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FIRST HITTING TIMES FOR GENERAL NON-HOMOGENEOUS

1D DIFFUSION PROCESSES: DENSITY ESTIMATES IN SMALL

TIME

F. DELARUE, J. INGLIS, S. RUBENTHALER, E. TANRÉ

Abstract. Motivated by some applications in neurosciences, we here collect sev-
eral estimates for the density of the first hitting time of a threshold by a non-
homogeneous one-dimensional diffusion process and for the density of the associ-
ated process stopped at the threshold. We first remind the reader of the connection
between both. We then provide some Gaussian type bounds for the density of the
stopped process. We also discuss the stability of the density with respect to the
drift. Proofs mainly rely on the parametrix expansion.

We believe that the collection of these results might be useful in the analysis of
various models from biology, physics or finance.

Keywords: Hitting times; killed processes; density estimates; Fokker-Planck
equation.

1. Background

In the course of a recent work [1] it became necessary to study the general prob-
lem of estimating the density of the first hitting time of a fixed level by a non-
homogeneous diffusion process with general Lipschitz drift. To be precise, for a
fixed T > 0 we consider the stochastic process (Xt)t > 0 that satisfies

Xt = X0 +

∫ t

0

b(Xs)ds+ f(t) +Wt, t ∈ [0, T ], (1.1)

where (Wt)t∈[0,T ] is a standard one-dimensional Brownian motion (defined on some
filtered probability space (Ω, ((Ft)t∈[0,T ],P)), f ∈ C1([0, T ]) such that f(0) = 0, and
b : R → R is Lipschitz continuous such that

|b(x)| 6 Λ(|x|+ 1), |b(x)− b(y)| 6 K|x− y|, ∀x, y ∈ R,

for some constants Λ and K. Here C1([0, T ]) denotes the space of real-valued con-
tinuously differentiable functions equipped with the usual norm ‖ · ‖C1([0,T ]). For a
probability measure ν on R, we make use of the (quite abusive) notation P

ν in order
to indicate that ν is precisely the distribution of X0.

Considering 1 as a threshold, we moreover suppose that X0 < 1 and define the
stopping time

τ = inf{t > 0 : Xt∧T > 1} (1.2)

This work has been supported by the Agence National de la Recherche through the ANR Project
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to be the first time that (Xt)t∈[0,T ] reaches the level 1. Given a probability measure
ν on (−∞, 1], the subject of these notes are the two related densities

p
ν(t) =

d

dt
P
ν (τ 6 t) , t ∈ [0, T ], (1.3)

i.e. the density of τ , and

pν(t, y) =
d

dy
P
ν (Xt 6 y, t < τ) , t ∈ [0, T ], y ∈ (−∞, 1], (1.4)

the density of the killed process, when they exist. When ν = δx0 for some x0 < 1,
we will write px0(t) and px0(t, y) instead. In particular, the goal of these notes is to
prove bounds on the behavior of px0(t) in terms of the function f .

In the case b ≡ 0, the question of the existence of px0 for x0 < 1 is a classical,
though non-trivial, problem. Indeed, in this case px0 is the density of the first hitting
time of the curve t 7→ 1 − x0 − f(t) by a Brownian path started from 0, which is
known to exist and be continuous since f is assumed continuously differentiable and
f(0) = 0 (see e.g. [7, Theorem 14.4]).

However, in the general case, we were unable to find a complete reference for this
(certainly known) result when we impose a more general condition on the initial
probability density ν. It is for this reason that in Section 2 below we thus provide
a result guaranteeing the continuity of pν in the general case, under the condition
that ν has a density close to the threshold that linearly decays to 0. The statement
also gives detailed regularity properties of pν(t, y) in both t and y, and states that
the classical link between the two densities holds in our general case.

The section 3 of these notes is devoted to estimates of px0(t, y) (and hence of
px0(t)) for x0 < 1 in small time. We pay particular attention to the dependence of
the bounds on t, the initial condition x0 and the function f . Indeed to emphasize
the dependence of the two densities on the function f ∈ C1([0, T ]) we will write
when necessary

p
x0(t) = p

x0
f (t), px0(t, y) = px0

f (t, y), t ∈ [0, T ], y ∈ (−∞, 1].

One of the main goals of these notes is to prove that |px0
f1
(t)−p

x0
f1
(t)| for two functions

f1 and f2 in C1([0, T ]) is controlled by the difference ‖f1 − f2‖C1([0,T ]), the shape of
the ratio |px0

f1
(t)− p

x0
f1
(t)|/‖f1− f2‖C1([0,T ]) being explicitly controlled when t is small

and/or x0 is large (in the negative). This is the result stated in Proposition 5.2.

Remark 1.1. We have made two simplifications that are for notational reasons
only, and result in no loss of generality. The first is that we have chosen to study
the density of the first hitting time of 1 by the process from below, though we can
just as easily study the first hitting of a general level a ∈ R by above or below by a
simple shift Xt → ±(Xt − (a− 1)).

The second simplification is to take the intensity of the noise to be 1 rather than
a general σ > 0. Indeed, applying Brownian scaling and setting u = t/σ2, we can
write (1.1) as

Xσ2u = X0 +

∫ u

0

σ2b(Xσ2s)ds+ f
(
σ2u
)
+Wσ2u, u ∈ [0, T/σ2].
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Thus setting X̃u = Xσ2u, W̃u = (1/σ)Wσ2u, b̃ = σ2b and f̃(·) = f(σ2·) yields

X̃u = X0 +

∫ u

0

b̃(X̃s)ds+ f̃ (u) + σW̃u, u ∈ [0, T/σ2],

i.e. (X̃t) satisfies (1.1) with arbitrary noise intensity σ > 0, but where b and f have
changed.

The notation defined above will be used throughout the rest of the article.

2. Regularity of density of first hitting time and killed process

The following Lemma describes the regularity of the densities (1.3) and (1.4)
under the condition that the initial probability measure ν has a density close to the
threshold that linearly decays to 0.

Lemma 2.1. Suppose (Xt)t∈[0,T ] satisfies the SDE (1.1), where b is Lipschitz and
f ∈ C1([0, T ]). Let ν be a probability measure on (−∞, 1] such that

ν(dx) 6 β(1− x)dx, x ∈ (1− ǫ, 1],

for some β, ǫ > 0. Suppose further that the density of ν on the interval (1− ǫ, 1] is
differentiable at point 1. Then:

(i) For any t ∈ (0, T ], the measure

B((−∞, 1]) ∋ A 7→ P
ν
(
Xt ∈ A, t < τ

)

has a density with respect to the Lebesgue measure. Here, B((−∞, 1]) denotes the
Borel subsets of (−∞, 1]. The (unnormalized) density pν(t, y), t ∈ (0, T ], y 6 1
given by (1.4) is thus well-defined.

(ii) pν(t, y) is continuous in (t, y) and continuously differentiable in y on (0, T ] ×
(−∞, 1] and admits Sobolev derivatives of order 1 in t and of order 2 in y in any
Lς , ς > 1, on any compact subset of (0, T ]× (−∞, 1). When supp(ν) ⊂ (−∞, 1− ǫ],
pν(t, y) is actually continuous in (t, y) and continuously differentiable in y on any
compact subset of ([0, T ]× (−∞, 1]) \ ({0} × (−∞, 1− ǫ]).

(iii) The density pν satisfies (at least in the weak sense) the Fokker-Planck equation:

∂tp
ν(t, y) + ∂y

[(
b(y) + f ′(t)

)
pν(t, y)

]
− 1

2
∂2
yyp

ν(t, y) = 0, t ∈ (0, T ], y < 1, (2.1)

with the Dirichlet boundary condition pν(t, 1) = 0 and the measure-valued initial
condition pν(0, y)dy = ν(dy), both pν(t, y) and ∂yp

ν(t, y) decaying to 0 as y → −∞.

(iv) The first hitting time τ = inf{t > 0 : Xt > 1} given that X0 ∼ ν has a density
pν on [0, T ], given by

p
ν(t) = −1

2
∂yp

ν(t, 1), t ∈ [0, T ], (2.2)

the mapping [0, T ] ∋ t 7→ ∂yp
ν(t, 1) being continuous and its supremum norm being

bounded in terms of T , ‖f‖C1([0,T ]), β and the Lipschitz constant K of b only.
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Lemma 2.1 is quite standard when the coefficients are smooth but it is rather
difficult to find a complete proof of it under our assumptions. For this reason, we
provide a complete proof in the Appendix.

