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Introduction

Many papers have been devoted to the study of the distribution of the sequence

ϕ(n) n , n = 1, 2, . . . ,
where ϕ denotes the Euler phi function. I. J. Schoenberg [S1, S2] established that this sequence has a continuous and strictly increasing asymptotic distribution function (basic properties of distribution functions can be found in [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF]p. 53], [START_REF] Drmota | Sequences, Discrepancies and Applications[END_REF] and [START_REF] Strauch | Distribution of Sequences: A Sampler[END_REF]) and P. Erdős [E1] showed that this function is singular (i.e. has vanishing derivative almost everywhere on [0, 1], see [START_REF] Strauch | Distribution of Sequences: A Sampler[END_REF]). Here the asymptotic distribution function g 0 (x) of the sequence ϕ(n)/n, n = 1, 2, . . . , is defined as

g 0 (x) = lim N →∞ 1 N N n=1 c [0,x) ϕ(n) n , for every x ∈ [0, 1],
where c [0,x) (t) is the characteristic function of a subinterval [0, x) of [0, 1]. For an interval (k, k + N ] and x ∈ [0, 1] define the step distribution function

F (k,k+N ] (x) = 1 N k<n≤k+N c [0,x) ϕ(n) n .
P. Erdős [E2] proved that the limit lim

N →∞ log log log k N = 0 implies that F (k,k+N ] (x) → g 0 (x), (x ∈ [0, 1]) (1)
as N → ∞. In opposite case he found N and k such that lim N →∞ log log log k N

= 1 2 and F (k,k+N ] (x) → g 0 (x). In this note we give necessary and suffice condition for (1).

Necessary and sufficient condition

Theorem 1. For any two sequences N and k of positive integers we have (1) if and only if for every s = 1, 2, . . . ,

lim N →∞ 1 N k<n≤k+N N <d|n Φ(d) = 0, (2) 
where

Φ(d) = p|d 1 - 1 p s -1 (3)
for square-free d, Φ(d) = 0 otherwise, and p are primes.

Proof. Applying Weyl's limit relation (see [START_REF] Strauch | Distribution of Sequences: A Sampler[END_REF]Th. 1.8.1.1]) we see that (1) holds if and only if, for every s = 1, 2, . . . , lim

N →∞ 1 N k<n≤k+N ϕ(n) n s = 1 0 x s dg 0 (x), (4) 
where [P, p. 363]

1 0 x s dg 0 (x) = lim N →∞ 1 N N n=1 ϕ(n) n s = p 1 - 1 p + 1 p 1 - 1 p s .
We express 1

N k<n≤k+N ϕ(n) n s by means of d|n Φ(d) = ϕ(n) n s .
We have

k<n≤k+N d|n Φ(d) = k+N d=1 Φ(d) k + N d - k d = k+N d=1 N Φ(d) d + k+N d=1 Φ(d) k d - k + N d ,
where [x] is integer part and {x} fractional part of x. Since

k d - k + N d = -N d if k d + N d < 1 1 -N d others (5) 
the boundary k + N of summations can be reduced to N and following equality holds

1 N k<n≤k+N ϕ(n) n s = N d=1 Φ(d) d + 1 N N d=1 Φ(d) k d - k + N d + 1 N N <d≤k+N { k d }+ N d ≥1 Φ(d). ( 6 
)
We begin by proving

N <d≤k+N { k d }+ N d ≥1 Φ(d) = N j=1 d|k+j d>N Φ(d) (7) for every k, N = 0, 1, 2, . . . . Proof: Expressing k = m d d + r d , where 0 ≤ r d < d, m d ≥ 0 are integers, we see that k d + N d ≥ 1 ⇐⇒ r d + N ≥ d ⇐⇒ r d = d -N + i d where 0 ≤ i d < N . This gives k = (m d + 1)d -N + i d , thus d(m d + 1) = k + N -i d and, for d > N , we have k d + N d ≥ 1 if and only if d k d + 1 = k + j (8) 
for some j = 1, 2, . . . , N . In the following we see that for every d|k + j we have that (8) ⇐⇒ j ≤ d. Really, put d = k + j -x and express k

