Manuel Bodirsky 
email: bodirsky@lix.polytechnique.fr
  
Miki Hermann 
email: hermann@lix.polytechnique.fr
  
Florian Richoux 
email: richoux@jfli.itc.u-tokyo.ac.jp
  
Miki Hermann Lix 
  
  
  
  
Complexity of Existential Positive First-Order Logic

Keywords: Computational Complexity, Existential Positive First-Order Logic, Constraint Satisfaction Problems

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

We study the computational complexity of the following class of computational problems. Let Γ be a structure with finite or infinite domain and with a finite relational signature. The model-checking problem for existential positive first-order logic, parametrized by Γ, is the following problem.

Problem: EXPOS(Γ)

Input: An existential positive first-order sentence Φ. Question: Does Γ satisfy Φ? Existential positive first-order formula over Γ are first-order formulas without universal quantifiers, equalities, and negation symbols, and formally defined as follows: -if R is a relation symbol of a relation from Γ with arity k and x 1 , . . . , x k are (not necessarily distinct) variables, then R(x 1 , . . . , x k ) is an existential positive first-order formula (such formulas are called atomic); -if ϕ and ψ are existential positive first-order formulas, then ϕ ∧ ψ and ϕ ∨ ψ are existential positive first-order formulas; -if ϕ is an existential positive first-order formula with a free variable x then ∃x.ϕ is an existential positive first-order formula.

An existential positive first-order sentence is an existential positive first-order formula without free variables. Note that we do not allow the equality symbol in the existential positive sentences; this only makes our results stronger, since one might always add a relation symbol = for the equality relation to the signature of Γ to obtain the result for the case where the equality symbol is allowed. Also note that adding a symbol for equality to Γ might change the complexity of EXPOS(Γ). Consider for example Γ := (N; =); here, EXPOS(Γ) can be reduced to the Boolean formula evaluation problem (which is known to be in LOGSPACE) as follows: atomic formulas in Φ of the form x = y are replaced by true, and atomic formulas of the form x = x are replaced by false. The resulting Boolean formula is equivalent to true if and only if Φ is true in Γ. However, the problem EXPOS(Γ ′ ) for Γ ′ := (N; =, =) is NP-complete. Similar examples exist over finite domains.

The constraint satisfaction problem CSP(Γ) for Γ is defined similarly, but its input consists of a primitive positive sentence, that is, a existential positive sentence without disjunctions. Constraint satisfaction problems frequently appear in many areas of computer science, and have attracted a lot of attention, in particular in combinatorics, artificial intelligence, finite model theory and universal algebra; we refer to the recent collection of survey articles on this subject [START_REF]Complexity of Constraints -An Overview of Current Research Themes[END_REF]. The class of constraint satisfaction problems for infinite structures Γ is a rich class of problems; it can be shown that for every computational problem there exists a relational structure Γ such that CSP(Γ) is equivalent to that problem under polynomial-time Turing reductions [START_REF] Bodirsky | Non-Dichotomies in Constraint Satisfaction Complexity[END_REF].

In this paper, we show that the complexity classification for existential positive first-order sentences over infinite structures can be reduced to the complexity classification for constraint satisfaction problems. For finite structures Γ, our result implies that EXPOS(Γ) is in LOGSPACE or NP-complete. The LOGSPACEsolvable cases of EXPOS(Γ) are in this case precisely those relational structures Γ with an element a such that all non-empty relations in Γ contain the tuple (a, . . . , a); in this case, EXPOS(Γ) is called a-valid. Interestingly, this is no longer true for infinite structures Γ. To see this, consider again the structure Γ := (N; =), which is clearly not a-valid, but in LOGSPACE as we have noticed above.

A universal-algebraic study of the model-checking problem for finite structures Γ and various other syntactic restrictions of first-order logic (for instance positive first-order logic) can be found in [START_REF] Martin | First-Order Model Checking Problems Parameterized by the Model[END_REF].