3. Relationship with density of homogeneous killed process

Throughout this section we assume that f ∈ C1([0, T ]) and b is Lipschitz. Our aim
is to seek information about px0(t) = p

x0
f (t) given by (1.3) for t ∈ [0, T ] and x0 < 1.

Thanks to formula (2.2), it is equivalent to seek information about ∂yp
x0
f (t, 1) i.e.

the derivative of the density of the process killed at the boundary.
The point of this section is to show that the density px0

f (t, y) of the killed inho-
mogeneous process (Xt)t∈[0,T ] (given by (1.1)) started from x0 can be represented
in terms of the density of a homogeneous process killed at the boundary, for which
Gaussian bounds independent of the function f may be proven (see Proposition 3.2).
Indeed we have

Lemma 3.1 (Integral equation). Suppose px0
f (t, y), t ∈ (0, T ], y 6 1 is the density

of the process (Xt)t∈[0,T ] killed at the barrier 1 started at x0 < 1, given by (1.4) with
ν = δx0. Then

px0
f (t, y) = q(t, x0, y)−

∫ t

0

∫ 1

−∞

(f ′(s) + b(1)) ∂zp
x0
f (s, z)q(t− s, z, y)dzds, (3.1)

for t ∈ (0, T ] and y < 1, where q(t, x, y) is the solution to the PDE




∂tq(t, x, y) = 1
2
∂2
yyq(t, x, y)− ∂y [(b(y)− b(1))q(t, x, y)]

q(t, x, 1) = 0
q(0, x, y) = δ0(x− y)

(3.2)

on [0, T ]× (−∞, 1]× (−∞, 1].

Proof. By Lemma 2.1 the density px0
f (t, y), t ∈ (0, T ], y 6 1 satisfies the Fokker-

Planck equation (2.1) with boundary condition px0
f (t, 1) = 0 and measure-valued

initial condition px0
f (0, y) = δ0(x0 − y). The result follows from the paramatrix

method in [4, Chapter 1]. It can also be verified by hand that the right-hand side
of (3.1) must also satisfy the Fokker-Planck equation (2.1) with the same boundary
and initial conditions, and so the result follows by uniqueness. �

Since we want bounds on p
x0
f (t) = −[1/2]∂yp

x0
f (t, 1) by (2.2), we are also interested

in ∂yp
x0
f (t, y). Taking the derivative of (3.1) with respect to y, yields the formula

∂yp
x0
f (t, y) = ∂yq(t, x0, y)−

∫ t

0

∫ 1

−∞

(f ′(s) + b(1)) ∂zp
x0
f (s, z)∂yq(t− s, z, y)dzds.

(3.3)

Evaluating the above at y = 1 then yields an expression for p
x0
f (t), which is the

quantity we would like to estimate, and so formula (3.3) will provide the basis for
our estimates.



FIRST HITTING TIME DENSITY ESTIMATES 5

3.1. Bounds on the density of the killed homogeneous process. We here
prove some general Gaussian bounds on the behavior of the solution q(t, x, y) to
the homogeneous Fokker-Planck equation (3.2) on [0, T ] × (−∞, 1] × (−∞, 1]. By
Lemma 2.1, q(t, x, y) is the density of the solution to (1.1) killed at the boundary
when f ≡ 0 and b is replaced by b− b(1).

Proposition 3.2. Suppose q(t, x, y) is the solution to the homogeneous Fokker-
Planck equation (3.2) on [0, T ] × (−∞, 1] × (−∞, 1]. Then there exists a constant
BT > 0 such that

|q(t, x, y)| 6 BT√
t
exp

(
−|ξxt − y|2

BT t

)
, (3.4)

and

|q(t, x, y)| 6 BT√
t
exp

(
−|x− ξy−t|2

BT t

)
, (3.5)

for all t ∈ [0, T ], x, y 6 1, where

ξxt = x+

∫ t

0

b̃(ξxr )dr, t ∈ R, (3.6)

and b̃(v) = b(v) − b(1) if v < 1 while b̃(v) = −b̃(2 − v) if v > 1. Moreover, we can
also chose BT large enough so that

|∂yq(t, x, y)| 6
BT

t
exp

(
−|ξxt − y|2

BT t

)
, (3.7)

and

|∂yq(t, x, y)| 6
BT

t
exp

(
−|x− ξy−t|2

BT t

)
, (3.8)

for all t ∈ [0, T ], x, y 6 1.

Proof. Let (X̃t)t > 0 denote the solution of the SDE:

dX̃t = b̃(X̃t)dt+ dWt. (3.9)

We can then see that q(t, x, y) is the transition density of X̃t killed at 1 (equation
(3.2) is the Fokker-Planck equation for the killed process, as shown in Lemma 2.1).

Note that b̃(1 + v) = −b̃(1 − v) for v ∈ R, so that b̃ is odd with respect to 1.

Therefore, when initialised at X̃0 = 1 the process (X̃t − 1)0 6 t 6 T satisfies

X̃t − 1 =

∫ t

0

b̃(X̃s − 1 + 1)ds+Wt, t ∈ [0, T ]

and the process (1− X̃t)0 6 t 6 T satisfies

1− X̃t = −
∫ t

0

b̃(X̃s)ds−Wt =

∫ t

0

b̃(2− X̃s)ds−Wt

=

∫ t

0

b̃(1− X̃s + 1)ds−Wt,
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which is the same equation. Hence (1 − X̃t)0 6 t 6 T and (X̃t − 1)0 6 t 6 T have the

same distribution when X̃0 = 1. Therefore the reflection principle (see [9, Section
I.13]) applies and

q(t, x, y) = q̃(t, x, y)− q̃(t, x, 2− y), t ∈ [0, T ], x, y 6 1, (3.10)

where q̃(t, x, y) is the transition density of the non-killed process.
We thus need to estimate the transition density q̃ of the non-killed process. By

Theorem 1.1 of [2] it follows that there exists a constant BT such that

q̃(t, x, y) 6
BT√
t
exp

(
−|y − ξxt |2

BT t

)
, t > 0, x, y ∈ R, (3.11)

where ξ is defined in (3.6). Thus

|q(t, x, y)| 6 BT√
t

[
exp

(
−|y − ξxt |2

BT t

)
+ exp

(
−|2− y − ξxt |2

BT t

)]
, t > 0, x, y 6 1.

We show this implies the bounds (3.4) and (3.5). Since b̃(1) = 0, we have ξ1t = 1
for any t > 0. Therefore, by the comparison principle for ODEs, it must hold
ξxt 6 ξ1t = 1 for any t > 0 and x 6 1. As a consequence, for t > 0 and x, y 6 1,

|y − ξxt | = |(y − 1)− (ξxt − 1)| 6 |y − 1|+ |ξxt − 1|
= 1− y + 1− ξxt = 2− y − ξxt = |2− y − ξxt |.

Therefore, the largest exponential term in the above bound for |q(t, x, y)| is the first
one. The bound (3.4) then follows directly (adjusting BT as necessary). Moreover,
by Gronwall’s Lemma and thanks to the Lipschitz property of b, we have:

exp(−Ks)|ξxt − y| 6 |ξxt−s − ξy−s| 6 exp(Ks)|ξxt − y| (3.12)

for all s ∈ [0, t], so that, by choosing s = t, we see that (3.5) also holds (again by
increasing the constant BT ).

By the same argument, (3.7) and (3.8) will follow if we can show that a bound
similar to (3.11) holds for |∂y q̃(t, x, y)|, i.e.

|∂y q̃(t, x, y)| 6
BT

t
exp

(
−|y − ξxt |2

BT t

)
, t > 0, x, y ∈ R. (3.13)

The rest of the proof is thus concerned with showing (3.13). Without any loss of

generality, we can assume b̃ to be a twice continuously differentiable function with
a bounded second-order derivative. Indeed, if we can prove that, in such a case,
(3.13) holds with respect to a constant BT that does not refer to the second-order

differentiability of b̃, then (3.13) holds in the original setting as well by a standard
mollification argument. Since q̃ is the transition probability of the solution to (3.9),
it satisfies the Fokker-Planck equation

∂tq̃(t, x, y) =
1

2
∂2
yy q̃(t, x, y)− b̃(y)∂y q̃(t, x, y)− b̃′(y)q̃(t, x, y),
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for t ∈ [0, T ] and x, y ∈ R. Define (Ỹ y
t )t > 0 to be the solution of the SDE

{
dỸ y

t = −b̃(Ỹ y
t )dt+ dWt,

Ỹ y
0 = y.