+ j = p α 1 1 . . . p α n n , k + j -x = p β 1 1 . . . p β n n
, where p i are primes. Now d satisfies (8) if and only if

(k + j -x) k k + j -x + 1 = k + j ⇐⇒ k k + j -x = x k + j -x ⇐⇒ p α 1 -β 1 1 . . . p α n -β n n - j p β 1 1 . . . p β n n = p α 1 -β 1 1 . . . p α n -β n n -1 ⇐⇒ j ≤ p β 1 1 . . . p β n n
Since j ≤ N and d > N , we have j < d and we conclude that (8) hods and applying it in (6) we get the following basic equality

1 N k<n≤k+N ϕ(n) n s = N d=1 Φ(d) d + 1 N N d=1 Φ(d) k d - k + N d + 1 N k<n≤k+N N <d|n Φ(d). (9) 
Because (see A. G. Postnikov [P, p. 361-363])

|Φ(d)| ≤ s ω(d) d
, where ω(d) is the number of different primes which divide d,

N d=1 |Φ(d)| = O((1 + log N ) s ), ∞ d=N +1 |Φ(d)| d ≤ 3 s (1 + log N ) s N , ∞ d=1 Φ(d) d = p 1 - 1 p + 1 p 1 - 1 p s , (10) 
(9) shows that (1) holds if and only if

1 N k<n≤k+N N <d|n Φ(d) → 0
as N → ∞ and the proof of Theorem 1 is complete.

Notes 1. Using the basic equation ( 9) and

1 N k<n≤k+N N <d|n Φ(d) + 1 N k<n≤k+N d|n,d≤N Φ(d) = 1 N k<n≤k+N ϕ(n) n s we obtain 1 N k<n≤k+N d|n,d≤N Φ(d) = N d=1 Φ(d) d + O (1 + log N ) s N
and thus, as N → ∞, the left hand side converges to p 1 -

1 p + 1 p 1 -1 p s
uniformly with respect to k.

Erdős' approach

For any positive integer n and real t ≥ 2, denote

n(t) = p|n p≤t p, n ′ (t) = p|n p>t p, and P (t) = p≤t p, (11) 
where p are primes and the empty product is 1. P. Erdős in [E2] proved (without an explicit error term and for s = 1) the following lemma:

Lemma 1. For every integer k, N and t = N we have

1 N k<n≤k+N ϕ(n(t)) n(t) s = 1 N N n=1 ϕ(n) n s + O 3 s (1 + log N ) s N (12)
for s = 1, 2, . . .

Proof. We have k<n≤k+N ϕ(n(t)) n(t) s = k<n≤k+N d|n(t) Φ(d) = d|P (t) Φ(d) k + N d - k d = N d|P (t) Φ(d) d + d|P (t) Φ(d) k d - k + N d .
Bearing in mind

d|P (t) Φ(d) d = p≤t 1 - 1 p + 1 p 1 - 1 p s , d|P (t) 
Φ(d) k d - k + N d ≤ d|P (t) s ω(d) d = p≤t 1 + s p = A(s)(log t) s 1 + O 1 log t
( see [N, p. 110]),

1 N N n=1 ϕ(n) n s = p 1 - 1 p + 1 p 1 - 1 p s + O 3 s (1 + log N ) s N
( see [P, p. 363]),

1 - p>N 1 - 1 p + 1 p 1 - 1 p s ≤ n>N |Φ(n)| n ≤ 3 s (1 + log N ) s N (13) 
we obtain (12).

