Supplementary material

Efficient two-step access to azafluorenones and related compounds

Nada Marquise ^a, Philip J. Harford ^b, Floris Chevallier ^a, Thierry Roisnel ^c, Andrew E. H. Wheatley ^{b,*}, Philippe C. Gros ^d, Florence Mongin ^{a,*}

 ^a Chimie et Photonique Moléculaires, UMR 6226 Institut des Sciences Chimiques de Rennes, CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus de Beaulieu, 35042 Rennes, France.
^b Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
^c Centre de Diffractométrie X, UMR 6226 Institut des Sciences Chimiques de Rennes, CNRS-Université de Rennes 1, Bâtiment 10B, Campus Scientifique de Beaulieu, 35042 Rennes, France.
^d HECRIN, SRSMC, Université de Lorraine-CNRS, Boulevard des Aiguillettes, 54506 Vandœuvre-Lès-Nancy, France.

florence.mongin@univ-rennes1.fr; aehw2@cam.ac.uk

Table of Contents

1. Synthetic and analytical data for lithiocuprate 1	S-2
2. X-ray diffraction analysis of organic compounds 10 and 13	S-4
3. NMR spectra of organic compounds 3c, 4, 6, 9, 10 and 13	S-6

Synthetic and analytical data for lithiocuprate 1:

ⁿBuLi (2.5 mL, 1.6 M in hexanes, 4 mmol) was added dropwise to a solution of 2,2,6,6-tetramethylpiperidine (0.68 mL, 4 mmol) in dry toluene (4 mL) and dry THF (0.32mL, 4 mmol) under N₂ at -78°C. The resulting solution of lithium 2,2,6,6-tetramethylpiperidide was allowed to reach room temperature. It was then added to a suspension of copper(I) chloride (198 mg, 2 mmol) in dry toluene (3 mL) under N₂ at -78°C. The mixture was allowed to reach room temperature whereupon it was filtered. The solvent was removed to 1/2 volume giving a pale orange solution from which 1 deposited after storage at -20° C for 12 h. Yield 195 mg (21% wrt CuCl); mp 173-175 °C; elemental analysis calcd (%) for C₄₄H₈₈Cu₂Li₄N₄O₂Cl₂: C 56.77, H 9.53, N 6.02, Cl 7.62; found: C 56.34, H 9.69, N 6.03, Cl 7.92; ¹H NMR (500 MHz, 298K, C₆D₆): δ 3.71 (br, m, 4H; THF), 2.09 (br, m, 2H; TMP-3,5), 1.84 (s, 6H; TMP-Me), 1.71-1.68 (m, 18H; TMP-Me), 1.50 (br, m, 6H; TMP-3,5), 1.43 (br, m, 4H; THF), 1.18 ppm (m, 4H; TMP-4); ¹³C NMR (125 MHz, 298K, C_6D_6 , G = lower-order or Gilman-type cuprate TMP₂CuLi [1], L = higher-order or Lipshutz-type cuprate 1): δ 68.7 (THF), 54.6 (TMP-2, G), 54.0 (TMP-2, L), 52.1 (TMP-2, L), 42.6 (TMP-3,5 G), 42.4 (TMP-3,5 L), 41.1 (TMP-3,5 L), 40.6 (TMP-Me, G), 39.0 (TMP-MeL), 38.6 (TMP-Me, L), 35.0 (TMP-Me, G), 34.6 (TMP-Me, L), 32.0 (TMP-Me, L), 25.3 (THF), 20.6 (TMP-4, L), 19.8 (TMP-4, L), 19.7 ppm (TMP-4, G); ⁷Li NMR spectroscopy (194 MHz, 298K, C_6D_6 , $G = TMP_2CuLi$, L = 1): $\delta 1.9$ (s, 6Li, L), 1.3 ppm (s, Li, G); ¹H NMR (500 MHz, 298K, d₈-THF): 3.65 (br, m, 4H; THF), 1.81 (br, m, 4H; THF), 1.68 (br, m, 4H; TMP-4), 1.38, 1.09 (s, 24H, TMP-Me), 1.33 ppm (br, m, 8H, TMP-3,5); ¹³C NMR (125 MHz, 298K, d_8 -THF, $G = \text{TMP}_2\text{CuLi}, L = 1$): δ 68.2 (THF), 54.2 (TMP-2 L), 50.0 (TMP-2 G), 41.9 (TMP-3,5 L), 38.6 (TMP-3,5 G), 37.3 (br, m, TMP-Me, L), 32.2, 32.1 (TMP-Me G), 26.4 (THF), 20.5 (TMP-4 L), 19.3 ppm (TMP-4, G); ⁷Li NMR spectroscopy (194 MHz, 298K, d_8 -THF): $\delta 0.7$ ppm (s); ¹H NMR (500 MHz, 273K, d₈-THF): δ 3.65 (br, m, 4H; THF), 1.81 (br, m, 4H; THF), 1.67 (br, m, 4H; TMP-4), 1.34, 1.08 (s, 24H, TMP-Me), 1.31 ppm (br, m, 8H, TMP-3,5); ¹³C NMR (125 MHz, 273K, d_8 -THF, $G = \text{TMP}_2\text{CuLi}$, L = 1): δ 65.1 (THF), 51.3 (TMP-2 L), 47.1 (TMP-2 G), 39.1 (TMP-3,5 L), 35.7 (TMP-3,5 G), 34.8 (br, m, TMP-Me, L), 29.4, 29.3 (TMP-Me G), 23.0 (THF), 18.0 (TMP-4 L), 17.5 ppm (TMP-4, G); ⁷Li NMR spectroscopy (194 MHz, 273K, d_8 -THF): δ 0.2 ppm (s). Single crystal data were collected using the 'oil drop technique' [2] to mount crystals on a Nonius Kappa-CCD equipped with an Oxford Cryostream low-temperature device. Structures were solved using direct methods [3], with refinement, based on F^2 , by full-matrix least squares [4]. The sample was studied with graphite monochromatized $M_{0K\alpha}$ radiation ($\lambda = 0.71070$ Å). X-ray diffraction data