(3.14)

By Theorem 39 [8, p. 312], we know that, a.s., the mapping [0,+∞)×R ∋ (t, y) 7→
Y y
t is continuously differentiable with respect to y and that

∂yỸ
y
s = exp

(
−
∫ s

0

b̃′(Ỹ y
u )du

)
. (3.15)

Moreover, by Lemma 2.1, we know that q̃ is regular enough in order to apply the

Itô-Krylov formula (see [6, Section II.10]) to [0, t/2] ∋ s 7→ q̃
(
t− s, x, Ỹ y

s

)
, which

yields

q̃(t, x, y) = E

[
q̃
(
t/2, x, Ỹ y

t/2

)]
−
∫ t/2

0

E

[
b̃′(Ỹ y

s )q̃
(
t− s, x, Ỹ y

s

)]
ds.

By the Malliavin-Bismut-Elworthy formula (see, for example, Theorem 2.1 of [3]),

∂y q̃(t, x, y) =
2

t
E

[
q̃(t/2, x, Ỹ y

t/2)

∫ t/2

0

∂yỸ
y
s dWs

]

−
∫ t/2

0

1

s
E

[
b̃′(Ỹ y

s )q̃
(
t− s, x, Ỹ y

s

)∫ s

0

∂yỸ
y
r dWr

]
ds. (3.16)

By (3.15), |∂yỸ y
s | 6 exp(Ks). Thus using (3.11) we can compute for any 0 < s 6 t/2

(where the constant BT changes from line to line below)

I(s, t) :=

∣∣∣∣
1

s
E

[
q̃(t− s, x, Ỹ y

s )

∫ s

0

∂yỸ
y
r dWr

]∣∣∣∣

6
1

s

[
E

(
q̃2(t− s, x, Ỹ y

s )
)]1/2

[
E

(∫ s

0

∂yỸ
y
r dWr

)2
]1/2

6
BT√
s

[
E

(
q̃2(t− s, x, Ỹ y

s )
)]1/2

6
BT√
s

[
1

t− s
E

(
exp

(
−|Ỹ y

s − ξxt−s|2
BT (t− s)

))]1/2

=
BT√
s

[
1

t− s

∫

R

exp

(
−|z − ξxt−s|2
BT (t− s)

)
P(Ỹ y

s ∈ dz)

]1/2
.

By an estimate similar to (3.11) but for the density of Ỹ , we deduce

I(s, t) 6
BT√
s

[
1

(t− s)
√
s

∫

R

exp

(
−|z − ξxt−s|2
BT (t− s)

)
exp

(
−|z − ξy−s|2

BT s

)
dz

]1/2

6
BT√
s

[
1√

t− s
√
t
exp

(
−|ξxt−s − ξy−s|2

BT t

)]1/2
,
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where, for the first line, we have used the fact the flow associated with the ODE

driven by −b̃ is nothing but the backward flow associated with the ODE driven by

b̃, i.e. (ξx−t)t > 0 satisfies

ξx−t = x−
∫ t

0

b̃(ξx−s)ds, t > 0,

and, to pass from the first to the second line, we have recognised a Gaussian convo-
lution. By (3.12), we deduce that

I(s, t) 6
BT√
s

[
1√

t− s
√
t
exp

(
−|ξxt − y|2

BT t

)]1/2
,

from which (3.16) yields

|∂y q̃(t, x, y)| 6
BT

t
exp

(
−|ξxt − y|2

BT t

)

+BT exp

(
−|ξxt − y|2

BT t

)∫ t/2

0

1√
s

[
1√

t− s
√
t

]1/2
ds

6
BT

t
exp

(
−|ξxt − y|2

BT t

)
+

BT√
t
exp

(
−|ξxt − y|2

BT t

)∫ t/2

0

1√
s
ds.

This proves (3.13). �

4. Bounds on the density of the first hitting time in small time

As above, for x0 < 1, f ∈ C1([0, T ]), p
x0
f (t) represents the density of the first

hitting time of the threshold 1 by the process (Xt)t∈[0,T ] given by (1.1) and started
at x0 (see (1.3)).

In this section we pursue our aim of bounding on p
x0
f (t) in terms of f and x0 in

small time by exploiting the relationship p
x0
f (t) = −[1/2]∂yp

x0
f (t, 1) given by (2.2),

where px0
f (t, y), t ∈ (0, T ], y 6 1, is the density of the killed process started at x0

and killed at the boundary 1. Our starting point is the representation (3.3), and
throughout the section q(t, x, y), t ∈ [0, T ], x, y 6 1 is the solution to (3.2) that
appears within this representation.

We also introduce the notation

‖g‖∞,t := sup
s∈[0,t]

|g(s)|, ‖G(·)‖∞ = sup
x∈B

|G(x)|

for any continuous functions g : [0, t] → R, and G : B → R, with B ⊂ R.
The first result is an L∞-bound.

Lemma 4.1. Let f ∈ C1([0, T ]). Then there exists a constant κ1(T ) (independent
of f) which increases with T such that for all x0 < 1,

sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f (s, .)− ∂yq(s, x0, .)
∥∥
∞

]
6 (‖f ′‖∞,T + |b(1)|)κ1(T ),

for all t 6 min{[(‖f ′‖∞,T + |b(1)|)κ1(T )]
−2, T}.
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Proof. For notational sake, define

F x0
f (t, y) := ∂yp

x0
f (t, y)− ∂yq(t, x0, y).

By (3.3), we see that

∣∣F x0
f (t, y)

∣∣ 6 (‖f ′‖∞,T + |b(1)|)
∫ t

0

∫ 1

−∞

|∂zq(s, x0, z)∂yq(t− s, z, y)|dzds

+ (‖f ′‖∞,T + |b(1)|)
∫ t

0

∫ 1

−∞

∣∣∂zpx0
f (s, z)− ∂zq(s, x0, z)

∣∣ |∂yq(t− s, z, y)| dzds.
(4.1)

Thus defining Ã := ‖f ′‖∞,T + |b(1)| and allowing BT to increase as necessary from
line to line below, by Proposition 3.2 we see that for t 6 T

∣∣F x0
f (t, y)

∣∣

6 ÃBT

∫ t

0

∫ 1

−∞

1

s(t− s)
exp

(
−|z − ξx0

s |2
BT s

)
exp

(
−
|z − ξy−(t−s)|2

BT (t− s)

)
dzds

+ ÃBT

∫ t

0

1

t− s

∥∥F x0
f (s, ·)

∥∥
∞

∫ 1

−∞

exp

(
−
|z − ξy−(t−s)|2

BT (t− s)

)
dzds.

We can recognise the first term in the above as a Gaussian convolution. Thus

∣∣F x0
f (t, y)

∣∣ 6 ÃBT√
t

∫ t

0

1√
s
√
t− s

exp

(
−
|ξy−(t−s) − ξx0

s |2

BT t

)
ds

+ ÃBT

∫ t

0

√
s√

t− s
√
s

∥∥F x0
f (s, ·)

∥∥
∞
ds (4.2)

6 ÃBT

(
1√
t
exp

(
−|ξy−t − x0|2

BT t

)
+ sup

0 6 s 6 t

[√
s
∥∥F x0

f (s, ·)
∥∥
∞

])
,

where again we have used (3.12). Therefore, by multiplying both sides of the in-
equality by

√
t, we deduce

sup
0 6 s 6 t

[√
s
∥∥F x0

f (s, ·)
∥∥
∞

]
6 ÃBT +

√
tÃBT sup

0 6 s 6 t

[√
s
∥∥F x0

f (s, ·)
∥∥
∞

]
,

We can conclude that, for t ∈ [0, T ] such that t 6 [2ÃBT ]
−2 = [2(‖f ′‖∞,T +

|b(1)|)BT ]
−2, we have that

sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f (s, .)− ∂yq(s, x0, .)
∥∥
∞

]
6 2ÃBT . (4.3)

�

The problem with this bound is that it is crude with respect to the initial point
x0. However, it does allow us to prove the following refinement.
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Proposition 4.2. Let f ∈ C1([0, T ]). There exists a constant κ2(T ) (independent
of f) which increases with T such that for all x0 < 1,

∣∣∂ypx0
f (t, y)− ∂yq(t, x0, y)

∣∣ 6 κ2(T )(‖f ′‖∞,T + |b(1)|) 1√
t
exp

(
−|ξx0

t − y|2
κ2(T )t

)
,

for all t 6 min{[(‖f ′‖∞,T + |b(1)|)κ2(T )]
−2, T} and y 6 1, where (ξx0

t )t > 0 is as in
Proposition 3.2.