A preliminary version of this article appeared in [START_REF] Bodirsky | Complexity of Existential Positive First-Order Logic[END_REF]. The present version differs in that the main proof has been simplified and now also works without the relation symbol for equality; moreover, Proposition 3 and Section 4 have been added.

Main Result

We write L ≤ m L ′ if there exists a deterministic polynomial-time many-one reduction from L to L ′ . Definition 1 (from [START_REF] Ladner | A Comparison of Polynomial-Time Reducibilities[END_REF]) A problem A is non-deterministic polynomial-time many-one reducible to a problem B (A ≤ NP B) if there is a nondeterministic polynomial-time Turing machine M such that x ∈ A if and only if there exists a computation of M that outputs y on input x, and y ∈ B. We denote by A NP the smallest class that contains A and is downward closed under ≤ NP .

Observe that ≤ NP is transitive [START_REF] Ladner | A Comparison of Polynomial-Time Reducibilities[END_REF]. To state the complexity classification for existential positive firstorder logic, we need the following concept. The Γ-localizer F (ψ) of a formula ψ is defined as follows:

• Now suppose that Γ is not locally refutable, that is, there is an existential positive sentence Φ that is false in Γ such that F (Φ) is true. Define recursively for each subformula ψ of Φ where F (ψ) is true the formula T (ψ) as follows. If ψ is of the form ψ 1 ∨ ψ 2 , then for some i ∈ {1, 2} the formula F (ψ i ) must be true, and we set T (ψ) to be T (ψ i ). If ψ is of the form ψ 1 ∧ ψ 2 , then for both i ∈ {1, 2} the formula F (ψ i ) must be true, and we set T (Ψ) to be T (ψ

F (∃x.ψ) = F (ψ) • F (ϕ ∧ ψ) = F (ϕ) ∧ F (ψ) • F (ϕ ∨ ψ) = F (ϕ) ∨ F (ψ) • When ψ is atomic, then F (ψ) = true if ψ is
1 ) ∧ T (ψ 2 ). Each conjunct ϕ in T (Φ) is satisfiable in Γ since F (Φ) is true. But since Φ is false in Γ, T (Φ) must be unsatisfiable.
In Section 3, we will show the following result.

Theorem 4 Let Γ be a structure with a finite relational signature τ . If Γ is locally refutable then the problem EXPOS(Γ) to decide whether an existential positive sentence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ) is complete for the class CSP(Γ) NP under polynomial-time many-one reductions.

In particular, EXPOS(Γ) is in LOGSPACE or is NP-hard (under deterministic polynomial-time manyone reductions). If Γ is finite, then EXPOS(Γ) is in LOGSPACE or NP-complete, because finite domain constraint satisfaction problems are clearly in NP. The observation that EXPOS(Γ) is in LOGSPACE or NP-complete has previously been made in [START_REF] Hermann | On the Computational Complexity of Monotone Constraint Satisfaction Problems[END_REF] and independently in [START_REF] Martin | Dichotomies and Duality in First-order Model Checking Problems[END_REF]. However, our proof remains the same for finite domains and is simpler than the previous proofs.

Proof

Before we prove Theorem 4, we start with the following simpler result.

Theorem 5 Let Γ be a structure with a finite relational signature τ . If Γ is locally refutable, then the problem EXPOS(Γ) to decide whether an existential positive sentence is true in Γ is in LOGSPACE. If Γ is not locally refutable, then EXPOS(Γ) is NP-hard (under polynomial-time many-one reductions).

To prove Theorem 5, we need first to prove the following lemma.

Lemma 6 A structure Γ is not locally refutable if and only if there are existential positive formulas ψ 0 and ψ 1 with the property that ψ 0 and ψ 1 define non-empty relations over Γ; -ψ 0 ∧ ψ 1 defines the empty relation over Γ.