Next in his method Erdős used implicitly the following theorem:

Theorem 2. For every two sequences k and N and t = N we have

  k<n≤k+N ϕ(n ′ (t)) n ′ (t)   1 N → 1 =⇒ F (k,k+N ] (x) → g 0 (x) (14) for all x ∈ [0, 1].
Proof. Let x n , n = 1, 2, . . . , be a sequence in the interval (0, 1) and define the step distribution function

F N (x) = #{n≤N ;x n ∈[0,x)} N
. By Riemann-Stiltjes integration for every continuous function f (x) on [0, 1] we have 1

N N n=1 f (x n ) = 1 0 f (x)dF N (x). By Helly theorem, if F N (x) → g(x), then 1 0 f (x)dF N (x) → 1 0 f (x)dg(x). Now, assume that 1 N N n=1 x n → 1. If F N (x) → g(x), then 1 0 xdg(x) = 1, which is equivalent to g(x) = c 0 (x) (it has step 1 in x = 1). But F N (x) → c 0 (x) is equivalent to statistical convergence x n → 1, i.e. for every ε > 0 and A ε = {n ≤ N ; x n ≥ 1 -ε} we have #A ε N → 0. From statistical convergence x n → 1 follows statistical convergence f (x n ) → f (1) for every continuous f (x). Furthermore, 1 N N n=1 f (x n ) = 1 0 F (x)dF N (x) → 1 0 f (x)dc 0 (x) = f (1). Thus the limit 1 N N n=1 x n → 1 is equivalent any of the following limits (i) 1 N N n=1 log(x n ) → 0, (ii) N n=1 x n 1/N → 1, (iii) 1 N N n=1 x s n → 1. The limits (i)-(iii) also hold assuming restriction n ∈ (k, k + N ]. Put x n = ϕ(n ′ (t)) n ′ (t) . Then 1 N k<n≤k+N ϕ(n ′ (t)) n ′ (t) → 1 ⇐⇒ 1 N k<n≤k+N ϕ(n ′ (t)) n ′ (t) s → 1 and for A ε n ∈ (k, k + N ]; ϕ(n ′ (t)) n ′ (t) s < 1 -ε we have #A ε N → 0 for every ε > 0. Replace in ϕ(n) n = ϕ(n(t)) n(t) ϕ(n ′ (t)) n ′ (t) the ϕ(n ′ (t)) n ′ (t) by 1 -ε we see 1 N k<n≤k+N ϕ(n) n s ≥   1 N k<n≤k+N ϕ(n(t)) n(t) s   (1 -ε) -(1 -ε) #A ε N (15) 
and the other hand

1 N k<n≤k+N ϕ(n) n s ≤ 1 N k<n≤k+N ϕ(n(t)) n(t) s
and Lemma 1 gives

(1 -ε) 1 0 x s dg 0 (x) ≤ lim N →∞ 1 N k<n≤k+N ϕ(n) n s ≤ 1 0
x s dg 0 (x).

Thus we have

1 N k<n≤k+N ϕ(n ′ (t)) n ′ (t) → 1 =⇒ F (k,k+N ] (x) → g 0 (x) (16) 
and then we use (ii).

Note 2. In ( 14) we have only implication, since the right-hand side of (15) has the following precise form

(1 -ε)   1 N k<n≤k+N ϕ(n(t)) n(t) s   -(1 -ε)   1 N k<n≤k+N,n∈A ε ϕ(n(t)) n(t) s   and it can be 1 N k<n≤k+N,n∈A ε ϕ(n(t)) n(t) s → 0 and #A ε N → δ > 0.

