Since (using (5) and (7))

k k+ N
Z {—} { i } O(N loglog N),
paen (P4 b.q
p;Zq
k k+ N
RO R
N<p‘¢;§k+N b-q b-q N<pt;<k+N pq Jj= 1N<pq\k+a
k k+ N
U o (es)
o P og
k k+ N
2 {5} { p }: __+Z 2 L

N<p<k+N J=1 N<p|k+j

and moreover

1
g — = (loglog N)? + O(loglog N),
p.q<N r-q
P#4q

thus the proof of Lemma 2 is finished. [

Finally, the proof of Theorem 4 follows directly from the expression

Z (w(n) —loglog N)? = Z w?(n) — 2loglog N Z w(n)

k<n<k+N k<n<k+N k<n<k+N
+ N(loglog N)?,

from the Lemma 2 and 3 and from

> > 1-2loglogN Y Y 1<o.

k<n<k+N N<p|n k<n<k+N N<p|n

For every integers k, N, the sum + D k<n<ktnN 2oN<dn (d) can be approximate
by using the following steps.
a) Let w(n) < c.loglog N for fixed ¢ > 0. Since (see [P, p. 361])

w(n)
Z ®(d) ggw(n)s_

N<d|n

clog2

and 2¢(") < (eloglOgN) = (log N)1, s¢(") < (log N)°2, thus

> o) < BN

N
N<d|n
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b) Let w(k 4+ j) > c.loglog N. Then |w(k + j) — loglog N| > (¢ — 1)loglog N.
Denote by (as in a classical proof of normal order of w(n))

R.((k,k+ N]) =#{n € (k,k + N];|w(n) — loglog N| > eloglog N}

then
R-((k,k + N))e*(loglog N)* < Z (w(n) — loglog N)?.
k<n<k+N

Applying Theorem 4 we obtain

1 N 1
((k,k+ N)) < = :
Re((k, &+ N]) g2 0 (loglogN> + (loglog N)? Z Z !

k<n<k+N N<p.q|n
P#q

Thus we need to estimate the following

max

Re—1((k,k + NJ)
N "k<n<k+N Z ®(d)) -

N<d|n
w(n)>cloglog N

5. CONCLUDING REMARKS

1. Lemma 1 implies that every d.f. g(z), Fx k4N — g(2) a.e. on [0, 1] must satisfies

1 1
/ x®dg(z) < / x®dgo(z),
0 0
for every s =1,2,....

2. Replaced 1/2 by 1/N in (ii) in Example 1, then by Chinese theorem we can find
k, N such that F; 14 nj(z) — c1(z) where d.f. ¢;(z) has a step 1inz =1,

3. A. Schinzel and Y. Wang [SW] proved that for every fixed N the N — 1-dimensional
sequence

(go(k+2) o(k +3) o(k+ N) ) = 1.9 N
pk+1) e(k+2)" Tp(k+N-1) )’ R
is dense in [0,00)V~1. Thus, for any given (o, as9,...,an_1) € [0,00)V ! we can
select a sequence of k such that
ek+2) o(k+3) o(k+ N) >
(gp(k+1),(p(l{j—}—2)”g0(k—|—]\f—1) —>(041,042,...,04N_1).

e(k+1)
k1

Select a subsequence of k£ such that — «. Then

(cp(k+1) ok +2) o(k+ N)

k—l—l y k—|—2 goe ey k—l—N )—>(Oc,OzOzl,(l/OleéQ,...,OéOqOéQ...OéN_l).
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Summary, if a,, n = 1,2,... is an infinite sequence in [0,00) then there exists a
sequence k = k(IV) and « € [0,1] such that F(; ,4+n)(z) — g(z) and g(z) is the as-
ymptotic distribution function of the sequence aa; ...a,, n =1,2,.... The constant
« is not arbitrary, since

1 = 6
lim a— a1 ...y < —.
n=

4. For completeness we referee some known properties of the d.f. go(x). P. Erdo&s
[E3] estimates modulus of continuity of go(x). The explicit construction of go(z) is
given in H. Davenport [D].
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