Proof. Throughout the proof, we will use the fact the mapping

ϕ : R ∋ x 7→ exp(x)− 1

x
(ϕ(0) = 1), (4.4)

is non-decreasing. We will also use the same notation as in the proof of Lemma 4.1:

F x0
f (t, y) := ∂yp

x0
f (t, y)− ∂yq(t, x0, y).

First Step. As noted in (4.1), we have for t ∈ [0, T ]

∣∣F x0
f (t, y)

∣∣ 6 Ã

∫ t

0

∫ 1

−∞

|∂zq(s, x0, z)∂yq(t− s, z, y)|dzds

+ Ã

∫ t

0

∫ 1

−∞

∣∣F x0
f (t1, y1)

∣∣ |∂yq(t− t1, y1, y)| dy1dt1
(4.5)

where we have denoted Ã = ‖f ′‖∞,T + |b(1)|. The fact that ϕ given by (4.4) is
non-decreasing says that, for t ∈ [0, T ],

1− exp(−2KT )

2KT
6

1− exp(−2Kt)

2Kt
6 1 6

exp(2Kt)− 1

2Kt
6

exp(2KT )− 1

2KT
,

from which, together with Proposition 3.2, we deduce there exists BT > 0 such that

|∂yq(t, x, y)| 6
BT

1− e−2Kt
exp

(
− |x− ξy−t|2
2BT (1− e−2Kt)

)
(4.6)

|∂yq(t, x, y)| 6
BT

e2Kt − 1
exp

(
− |ξxt − y|2
2BT (e2Kt − 1)

)
. (4.7)

Unlike in the previous lemma, BT is now fixed. We then introduce the kernel

K(t, x, y) =





1√
BT (e2Kt − 1)

exp

(
− |ξxt − y|2
2BT (e2Kt − 1)

)
if t > 0,

1√
BT (1− e2Kt)

exp

(
− |x− ξyt |2
2BT (1− e2Kt)

)
if t < 0.

(4.8)

For 0 < s < t 6 T , K satisfies the Gaussian convolution property:

K(s, x, ·)⊗K
(
−(t− s), ·, y

)
:=

∫

R

K(s, x, z)K
(
−(t− s), z, y

)
dz

=

√
2π√

BT (e2Ks − e−2K(t−s))
exp

(
−

|ξxs − ξy−(t−s)|2

2BT (e2Ks − e−2K(t−s))

)
.
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By (3.12), we know that |ξxt − y| 6 eK(t−s)|ξxs − ξy−(t−s)| for all 0 < s < t. Therefore,

K(s, x, ·)⊗K
(
−(t− s), ·, y

)
6

√
2π√

BT (1− e−2Kt)
exp

(
− |ξxt − y|2
2BT (e2Kt − 1)

)

6
√
2πeKTK(t, x, y).

(4.9)

By (4.5), (4.6) and (4.7), we deduce that, for t ∈ [0, T ],

∣∣F x0
f (t, y)

∣∣ 6 ÃB3
T e

KTK(t, x0, y)

∫ t

0

√
2π√

e2Ks − 1
√
1− e−2K(t−s)

ds

+ ÃB
3/2
T

∫ t

0

∫ 1

−∞

∣∣F x0
f (t1, y1)

∣∣
√
1− e−2K(t−t1)

K(−(t− t1), y1, y)dy1dt1.

(4.10)

Using (4.4), we notice that

∫ t

0

1√
e2Ks − 1

√
1− e−2K(t−s)

ds 6

√
2KT√

1− exp(−2KT )

∫ t

0

1√
2Ks

√
2K(t− s)

ds

=

√
T√

2K(1− exp(−2KT ))

∫ t

0

1√
s
√
t− s

ds

6
4
√
T√

2K(1− exp(−2KT ))
=: CT , (4.11)

using
∫ t

0
(
√
s
√
t− s)−1ds =

∫ 1

0
(
√
u
√
1− u)−1du = π 6 4. Finally, (4.10) yields

∣∣F x0
f (t, y)

∣∣ 6 ÃC̃TB
3
TK(t, x0, y)

+ ÃB
3/2
T

∫ t

0

∫ 1

−∞

∣∣F x0
f (t1, y1)

∣∣
√
1− e−2K(t−t1)

K(−(t− t1), y1, y)dy1dt1,
(4.12)

with C̃T :=
√
2πCT exp(KT ).

Second Step. We now prove by induction, that for any N > 0,

∣∣F x0
f (t, y)

∣∣ 6 ÃC̃TB
3
TK(t, x0, y)

N∑

i=0

(√
KÃC̃TB

3/2
T

√
t
)i

+RN+1(t, y), (4.13)

where

RN(t, y) = (ÃB
3/2
T )N

∫

0 6 tN 6 ... 6 t0

dtN . . . dt1

{N−1∏

i=0

1√
1− e−2K(ti−ti+1)

∫

(−∞,1]N
dyN . . . dy1

∣∣F x0
f (tN , yN)

∣∣
N−1∏

i=0

K
(
−(ti − ti+1), yi+1, yi

)}
,

with the convention t0 = t and y0 = y. In the first step, we established (4.13) when
N = 0. Assume now that, for some N > 0, (4.13) holds for any t ∈ [0, T ] and y 6 1.
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Then, plugging the induction assumption at rank N into (4.12), we get:
∣∣F x0

f (t, y)
∣∣

6 ÃC̃TB
3
TK(t, x0, y)

+ ÃC̃TB
3
T

( N∑

i=0

(√
KÃC̃TB

3/2
T

√
t
)i)

ÃB
3/2
T

∫ t

0

K(t1, x0, ·)⊗K(−(t− t1), ·, y)√
1− e−2K(t−t1)

dt1

+RN+2(t, y).

By (4.9), we deduce that
∣∣F x0

f (t, y)
∣∣

6 ÃC̃TB
3
TK(t, x0, y)

+ ÃC̃TB
3
T

( N∑

i=0

(√
KÃC̃TB

3/2
T

√
t
)i)

ÃB
3/2
T

√
2πeKTK(t, x0, y)

∫ t

0

1√
1− e−2K(t−t1)

dt1

+RN+2(t, y).

Following (4.11), we have:

∫ t

0

ds√
1− e−2K(t−s)

6

√
2KT√

1− exp(−2KT )

∫ t

0

1√
2K(t− s)

ds

=

√
T√

1− exp(−2KT )

∫ t

0

1√
t− s

ds

6
2
√
t
√
T√

1− exp(−2KT )
6

√
t
√
KCT .

Since C̃T =
√
2π exp(KT )CT , we deduce that (4.13) holds at rank N + 1.

Third Step. Suppose that
√
t 6 [

√
KÃC̃TB

3/2
T ]−1/2. Then, the series in (4.13) is

convergent (and bounded above by 2). The point is thus to prove that RN(t, y) → 0

as N → ∞ for all y 6 1. By Lemma 4.1, we deduce that, for
√
t 6 [Ãκ1(T )]

−1,

RN(t, y)

6 (
√
2πÃB

3/2
T )N Ãκ1(T )

∫

0 6 tN 6 tN−1 6 ... 6 t0

1√
tN

N−1∏

i=0

1√
1− e−2K(ti−ti+1)

dt1 . . . dtN .

Using (4.4), we obtain

RN(t, y) 6

(
√
2πÃB

3/2
T

√
T√

1− e−2KT

)N

Ãκ1(T )

×
∫

0 6 tN 6 tN−1 6 ... 6 t0

1√
tN

N−1∏

i=0

1√
ti − ti+1

dt1 . . . dtN .

(4.14)
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To compute the integral in the right-hand side of the above, define

Jn(t) =

∫ t

0

u(n−1)/2(t− u)−1/2du, t > 0, n ∈ N.

By the change of variable u = ts, we have Jn(t) = tn/2Jn(1). Note that J0(1) =
π 6 4. Moreover, for n > 1,

Jn(1) 6 n1/2

∫ 1−1/n

0

u(n−1)/2du+

∫ 1

1−1/n

(1− u)−1/2du 6
2n1/2

n+ 1
+ 2n−1/2

6 4n−1/2.