Proof:

The "if"-part of the statement is immediate. To show the "only if"-part, suppose that Γ is not locally refutable. Then by Proposition 3 there is an unsatisfiable conjunction ψ of satisfiable atomic formulas. Among all such formulas ψ, let ψ be one of minimal length. Let ψ 0 be one of the atomic formulas in ψ, and let ψ 1 be the conjunction over the remaining conjuncts in ψ. Since ψ was chosen to be minimal, the formula ψ 1 must be satisfiable. By construction ψ 0 is also satisfiable and ψ is unsatisfiable, which is what we had to show.

Proof of Theorem 5: If Γ is locally refutable, then EXPOS(Γ) can be reduced to the positive Boolean formula evaluation problem, which is known to be LOGSPACE-complete. We only have to construct from an existential positive sentence Φ a Boolean formula F := F Γ (Φ) as described before Definition 2. Clearly, this construction can be performed with logarithmic work-space. We evaluate F , and reject if F is false, and accept otherwise.

If Γ is not locally refutable, we show NP-hardness of EXPOS(Γ) by reduction from 3-SAT. Let I be a 3-SAT instance. We construct an instance Φ of EXPOS(Γ) as follows. Let ψ 0 and ψ 1 be the formulas from Lemma 6 (suppose they are d-ary). Let v 1 , . . . , v n be the Boolean variables in I. For each v i we introduce d new variables xi = x 1 i , . . . , x d i . Let Φ be the instance of EXPOS(Γ) that contains the following conjuncts:

• For each 1 ≤ i ≤ n, the formula ψ 0 (x i ) ∨ ψ 1 (x i ) • For each clause l 1 ∨ l 2 ∨ l 3 in I, the formula ψ i 1 (x j 1 ) ∨ ψ i 2 (x j 2 ) ∨ ψ i 3 (x j 3 ) where i p = 0 if l p equals
¬x jp and i p = 1 if l p equals x jp , for all p ∈ {1, 2, 3}.

It is clear that Φ can be computed in deterministic polynomial time from I, and that Φ is true in Γ if and only if I is satisfiable.

Applied to finite relational structures Γ, we obtain the result from [START_REF] Hermann | On the Computational Complexity of Monotone Constraint Satisfaction Problems[END_REF] and [START_REF] Martin | Dichotomies and Duality in First-order Model Checking Problems[END_REF], that is, EXPOS(Γ) is in LOGSPACE if Γ is a-valid and NP-complete otherwise. We prove in the following proposition that, over a finite domain D, Γ is locally refutable if and only if it is a-valid for an element a ∈ D.

Proposition 7 Let Γ be a relational structure with a finite domain D. Then Γ is locally refutable if and only if it is a-valid for an element a ∈ D.

Proof: Suppose that Γ is a-valid, and let Φ be an existential positive sentence over the signature of Γ.

To show that Γ is locally refutable, we only have to show that Φ is true in Γ when F (Φ) is equivalent to true (since the other direction holds trivially). But this follows from the fact that if an atomic formula R(x 1 , . . . , x n ) is satisfiable in Γ then in fact this formula can be satisfied by setting all variables to a.

For the opposite direction of the statement, let D = {a 1 , . . . , a n }, and suppose that for all a ∈ D the structure Γ is not a-valid. That is, for each a i ∈ D there exists a non-empty relation R i of arity r i in Γ such that (a i , . . . , a i ) / ∈ R. Let r be n i=1 r i , and let x 1 , . . . , x rn be distinct variables. Consider the formula

ψ = y∈{x 1 ,...,xrn} r R 1 (y 1 , . . . , y r 1 ) ∧ • • • ∧ R n (y r-rn+1 , . . . , y r ) (1) 
By the pigeonhole principle, for every mapping f : {x 1 , . . . , x rn } → D at least r variables are mapped to the same value, say to a i . For a vector y that contains exactly these r variables, for some l there is a conjunct R i (y l+1 , . . . , y l+r i ) in ψ; but by assumption, R i does not contain the tuple (a i , . . . , a i ). This shows that ∃x 1 , . . . , x rn .ψ is not true in Γ. On the other hand, since each relation R i is non-empty, it is clear that the Boolean formula F (∃x 1 , . . . , x rn .ψ) is true. Therefore, Γ is not locally refutable.