were collected at T = 180 K. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F2 with 6110 unique intensities and 269 parameters converged at $\omega R(F2) = 0.1450$ (R(F) = 0.0569) for 4478 observed reflections with I > $2\sigma(I)$. For $\mathbf{1}_2$: C₄₄H₈₈Cu₂Li₄N₄O₂Cl₂; M = 930.92; monoclinic; space group *P*21/c, a =14.3830(3) Å, b = 8.1954(2) Å, c = 22.1569(5) Å, $\beta = 97.2250(10)$ °; V = 2590.99(10) Å³, Z = 2; d = 1.193 g.cm⁻³; $\mu = 0.959$ mm⁻¹. CCDC 884940 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

ORTEP figure

- S. Komagawa, S. Usui, J. Haywood, P. J. Harford, A. E. H. Wheatley, Y. Matsumoto, K. Hirano, R. Takita, M. Uchiyama, Angew. Chem. Int. Ed. 51 (2012) 12081.
- [2] T. Kottke, D. Stalke, J. Appl. Crystallogr. 26 (1993) 615.
- [3] G. M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
- [4] G. M. Sheldrick, SHELXL-97 Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

X-ray diffraction analysis of compound 10

The sample was studied with graphite monochromatized Mo_{Ka} radiation ($\lambda = 0.71073$ Å). X-ray diffraction data were collected at T = 150(2) K using APEXII Bruker-AXS diffractometer. The structure was solved by direct methods using the SIR97 program [5], and then refined with full-matrix least-square methods based on F² (SHELX-97) [6] with the aid of the WINGX program [7]. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F² with 2202 unique intensities and 146 parameters converged at $\omega R(F2) = 0.1169$ (R(F) = 0.0522) for 1296 observed reflections with I > 2 σ (I).

ORTEP figure

Crystal data

10: C₁₃H₉NO₂; M = 211.21; monoclinic; space group P2₁/a, a = 13.779(3) Å, b = 4.9068(11) Å, c = 14.519(4) Å, $\beta = 94.354(10)$ °, V = 978.8(4) Å³, Z = 4; d = 1.43 g.cm⁻³; $\mu = 0.098$ mm⁻¹.

CCDC 885440 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

- [5] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32 (1999) 115.
- [6] G. M. Sheldrick, Acta Crystallogr., Sect. A A64 (2008) 112.
- [7] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837.

X-ray diffraction analysis of compound 13:

The sample was studied with graphite monochromatized Mo_{Ka} radiation ($\lambda = 0.71073$ Å). X-ray diffraction data were collected at T = 150(2) K using APEXII Bruker-AXS diffractometer. The structure was solved by direct methods using the SIR97 program [5], and then refined with full-matrix least-square methods based on F² (SHELX-97) [6] with the aid of the WINGX [7] program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F² with 1669 unique intensities and 118 parameters converged at $\omega R(F2) = 0.0887$ (R(F) = 0.0361) for 1507 observed reflections with I > 2 σ (I).

ORTEP figure

Crystal data

13: C₁₁H₆OS; M = 186.22; orthorhombic; space group P 2₁ n b, a = 3.8393(2) Å, b = 13.4713(8) Å, c = 15.9269(10) Å, $a = \beta = \gamma = 90$ °; V = 823.74(8) Å³, Z = 4; d = 1.502 g.cm⁻³; $\mu = 0.337$ mm⁻¹.

CCDC 885439 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

NMR spectra:

Compound 3c