Finally Erdős prove

Theorem 3. For every sequence of intervals (k, k + N ] we have

log log log k N → 0 =⇒ F (k,k+N ] (x) → g 0 (x). ( 17 
)
Proof. For t = N , the n ′ (t), k < n ≤ k + N are pairwise relatively prime, because the interval (k, k + N ] cannot contain two different positive integers divisible by the same prime p > N . Denote M (t) = k<n≤k+N n ′ (t) and x = ω(M (t)). Using the expression

p≤x 1 - 1 p = e -γ log x 1 + O 1 log x (18) 
see [START_REF] Mitrinovic | Handbook of Number Theory[END_REF]p. 259,VII. 29]) we have

ϕ(M (t)) M (t) ≥ N <p≤x 1 - 1 p ≥ c 1 log N log x and (a) log N log x 1/N → 1 implies (b) ϕ(M (t)) M (t) 1/N → 1. Since e c 2 x ≤ N <p≤x p ≤ (k + 1)(k + 2) . . . (k + N ) < (k + N ) N
we have c 2 x < N log(k + N ) and (c) 

log N log(N log(k+N )) 1/N → 1 implies (a) and (b) and finally F (k,k+N ] (x) → g 0 (x). But (c) ⇐⇒ 1 N log log N log(N log(k + N )) → 0 ⇐⇒ log log log k N → 0 
Φ(d) = d(t)|n(t) Φ(d(t)) d ′ (t)|n ′ (t) d ′ (t)>1 Φ(d ′ (t)) = ϕ(n(t)) n(t) s ϕ(n ′ (t)) n ′ (t) s -1 which gives N <d|n Φ(d) ≤ 1 - ϕ(n ′ (t)) n ′ (t) s .
Applying Theorem 1 we see that lim N →∞

1 N k<n≤k+N ϕ(n ′ (t)) n ′ (t) s = 1 implies (1).
Since ϕ(M (t))

M (t) ≤ ϕ(n(t)) n(t) also ϕ(M (t)) M (t)
→ 1 implies (1). These results directly follows from Erdős Theorem 2 and moreover for general k.

Using Erdős' Lemma 1 we prove the following quantitative form of Theorem 1.

Theorem 4. For any two sequences N and k of positive integers and for every s = 1, 2, . . . , we have

1 N k<n≤k+N N <d|n Φ(d) = 1 N k<n≤k+N ϕ(n) n s - 1 N N n=1 ϕ(n) n s + O 3 s (1 + log N ) s N (19)
Proof. Replace n by n(t) in ( 9). Then

1 N k<n≤k+N d|n(t) Φ(d) = 1 N k<n≤k+N ϕ(n(t)) n(t) s = = N d=1 Φ(d) d + 1 N N d=1 Φ(d) k d - k + N d + 1 N k<n≤k+N N <d|n(t) Φ(d).
Erdős' Lemma 1 implies that for every k, N , N → ∞

1 N k<n≤k+N N <d|n(t) Φ(d) → 0. ( 20 
) Since N <d|n Φ(d) = N <d|n(t) Φ(d) + d|n(t)n ′ (t) (d,n ′ (t))>1 Φ(d)
and the second sum is equal to ϕ(n(t)

n(t) s ϕ(n ′ (t)) n ′ (t)
s -1 we see (19).

Examples

For the optimality of log log log k in Theorem 3, Erdős gave the following example.

Example 1. Divide P (t) = p≤t p into N numbers A 1 , A 2 , . . . , A N such that (i) A i , i = 1, 2, . . . , are relatively prime, (ii) ϕ(A i ) A i < 1 2 for i = 1, 2, . . . , (iii) if p is the maximal prime in A i , then for

A ′ i = A i /p we have ϕ(A ′ i ) A ′ i > 1 2 . The part (iii) implies ϕ(A i ) A i > 1 4 thus 1 4 N < p≤t 1 - 1 p = ϕ(A 1 ) A 1 . . . ϕ(A N ) A N < 1 2 N .
From it, applying (18), we find N < c 1 log log t. By Chinese theorem there exists

k 0 < A 1 . . . A N such that k 0 ≡ -i (mod A) i for i = 1, 2, . . . , N . Put k = k 0 + A 1 . . . A N , then we have e c 2 t < P (t) = A 1 . . . A N < k which implies t < c 3 log k and log log t < c 4 log log log k. Thus log log log k N > 1 c 1 c 4 log log t log log t .
Furthermore for these k and N we have