Remark 8 In the proof of Theorem 4 it will be convenient to assume that Γ has a single relation R. When we study the problem CSP(Γ), this is without loss of generality, since we can always find a CSP which is deterministic polynomial-time equivalent and where the template is of this form: if Γ = (D; R 1 , . . . , R n ) where R i has arity r i and is not empty, then CSP(Γ) is equivalent to

CSP(D; R 1 × • • • × R n ) where R 1 × • • • × R n is the n i=1 r i -ary relation defined as the Cartesian product of the relations R 1 , . . . , R n . Similarly, EXPOS(Γ) is equivalent to EXPOS(D; R 1 × • • • × R n ).
Proof of Theorem 4: If Γ is locally refutable then the statement has been shown in Theorem 5. Suppose that Γ is not locally refutable. To show that EXPOS(Γ) is contained in CSP(Γ) NP , we construct a nondeterministic Turing machine T which takes as input an instance Φ of EXPOS(Γ), and which outputs an instance T (Φ) of CSP(Γ) as follows.

On input Φ the machine T proceeds recursively as follows:

• if Φ is of the form ∃x.ϕ then return ∃x.T (ϕ);

• if Φ is of the form ϕ 1 ∧ ϕ 2 then return T (ϕ 1 ) ∧ T (ϕ 2 );
• if Φ is of the form ϕ 1 ∨ ϕ 2 then non-deterministically return either T (ϕ 1 ) or T (ϕ 2 );

• if Φ is of the form R(x 1 , . . . , x k ) then return R(x 1 , . . . , x k ).
The output of T can be viewed as an instance of CSP(Γ), since it can be transformed to a primitive positive sentence (by moving all existential quantifiers to the front). It is clear that T has polynomial running time, and that Φ is true in Γ if and only if there exists a computation of T on Φ that computes a sentence that is true in Γ.

We now show that EXPOS(Γ) is hard for CSP(Γ) NP under ≤ m -reductions. Let L be a problem with a non-deterministic polynomial-time many-one reduction to CSP(Γ), and let M be the non-deterministic Turing machine that computes the reduction. We have to construct a deterministic Turing machine M ′ that computes for any input string s in polynomial time in |s| an instance Φ of EXPOS(Γ) such that Φ is true in Γ if and only if there exists a computation of M on s that computes a satisfiable instance of CSP(Γ).

Say that the running time of M on s is in O(|s| e ) for a constant e. Hence, there are constants s 0 and c such that for |s| > s 0 the running time of M and hence also the number of constraints in the input instance of CSP(Γ) produced by the reduction is bounded by t := c|s| e . The non-deterministic computation of M can be viewed as a deterministic computation with access to non-deterministic advice bits as shown in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. We also know that for |s| > s 0 , the machine M can access at most t non-deterministic bits. If w is a sufficiently long bit-string, we write M w for the deterministic Turing machine obtained from M by using the bits in w as the non-deterministic bits, and M w (s) for the instance of CSP(Γ) computed by M w on input s.

If |s| ≤ s 0 , then M ′ returns ∃x.ψ 1 (x) if there is an w ∈ {0, 1} * such that M w (s) is a satisfiable instance of CSP(Γ), and M ′ returns ∃x(ψ 0 (x) ∧ ψ 1 (x)) otherwise (i.e., it returns a false instance of EXPOS(Γ); ψ 0 and ψ 1 are defined in Lemma 6). Since s 0 is a fixed finite value, M ′ can perform these computations in constant time.

By Remark 8 made above, we can assume without loss of generality that Γ has just a single relation R. Let l be the arity of R. Then instances of CSP(Γ) with variables x 1 , . . . , x n can be encoded as sequences of numbers that are represented by binary strings of length ⌈log t⌉ as follows: the i-th number m in this sequence indicates that the (((i -1) mod l) + 1)-st variable in the (((i -1) div l) + 1)-st constraint is x m .