(4.15)

With this notation

IN,0(t) :=

∫

0 6 tN 6 tN−1 6 ... 6 t0

1√
tN

N−1∏

i=0

1√
ti − ti+1

dt1 . . . dtN

=

∫

0 6 tN−1 6 ... 6 t0

J0(tN−1)
N−2∏

i=0

1√
ti − ti+1

dt1 . . . dtN−1,

where the second equality holds for N > 2. More generally, setting for any n 6 N−2

IN,n(t) :=

∫

0 6 tN−(n+1) 6 ... 6 t0

Jn(tN−(n+1))

N−(n+2)∏

i=0

1√
ti − ti+1

dt1 . . . dtN−(n+1),

we have, for any 0 6 n 6 N − 3,

IN,n(t) = Jn(1)

∫

0 6 tN−(n+1) 6 ... 6 t0

t
n/2
N−(n+1)

N−(n+2)∏

i=0

1√
ti − ti+1

dt1 . . . dtN−(n+1)

= Jn(1)

∫

0 6 tN−(n+2) 6 ... 6 t0

[∫ tN−(n+2)

0

t
n/2
N−(n+1)√

tN−(n+2) − tN−(n+1)

dtN−(n+1)

]

×
N−(n+3)∏

i=0

1√
ti − ti+1

dt1 . . . dtN−(n+2)

= Jn(1)IN,n+1(t),

so that, by (4.15),

IN,0(t) =

[N−3∏

n=0

Jn(1)

]
IN,N−2(t) =

[N−2∏

n=0

Jn(1)

]
JN−1(t)

=

[N−1∏

n=0

Jn(1)

]
t(N−1)/2

6 4[4t1/2]N−1[(N − 1)!]−1/2,

using the fact that IN,N−2(t) = JN−2(1)JN−1(t). Going back to (4.14), we deduce
that RN(t, y) → 0 as N → ∞. Hence taking the limit as N → ∞ in (4.13) yields
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(with
√
t 6 [

√
KÃC̃TB

3/2
T ]−1/2)

∣∣F x0
f (t, y)

∣∣ 6 2ÃC̃TB
3
TK(t, x0, y),

from which the result follows. �

As a corollary, we get the following bound on the behavior of px0
f (t) in small time:

Corollary 4.3. Let f ∈ C1[0, T ]. There exists a constant κ(T ), depending only on
T and the drift function b, which increases with T such that for all x0 < 1,

1

2
|∂ypx0

f (t, 1)| = |px0
f (t)| 6 κ(T )(‖f ′‖∞,T + 1)

1

t
exp

(
−(1− x0)

2

κ(T )t

)

for all t 6 min{[(‖f ′‖∞,T + 1)κ(T )]−2, T}.

Proof. The result follows from Proposition 4.2, Proposition 3.2 and (3.12) by taking
y = 1, and using the fact that ξ1−t = 1 for all t > 0. We have also now incor-
porated the term involving b into the constant κ, using the fact that ‖f ′‖∞,T +
|b(1)| 6 max{1, |b(1)|}(‖f ′‖∞,T + 1). �

5. Bounds on the difference of densities

Once again, throughout the section we will adopt the notation of the previous
sections, so that, for x0 < 1 and f ∈ C1([0, T ]), px0

f (t) will represent the density of
the first hitting time of the threshold 1 by the process (Xt)t∈[0,T ] given by (1.1) and
started at x0 (see (1.3)), and px0

f (t, y), t ∈ (0, T ], y 6 1, will be the density of the
killed process started at x0 and killed at the boundary 1 (see (1.3) and (1.4)). These
densities are guaranteed to exist by Lemma 2.1.

We now look for bounds on |px0
f1
(t) − p

x0
f2
(t)| for f1, f2 ∈ C1([0, T ]) in terms of

‖f1 − f2‖C1([0,T ]) and x0 in small time. As in the previous section we again exploit
the relationship p

x0
f (t) = −[1/2]∂yp

x0
f (t, 1) given by (2.2) and the representation

(3.3) of ∂yp
x0
f (t, y), t ∈ (0, T ], y 6 1.

Lemma 5.1. Let f1, f2 ∈ C1[0, T ] and let A = max{‖f ′
1‖∞,T , ‖f ′

2‖∞,T}. Then there
exists a constant κ3(T ) (independent of f1 and f2) which increases with T such that
for all x0 < 1,

sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f1
(s, .)− ∂yp

x0
f2
(s, .)

∥∥
∞

]
6 Ãκ3(T )‖f ′

1 − f ′
2‖∞,t,

for all t 6 min{[Ãκ3(T )]
−2, T}, where Ã := max(A+ |b(1)|, 1).
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Proof. Let y 6 1. Again by (3.3), we see that

∣∣∂ypx0
f1
(t, y)− ∂yp

x0
f2
(t, y)

∣∣

6 (A+ |b(1)|)
∫ t

0

∫ 1

−∞

∣∣∂zpx0
f1
(s, z)− ∂zp

x0
f2
(s, z)

∣∣ |∂yq(t− s, z, y)| dzds

+ ‖f ′
1 − f ′

2‖∞,t

∫ t

0

∫ 1

−∞

∣∣∂zpx0
f2
(s, z)− ∂zq(s, x0, z)

∣∣ |∂yq(t− s, z, y)| dzds

+ ‖f ′
1 − f ′

2‖∞,t

∫ t

0

∫ 1

−∞

|∂zq(s, x0, z)| |∂yq(t− s, z, y)| dzds, (5.1)

where q(t, x, y), t ∈ [0, T ], x, y 6 1 is the solution to (3.2), as before. Using Propo-
sition 3.2 once again and the notation (4.8) (see also (4.6) and (4.7)) together with
(4.4), we see that

∣∣∂ypx0
f1
(t, y)− ∂yp

x0
f2
(t, y)

∣∣

6 Ãκ3(T ) sup
0 6 s 6 t

[√
s
∥∥∂zpx0

f1
(s, .)− ∂zp

x0
f2
(s, .)

∥∥
∞

]

+ κ3(T ) ‖f ′
1 − f ′

2‖∞,t

∫ t

0

∫ 1

−∞

∣∣∂zpx0
f2
(s, z)− ∂zq(s, x0, z)

∣∣
√
t− s

K(−(t− s), z, y)dzds

+ κ3(T ) ‖f ′
1 − f ′

2‖∞,t

∫ t

0

∫ 1

−∞

1√
s

1√
t− s

K(s, x0, z)K(−(t− s), z, y)dzds,

for some constant κ3(T ) > 0, where Ã = max(A + |b(1)|, 1). Using Proposition 4.2
and (4.9), and allowing the constant κ3(T ) to increase as necessary from line to line
below, it follows that

∣∣∂ypx0
f1
(t, y)− ∂yp

x0
f2
(t, y)

∣∣

6 Ãκ3(T ) sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f1
(s, .)− ∂yp

x0
f2
(s, .)

∥∥
∞

]

+ κ3(T )Ã ‖f ′
1 − f ′

2‖∞,t

∫ t

0

∫ 1

−∞

1√
t− s

K(s, x0, z)K(−(t− s), z, y)dzds

+ κ3(T ) ‖f ′
1 − f ′

2‖∞,t K(t, x0, y),

for all t 6 min{[Ãκ2(T )]
−2, T}. Using (4.9) again, together with the bound Ã > 1,

we deduce:

∣∣∂ypx0
f1
(t, y)− ∂yp

x0
f2
(t, y)

∣∣ 6 Ãκ3(T ) sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f1
(s, .)− ∂yp

x0
f2
(s, .)

∥∥
∞

]

+ κ3(T )Ã ‖f ′
1 − f ′

2‖∞,t K(t, x0, y). (5.2)
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Assuming that κ3(T ) > κ2(T ) and multiplying the above inequality by
√
t, we

deduce that, for t 6 min{[2Ãκ3(T )]
−2, T} we have

sup
0 6 s 6 t

[√
s
∥∥∂ypx0

f1
(s, .)− ∂yp

x0
f2
(s, .)

∥∥
∞

]

6 2κ3(T ) sup
0<t 6 T

[ √
t√

BT (exp(2Kt)− 1)

]
Ã ‖f ′

1 − f ′
2‖∞,t .