F (k,k+N ] (x) → g 0 (x) since by (ii) 1 N k<n≤k+N ϕ(n) n < 1 2 < 1 N N n=1 ϕ(n) n = 6 π 2 + O log N N .
In the following Example 2 we find integer sequences k, N , for which (1) holds and lim N →∞ 

M (t) (t = N ). Clearly, to prove ϕ(M (t)) M (t) → 1 it suffices to show ϕ(M * ) M * = x<p≤x+y(x) 1 - 1 p → 1 (21)
as x → ∞. Using the expression (18) we have that (21) holds if

log 1 + y(x) x log x → 0 (22)
as x → ∞. The inequality 

M * ≤ M = k<n≤k+N n ′ (t) ≤ (k + N ) N ≤ (2k) N
Applying the well known inequality (see [L, p. 83]) 23), then we have, for x ≥ x 0 (ε), that y(x) satisfies

log 2 ≤ lim inf x→∞ p≤x log p x ≤ lim sup x→∞ p≤x log p x ≤ 2 log 2 into (
(log 2 -ε)(x + y(x)) ≤ (2N + 1)(2 log 2 + ε)x which implies y(x)
x ≤ cN , where c is a constant. Thus (21) and consequently (1) holds,

if x = x(N ) ≥ e N . Since k(N ) = p≤x(N ) p ≥ e c 1 x(N ) , for x(N ) = e e e N
we have lim

N →∞ log log log k N = ∞,
what we asked for.

Normal order of

ω(n), n ∈ (k, k + N ]
To simplify (2) we study the normal ordering of ω(n)-the umber of distinct prime divisors of n-in the interval (k, k + N ] (compare with V.A. Plaksin, see [START_REF] Mitrinovic | Handbook of Number Theory[END_REF]p. 156]).

Theorem 4. For every positive integers k and N we have

k<n≤k+N (ω(n) -log log N ) 2 = O(N log log N ) + k<n≤k+N N <p.q|k+n p =q 1.
A proof follows from the following lemmas. Proof of Lemma 1.

k<n≤k+N

ω(n) = p≤k+N k + N p - k p = p≤k+N N p + p≤k+N k p - k + N p .
The final sum we divide into two parts; p≤N and N <p≤k+N . The first sum is O(π(N )) and for the second we use ( 5) and the summation method in (7) which gives

N <p≤k+N k p - k + N p = N <p≤k+N - N p + k<n≤k+N N <p|n 1. Thus k<n≤k+N ω(n) = p≤N N p + O(π(N )) + k<n≤k+N N <p|n 1. (24) 
Bearing in mind 

k + N p.q - k p.q + p≤k+N k + N p - k p = p.q≤k+N p =q N p.q + p.q≤k+N p =q k p.q - k + N p.q + p≤k+N N p + p≤k+N k p - k + N p
Since (using ( 5) and ( 7)) For every integers k, N , the sum 1 N k<n≤k+N N <d|n Φ(d) can be approximate by using the following steps. a) Let ω(n) ≤ c. log log N for fixed c > 0. Since (see [P, p. 361])

p.q≤N p =q k p.q - k + N p.q = O(N log log N ), N <p.q≤k+N p =q k p.q - k + N p.q = N <p.q≤k+N p =q - N p.q + N j=1 N <p.q|k+j p =q 1, p≤N k p - k + N p = O N log N , N <p≤k+N k p - k + N p = N <p≤k+N - N p + N j=1 N <p|k+j 1 
N <d|n Φ(d) ≤ 2 ω(n) s ω(n) N and 2 ω(n) ≤ e log log N c log 2 = (log N ) c 1 , s ω(n) ≤ (log N ) c 2 , thus N <d|n Φ(d) ≤ (log N ) c 3 N . b) Let ω(k + j) > c. log log N . Then |ω(k + j) -log log N | > (c -1) log log N . Denote by (as in a classical proof of normal order of ω(n)) R ε ((k, k + N ]) = #{n ∈ (k, k + N ]; |ω(n) -log log N | > ε log log N } then R ε ((k, k + N ])ε 2 (log log N ) 2 ≤ k<n≤k+N (ω(n) -log log N ) 2 .
Applying Theorem 4 we obtain