�

Proposition 5.2. Let f1, f2 ∈ C1[0, T ] and let A = max{‖f ′
1‖∞,T , ‖f ′

2‖∞,T}. Then
there exists a constant κ4(T ) (independent of f1, f2) which increases with T such
that for all x0 < 1,

∣∣∂ypx0
f1
(t, y)− ∂yp

x0
f2
(t, y)

∣∣ 6 Ãκ4(T )
1√
t
exp

(
−|ξx0

t − y|2
κ4(T )t

)
‖f ′

1 − f ′
2‖∞,t,

for all t 6 min{[Ãκ4(T )]
−2, T} and y 6 1, where (ξx0

t )t > 0 is as in Proposition 3.2

and Ã := max(A+ |b(1)|, 1).
Proof. We follow the strategy of the proof of Proposition 4.2. We thus define

Gx0
f1,f2

(t, y) = ∂yp
x0
f1
(t, y)− ∂yp

x0
f2
(t, y).

Going back to (5.1) we can proceed in the same way as in Lemma 5.1 in order to
bound the second two terms of this expression. We then get that, for some constant
κ4(T ) > 0,

∣∣Gx0
f1,f2

(t, y)
∣∣ 6 Ãκ4(T ) ‖f ′

1 − f ′
2‖∞,t K(t, x0, y)

+ Ãκ4(T )

∫ t

0

∫ 1

−∞

∣∣Gx0
f1,f2

(t1, y1)
∣∣

√
1− e−2K(t−t1)

K(−(t− t1), y1, y)dy1dt1.

We can iterate this inequality in exactly the same way as in Proposition 4.2 (pre-
cisely, we can divide both sides by ‖f ′

1 − f ′
2‖∞,t in order to recover (4.12) with

|F x0
e (·, y)| replaced by |Gx0

f1,f2
(·, y)|/‖f ′

1− f ′
2‖∞,t therein and then follow (4.13)), and

the convergence follows from Lemma 5.1. This yields the result. �

This yields the following corollary.

Corollary 5.3. Let f1, f2 ∈ C1[0, T ] and let A = max{‖f ′
1‖∞,T , ‖f ′

2‖∞,T}. Then
there exists a constant κ(T ) (independent of f1 and f2) such that for all x0 < 1,

∣∣px0
f1
(t)− p

x0
f2
(t)
∣∣ 6 κ(T )(A+ 1)

1√
t
exp

(
−(1− x0)

2

κ(T )t

)
‖f ′

1 − f ′
2‖∞,t,

for all t 6 min{[(1 + A)κ(T )]−2, T} and y 6 1. Note that the left-hand side is also
equal to

∣∣∂ypx0
f1
(t, 1)− ∂yp

x0
f2
(t, 1)

∣∣.
Proof. This follows from taking y = 1 in Proposition 5.2, before using (3.12) and
the fact that ξ1−t = 1 for all t > 0. �
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6. Appendix: Proof of Lemma 2.1

First Step. We first discuss the solvability of the Fokker-Planck equation (2.1).
We start with the following case: we assume that ν = δx0 for x0 < 1, and that b and
f are smooth and bounded, with bounded derivatives of any order. Then, by [5, Th
1.10, Chap. VI], we know that the generator of the process (Xt)t∈[0,T ], namely the
family of second-order differential operators

(
Ls,x :=

(
b(·) + f ′(s)

)
∂x +

1

2
∂2
xx

)

s∈[0,T ]

,

admits a Green function G : [0, T ]2 × (−∞, 1]2 ∋ (s, t, x, y) 7→ G(s, x, t, y). For a
given (t, y) ∈ [0, T ] × (−∞, 1], the function [0, t) × (−∞, 1] ∋ (s, x) 7→ G(s, x, t, y)
is a classical solution of the PDE

∂sG(s, x, t, y) + Ls,xG(s, x, t, y) = 0,

with G(s, 1, t, y) = 0, for s ∈ [0, t) and G(s, x, t, y) → δ0(x − y) as s ր t, where
δ0 is the Dirac mass at point 0 (pay attention that our definition of the Green
function obeys the convention used in probability theory: it is thus reversed in time
in comparison with the standard notation used in the PDE literature). Following
[4, Th. 5, Sec. 5, Chap. 9], for a given (s, x) ∈ [0, T ) × (−∞, 1), the function
(s, T ] × (−∞, 1] ∋ (t, y) 7→ G(s, x, t, y) is also known to be the Green function of
the adjoint operator

∂t ·+∂y
[(
b(y) + f ′(t)

)
·
]
− 1

2
∂2
yy·,

with a Dirichlet boundary condition on [0, T ] × {1}. In particular, G(s, x, t, 1) = 0
and G(s, x, t, y) → δ0(y − x) as t ց s. We then set

px0(t, y) = G(0, x0, t, y), t ∈ (0, T ], y ∈ (−∞, 1]. (6.1)

By [5, Th. 1.10, Chap. VI] (applied to the adjoint operator), we know that px0(t, y)
(as the solution to the Fokker-Planck equation (2.1) under the current smoothness
assumptions with px0(0, y) = δ0(x0 − y)) decays exponentially fast as t tends to 0
and y stays away from x0. This proves that px0 is continuous on any compact subset
of ([0, T ]× (−∞, 1]) \ {(0, x0)}.

Second Step. Still in the smooth framework, we now make the connection with
the diffusion process (Xt)t∈[0,T ] when X0 = x0 < 1. Precisely, the point is to prove
that the definition of px0 in (1.4) is coherent with that in (6.1). To put it differently,
we must check that the right-hand side of (1.4) coincides with the definition of px0

in (6.1). Given a smooth function φ : [0, T ]×(−∞, 1] → R, with a compact support,
the analysis of the Green function in [5, Th. 1.10, Chap. VI] says that the PDE

∂su(s, x) +
(
b(x) + f ′(s)

)
∂xu(s, x) +

1

2
∂2
xxu(s, x) + φ(s, x) = 0,

for (s, x) ∈ (0, T ]× (−∞, 1), with u(T, x) = 0, x ∈ (−∞, 1), as initial condition and
u(s, 1) = 0, s ∈ [0, T ], as Dirichlet boundary condition, admits a (unique) classical
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solution

u(s, x) =

∫ T

s

∫ 1

−∞

G(s, x, t, y)φ(t, y)dydt, s ∈ [0, T ), x 6 1. (6.2)

Moreover, u is bounded and continuous on [0, T ]× (−∞, 1] and is once continuously
differentiable in time and twice differentiable in space on [0, T ) × (−∞, 1). There-
fore, we can expand (u(t ∧ τ,Xt∧τ ))t∈[0,T ] by Itô’s formula, where τ = inf{t > 0 :
Xt∧T > 1}. We then have the well-known representation formula:

u(0, x0) = E
x0

(∫ T∧τ

0

φ(t,Xt)dt

)
. (6.3)

By equalizing (6.2) and (6.3), we deduce that

E
x0

(∫ T∧τ

0

φ(t,Xt)dt

)
=

∫ T

0

∫ 1

−∞

px0(t, y)φ(t, y)dydt. (6.4)

Writing

Ex0

(∫ T∧τ

0

φ(t,Xt)dt

)
=

∫ T

0

E
x0
[
φ(t,Xt)1{t<τ}

]
dt

=

∫ T

0

∫ 1

−∞

φ(t, y)Px0
(
Xt ∈ dy, t < τ

)
dt,

we deduce that
∫ T

0

∫ 1

−∞

φ(t, y)Px0
(
Xt ∈ dy, t < τ

)
dt =

∫ T

0

∫ 1

−∞

px0(t, y)φ(t, y)dydt, (6.5)

so that (1.4) holds in the smooth setting.
In the same framework, we then prove (2.2). The cumulative distribution function

of τ is given by

P
x0
(
τ 6 t

)
= 1− P

x0
(
τ > t

)
= 1−

∫ 1

−∞

px0(t, y)dy.

By [5, Th. 1.10, Chap. VI], we can differentiate the above expression with respect
to t and exchange the derivative and the integral. From (2.1), we deduce:

d

dt
P
x0
(
τ 6 t

)
= −

∫ 1

−∞

∂tp
x0(t, y)dy

=

∫ 1

−∞

∂y
(
[f ′(t) + b(y)]px0(t, y)

)
dy − 1

2

∫ 1

−∞

∂2
yyp

x0(t, y)dy,

for t ∈ [0, T ]. Again by [5, Th. 1.10, Chap. VI], we know that both px0(t, y)
and ∂yp

x0(t, y) tend to 0 exponentially fast as y → −∞. So, using the boundary
condition px0(t, 1) = 0, we obtain (2.2).