R ε ((k, k + N ]) ≤ 1 ε 2     O N log log N + 1 (log log N ) 2 k<n≤k+N N <p.q|n p =q 1     .
Thus we need to estimate the following

R c-1 ((k, k + N ]) N . max k<n≤k+N N <d|n ω(n)≥c log log N Φ(d) .

Concluding remarks

1. Lemma 1 implies that every d.f. g(x), F (k,k+N ] → g(x) a.e. on [0, 1] must satisfies x s dg 0 (x), for every s = 1, 2, . . . . 2. Replaced 1/2 by 1/N in (ii) in Example 1, then by Chinese theorem we can find k, N such that F (k,k+N ] (x) → c 1 (x) where d.f. c 1 (x) has a step 1 in x = 1. 3. A. Schinzel and Y. Wang [SW] proved that for every fixed N the N -1-dimensional sequence ϕ(k + 2) ϕ(k + 1) , ϕ(k + 3) ϕ(k + 2) , . . . , ϕ(k + N ) ϕ(k + N -1)

, k = 1, 2, . . . , N is dense in [0, ∞) N -1 . Thus, for any given (α 1 , α 2 , . . . , α N -1 ) ∈ [0, ∞) 4. For completeness we referee some known properties of the d.f. g 0 (x). P. Erdoős [E3] estimates modulus of continuity of g 0 (x). The explicit construction of g 0 (x) is given in H. Davenport [D].

  Let x = x(N ) be increases arbitrary quickly as N → ∞, e.g. x(N ) = e e e N . The left boundary point k = k(N ) of the interval (k, k + N ] we put as k = p≤x p, where p are primes. Let M * = x<p≤x+y(x) p having the same number of prime divisors as

  leads to x<p≤x+y(x) log p ≤ 2N p≤x log p and thus p≤x+y(x) log p ≤ (2N + 1) p≤x log p.

Lemma 2 .

 2 For every positive integers k and N we have k<n≤k+N ω(n) = N log log N + B.N + the constant B = lim N →∞ p≤N 1 p -log log N . Lemma 3. For every positive integers k and N we have k<n≤k+N (ω(n)) 2 = N (log log N ) 2 + O(N log log N )

  log N ) 2 + O(log log N ), thus the proof of Lemma 2 is finished. Finally, the proof of Theorem 4 follows directly from the expression k<n≤k+N (ω(n) -log log N )

  , α 2 , . . . , α N -1 ). → (α, αα 1 , αα 1 α 2 , . . . , αα 1 α 2 . . . α N -1 ). Summary, if α n , n = 1, 2, . . . is an infinite sequence in [0, ∞) then there exists a sequence k = k(N ) and α ∈ [0, 1] such that F (k,k+N ] (x) → g(x) and g(x) is the asymptotic distribution function of the sequence αα 1 . . . α n , n = 1, 2, . . . . The constant α is not arbitrary, since lim

				N →∞	α	1 N	N -1 n=0	α 1 . . . α n ≤	6 π 2 .
							N -1 we can
	select a sequence of k such that	
	ϕ(k + 2) ϕ(k + 1) → (α 1 Select a subsequence of k such that ϕ(k+1) , ϕ(k + 3) ϕ(k + 2) , . . . , ϕ(k + N ) ϕ(k + N -1) k+1 → α. Then
	ϕ(k + 1) k + 1	,	ϕ(k + 2) k + 2	, . . . ,	ϕ(k + N ) k + N
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