Third Step. We now aim at proving the same results, still with X0 = x0 < 1, but
under the original assumptions on b and f . The strategy is to use a mollification
argument. In order to do so, we must prove that, in the smooth setting, px0 and
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∂yp
x0 can be bounded by constants that only depend upon T , x0, Λ, K (the Lipschitz

constants associated with b) and A, where A = supt 6 T |f ′(t)|.
We thus go back to the case when b and f are smooth and bounded with bounded

derivatives of any order. By Proposition 4.2, for t ∈ [0, T ] small enough, we already
have a Gaussian bound for ∂yp

x0(t, y) in terms of T , A, K and Λ only (notice that the
argument applies since we know that px0 indeed satisfies PDE (2.1) in the smooth
setting). With the same notation as in the statement of Proposition 4.2 (using in
addition Proposition 3.2), the bound is of the form

|∂ypx0(t, y)| 6 C

t
exp

(
−|ξx0

t − y|2
Ct

)
, (6.6)

for t ∈ (0, δ], where (ξx0
t )t > 0 is given by (3.6) and C and δ are constants that depend

on T , A, K and Λ only. Plugging this bound into (3.3) and repeating the Gaussian
convolution argument used in (4.9), we deduce that, for t ∈ (0, δ],

px0(t, y) 6
C√
t
exp

(
−|ξx0

t − y|2
Ct

)
, (6.7)

up to a new value of C.
Actually, (6.6) and (6.7) can be seen as bounds for the Green function G and its

derivative in small time since px0(t, y) = G(0, x0, t, y). In the same way, we could
prove similar bounds for G(s, x, t, y) and ∂yG(s, x, t, y) when t − s ∈ (0, δ]. By a
standard chaining argument, we then deduce that (6.6) and (6.7) are valid on the
whole [0, T ], for a possibly new value of C. Indeed, for a given t ∈ (0, T ], we can
consider a sequence 0 = t0 < t1 < · · · < tN = t such that ti+1 − ti 6 δ. Then, by
using the Markov structure, we have:

px0(t, y) =

∫ t

0

∫

(−∞,1]N−1

N∏

i=1

G(ti−1, ti, zi−1, zi)dz1 . . . dzN−1,

with the convention z0 = x0 and zN = y. Noticing that N can be assumed to be
bounded from above and using again a Gaussian convolution argument, we deduce
that (6.6) and (6.7) can be extended to the whole (0, T ].

Fourth Step. We still assume that the coefficients are smooth and bounded, with
bounded derivatives of any order and that X0 = x0 < 1. By the third step, we are
then able to reduce the PDE (2.1) to an heat PDE with a non-trivial source term:

∂tp
x0(t, y)− 1

2
∂2
yyp

x0(t, y) = −∂y
[(
b(y) + f ′(t)

)
px0(t, y)

]
, t ∈ (0, T ], y < 1.

For any compact subset K ⊂ (0, T ] × (−∞, 1], we can consider a smooth cut-off
function η : [0, T ] × R → R+ matching 1 on K and vanishing outside another
compact subset K′ ⊂ (0, T ] × R, K ⊂ K′. Then, the function (0, T ] × (−∞, 1] ∋
(t, y) 7→ [ηpx0 ](t, y) satisfies the heat equation:

(
∂t −

1

2
∂2
yy

)[
ηpx0

]
(t, y) = h(t, y), (6.8)

with [ηpx0 ](0, ·) = 0 as initial condition and with [ηpx0 ](t, 1) = 0 and [ηpx0 ](t, y) = 0
for t ∈ [0, T ] and |y| large enough as boundary conditions, where h is a smooth
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function which can be bounded in terms of T , A, η, K and Λ only. By [4, Th. 4,
Sec. 2, Chap. 7], we deduce that ηpx0 and ∂y[ηp

x0 ] are (1/4, 1/2)-Hölder continuous
in (t, y), the Hölder constant depending on T , A, η, K and Λ only. Therefore, on any
compact subset K of (0, T ]×(−∞, 1], px0 and ∂yp

x0 are (1/4, 1/2)-Hölder continuous
in (t, y), the Hölder constant depending on T , A, K, K and Λ only. By the same
argument, on any compact subset K of [0, T ]× I, I being a finite interval included
in (−∞, 1] not containing x0, p

x0 and ∂yp
x0 are also (1/4, 1/2)-Hölder continuous in

(t, y), the Hölder constant depending on T , A, K, K and Λ only. Indeed, in such
a case, px0(t, y) and ∂yp

x0(t, y) tend to 0 as t tends to 0 and y stays in I, so that
the compact support K′ of η can be assumed to be included in [0, T ] × R (and not
necessarily in (0, T ]× R). In the end, we deduce that, on any compact subset K of
([0, T ]× (−∞, 1])\{(0, x0)}, px0 and ∂yp

x0 are (1/4, 1/2)-Hölder continuous in (t, y),
the Hölder constant depending on T , A, K, K and Λ only.

In order to tackle the second-order derivatives in space, we assume that K′ ⊂
(0, T ]× (−∞, 1), K′ being the support of η. Then, the function (0, T ]×R ∋ (t, y) 7→
[ηpx0 ](t, y) (with [ηpx0 ](t, y) = 0 for y > 1) satisfies (6.8) on the whole (0, T ]×R, so
that it can be represented as a standard Gaussian convolution. Then, by Calderon
and Zygmund estimates, see [10, Eq. (0.4), App. A], for any ς > 1, the Lς([0, T ]×
R, dt⊗ dy)-norms of ∂t[ηp

x0 ] and ∂yy[ηp
x0 ] are bounded in terms of A, η, K, Λ and

T only. Therefore, on any compact subset K of (0, T ]× (−∞, 1), for any ς > 1, the
Lς(K, dt ⊗ dy)-norms of ∂tp

x0 and ∂yyp
x0 are bounded in terms of T , A, K, K and

Λ only. For example, when K is a cylinder of the form [δ, T ] × [y − 1, y + 1], (6.6)
and (6.7) say that

∫

K

(
|∂tpx0(t, z)|ς + |∂2

yyp
x0(t, z)|ς

)
dtdz 6 Cς,δ

∫ T

δ

exp

(
−|ξx0

s − y|2
Cς,δ

)
ds, (6.9)

for a constant Cς,δ that is independent of x0 and y.

Fifth Step. We now have all the required ingredients to go back to the original
framework. The point is to approximate b and f by two sequences (bn)n > 1 and
(fn)n > 1 (for the topology of uniform convergence on compact sets) that satisfy the
previous smoothness conditions. The associated solutions to the PDE (2.1) are de-
noted by (px0,n)n > 1. On any compact subset K ⊂ ([0, T ] × (−∞, 1]) \ {(0, x0)},
the sequences (px0,n)n > 1 and (∂yp

x0,n)n > 1 are uniformly bounded and (1/4, 1/2)-
Hölder continuous in (t, y). Therefore, there exists a subsequence (ϕ(n))n > 1 such
that (px0,ϕ(n))n > 1 and (∂y[p

x0,ϕ(n)])n > 1 are uniformly convergent on compact sub-
sets of ([0, T ] × (−∞, 1]) \ {(0, x0)}. Similarly, we can assume that the sequences
(∂t[p

x0,ϕ(n)])n > 1 and (∂2
yy[p

x0,ϕ(n)])n > 1 are weakly convergent for the Lς(K, dt⊗ dy)
topology, for any ς > 1 and any compact subset K ⊂ (0, T ] × (−∞, 1). The limit
function of the sequence (px0,ϕ(n))n > 1 is denoted by px0 : clearly, it is a solution of
(2.1) (in the Sobolev sense), with px0(t, 1) = 0 for t > 0, as Dirichlet boundary con-
dition. By (6.7), it tends to 0 as t tends to 0 and y stays away from x0. Moreover,
∂yp

x0 exists and is continuous on ([0, T ]× (−∞, 1]) \ {(0, x0)}.
Then, we can prove (1.4). Indeed, we know that (px0,ϕ(n))n > 1 converges toward

px0 uniformly on compact subsets of ([0, T ] × (−∞, 1]) \ {(0, x0)}. Moreover, it is
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standard to prove that the solution Xn to (1.1) started at x0, but driven by bn and fn

instead of b and f , converges in law (as n → ∞) toward X on the space C([0, T ],R)
of continuous functions on [0, T ] endowed with the uniform topology. Denoting by
τn := inf{t > 0 : Xn

t > 1}, we claim that the pair (τn ∧ T,Xn) converges in law
toward (τ ∧ T,X) on the product space R× C([0, T ],R) endowed with the product
topology. Indeed, the mapping

C([0, T ],R) ∋ x 7→ (inf{t > 0 : x(t) > 1}) ∧ T

is continuous at any path x satisfying the “crossing property”:
(
∃t ∈ [0, T ) : x(t) > 1

)
⇒
(
∀p > 1, ∃tp ∈ (t, t+ 1/p) : x(tp) > 1

)
, (6.10)

and (6.10) holds for a.e. trajectory of X because of the Brownian part in the
dynamics of X. Recalling that (6.4) holds true in the smooth setting, that is with
px0 and τ therein replaced by px0,n and τn, n > 1, we can pass to the limit along
the subsequence (ϕ(n))n > 1 (to pass to the limit in the right-hand side of (6.4), use
the boundedness of the support of φ and the uniform convergence of (px0,(ϕ(n)))n > 1

toward px0 on compact subsets of (0, T ]× (−∞, 1]). We deduce that (6.4) holds in
the general setting as well, from which we deduce that (6.5) also holds in the general
setting.

By the same approximation argument, we can prove that when ν = δx0 , (2.2)
holds in the general setting as well.

By (1.4), px0 depends upon x0 in a measurable way.

Sixth Step. To complete the proof, it remains to discuss what happens when ν
does not reduce to a Dirac mass. The point is then prove that

pν(t, y) =

∫ 1

−∞

px(t, y)ν(dx), t > 0, y 6 1, (6.11)

is the right candidate for solving the Fokker-Planck equation and for making the
connection with X.

We first check that the definition (6.11) makes sense when t > 0. By applying
the Markov property for X, this will directly prove (1.4). From (6.7), we know that
px(t, y) 6 (C/t1/2) exp[−|ξxt − y|2/(Ct)]: this is enough to check that (6.11) indeed
makes sense. By Lebesgue dominated convergence Theorem, this also proves that
pν(t, y) → 0 when y → −∞. Similarly, pν is continuous on (0, T ]× (−∞, 1]. When
supp(ν) ⊂ (−∞, 1− ǫ], the same domination argument shows that continuity holds
on any compact subset of ([0, T ]× (−∞, 1]) \ ({0} × (−∞, 1− ǫ]).

Using (6.6), we can prove in a similar way that pν is continuously differentiable
in y on (0, T ]× (−∞, 1], with

∂yp
ν(t, y) =

∫ 1

−∞

∂yp
x(t, y)ν(dx), t > 0, y 6 1, (6.12)

and that ∂yp
ν(t, y) → 0 when y → −∞ When supp(ν) ⊂ (−∞, 1 − ǫ], continuous

differentiability holds on any compact subset of ([0, T ]×(−∞, 1])\({0}×(−∞, 1−ǫ]).
By combining the same domination argument with (6.9), we can also prove that

pν admits Sobolev derivatives of order 1 in t and of order 2 in y in any Lς , ς > 1, on
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any compact subsets of (0, T ]× (−∞, 1), the derivatives being given as the integrals
of the derivatives of px with respect to the law of ν. It is then plain to check that
pν satisfies (2.1).

The last point is thus to check that pν satisfies (2.2). By Markov’s property,

P
ν (τ 6 t) =

∫ 1

−∞

P
x (τ 6 t) ν(dx)

= −1

2

∫ 1

−∞

[∫ t

0

∂yp
x(s, 1)ds

]
ν(dx).

(6.13)

In order to prove (2.2), we must exchange the two integrals. To exchange the two
integrals, we specify the upper bound for |∂ypx(t, 1)|. Using (6.6) and (3.12) and
recalling that ξ1· ≡ 1, we deduce that |∂ypx(t, 1)| 6 (C/t) exp[−(1− x)2/(Ct)], from
which it holds that

∫ 1

−∞

∫ t

0

|∂ypx(s, 1)|ds ν(dx)

6

∫ 1−ǫ

−∞

∫ t

0

C

s
exp

(
−(1− x)2

Cs

)
ds ν(dx)

+

∫ 1

1−ǫ

∫ t

0

C

s
exp

(
−(1− x)2

Cs

)
ds ν(dx).

(6.14)

The first integral in the right-hand side is clearly bounded. To tackle the second
one, we make use of the assumption ν(dx) 6 β(1−x)dx for x ∈ (1−ǫ, 1]. We obtain
∫ 1

1−ǫ

∫ t

0

C

s
exp

(
−(1− x)2

Cs

)
ds ν(dx) 6 β

∫ ǫ

0

∫ t

0

Cx

s
exp

(
− x2

Cs

)
ds dx < ∞.

(6.15)
Going back to (6.13), we obtain

P
ν (τ 6 t) = −1

2

∫ t

0

(∫ 1

−∞

∂yp
x(s, 1)ν(dx)

)
ds = −1

2

∫ t

0

∂yp
ν(s, 1)ds,

the last part following from (6.12). Since the mapping (0, T ] ∋ t 7→ ∂yp
ν(t, 1)

is continuous, we deduce that the mapping (0, T ] ∋ t 7→ P
ν (τ 6 t) is continuously

differentiable. It then remains to check the continuous differentiability at time t = 0.
To this end, it is sufficient to prove that ∂yp

ν(·, 1) is continuous at t = 0. Following
(6.14) and (6.15), it is clear that, for any ǫ′ ∈ (0, ǫ),

lim
tց0

∂yp
ν(t, 1) = lim

tց0

∫ 1

1−ǫ′
∂yp

x(t, 1)ν(dx) = lim
tց0

∫ 1

1−ǫ′
∂yp

x(t, 1)pν0(x)dx, (6.16)

where pν0(x)dx = ν(dx), which is assumed to make sense on (1−ǫ′, 1). By Proposition
4.2, we know that, for some constant C > 0,

|∂ypx(t, y)− ∂yq(t, x, y)| 6
C√
t
exp

(
−|x− 1|2

Ct

)
,



FIRST HITTING TIME DENSITY ESTIMATES 23

which proves, by using the bound pν0(x) 6 β(1 − x) and by letting ǫ′ tend to 0 in
(6.16), that

lim
tց0

∂yp
ν(t, 1) = lim

ǫ′ց0
lim
tց0

∫ 1

1−ǫ′
∂yq(t, x, 1)p

ν
0(x)dx. (6.17)

We then introduce the killed Gaussian kernel with reflection at point 1:

q̂(t, x, y) =
1√
2πt

[
exp

(
−(x− y)2

2t

)
− exp

(
−(x− (2− y))2

2t

)]
.

Now a formula like (3.3) for expressing ∂yp
x(t, y) in terms of ∂yq(t, x, y) can be

proven for expressing ∂yq(t, x, y) in terms of ∂y q̂(t, x, y) (replacing f ′(s) + b(1) by
b(z) − b(1) in (3.3)). Recalling |b(z) − b(1)| 6 K|z − 1|, we obtain (for a possibly
new value of C which is allowed to increase from line to line)

|∂yq(t, x, 1)− ∂y q̂(t, x, 1)|

6 C

∫ t

0

∫ 1

−∞

C(1− z)

s(t− s)
exp

(
−|ξxs − z|2

Cs

)
exp

(
− |1− z|2
C(t− s)

)
dzds

6 C

∫ t

0

∫ 1

−∞

C

s(t− s)1/2
exp

(
−|ξxs − z|2

Cs

)
dzds

6 C.

Recalling (6.17), we deduce that:

lim
tց0

∂yp
ν(t, 1) = lim

ǫ′ց0
lim
tց0

∫ 1

1−ǫ′
∂y q̂(t, x, 1)p

ν
0(x)dx,

= − lim
ǫ′ց0

lim
tց0

2t−1/2

∫ 1

1−ǫ′
g′
(
x− 1

t1/2

)
pν0(x)dx,

where g stands for the standard Gaussian kernel. Since pν0 is assumed to be differen-
tiable at 1, with pν0(1) = 0, we can write pν0(x) = (x−1)[d/dx]pν0(1)+o(x−1), where
o(·) stands for the Landau notation. We deduce that the limit of ∂yp

ν(t, 1) as t ց 0
must be [d/dx]pν0(1). Following (6.14) and (6.15), we have an explicit bound for the
supremum norm of ∂yp

ν(·, 1) in terms of β, K, Λ, T and the supremum norms of f
and f ′ only.
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