For |s| > s 0 , we use a construction from the proof of Cook's theorem given in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. In this proof, a computation of a non-deterministic Turing machine T accepting a language L is encoded by Boolean variables that represent the state and the position of the read-write head of T at time r, and the content of the tape at position j at time r. The tape content at time 0 consists of the input x, written at positions 1 through n, and the non-deterministic advice bit string w, written at positions -1 through -|w|. The proof in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] specifies a deterministic polynomial-time computable transformation f L that computes for a given string s a SAT instance f L (s) such that there is an accepting computation of T on s if and only if there is a satisfying truth assignment for f L (s).

In our case, the machine M computes a reduction and thus computes an output string. Recall our binary representation of instances of the CSP M writes on the output tape a sequence of numbers represented by binary strings of length ⌈log t⌉. It is straightforward to modify the transformation f L given in the proof of Theorem 2.1 in [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] to obtain for all positive integers a, b, c where a ≤ t, b ≤ l, c ≤ ⌈log t⌉, and d ∈ {0, 1}, a deterministic polynomial-time transformation g d a,b,c that computes for a given string s a SAT instance g d a,b,c (s) with distinguished variables z 1 , . . . , z p , p ≤ t for the non-deterministic bits in the computation of M such that the following are equivalent:

• g d a,b,c (s) has a satisfying assignment where z i is set to w i ∈ {0, 1} for 1 ≤ i ≤ p;

• the c-th bit in the b-th variable of the a-th constraint in M w (s) equals d.

We use the transformations g d a,b,c to define M ′ as follows. The machine M ′ first computes the formulas g d a,b,c (s). For every Boolean variable v in these formulas we introduce a new conjunct ψ 0 (x v ) ∨ ψ 1 (x v ) where x v is a d-tuple of fresh variables and ψ 0 and ψ 1 are the two formulas defined in Lemma 6. Then, every positive literal v in the original conjuncts of the formula is replaced by ψ 1 (x v ), and every negative literal l = ¬v by ψ 0 (x v ). We then existentially quantify over all variables except for xz 1 , . . . , xzp . Let ψ d a,b,c (s) denote the resulting existential positive formula. For positive integers k and i, we denote as k[i] the i-th bit in the binary representation of k. Let n be the total number of variables in the CSP instance M w (s) (in particular, n ≤ t). It is clear that the formula ∃y 1 , . . . , y n , xz 1 , . . . , xzp . We claim that the formula Φ is true in Γ if and only if there exists a computation of M on s that computes a satisfiable instance of CSP(Γ). To see this, let w be a sufficiently long bit-string such that M w (s) is a satisfiable instance of CSP(Γ). Suppose for the sake of notation that the n variables in M w (s) are the variables y 1 , . . . , y n . Let a 1 , . . . , a n be a satisfying assignment to those n variables. Then, if for 1 ≤ i ≤ n the variable y i in the formula Φ is set to a i , and for 1 ≤ i ≤ p the variables xz i are set to a tuple that satisfies ψ d where d is the i-th bit in w, we claim that the inner part of Φ is true in Γ. The reason is that, due to the way how we set the variables of the form xz i , the precondition b≤l,c ψ

k b [c] a,b,c (s) is true if and only if R(y k 1 , . . . , y k l ) is a constraint in M w (s).
Therefore, all the atomic formulas of the form R(y k 1 , . . . , x k l ) are satisfied due to the way how we set the variables y i , and hence Φ is true in Γ. It is straightforward to verify that the opposite implication holds as well, and this shows the claimed equivalence.

Structures With Function Symbols

In this section, we briefly discuss the complexity of EXPOS(Γ) when Γ might also contain functions. That is, we assume that the signature of Γ consists of a finite set of relation and function symbols, and that the input formulas for the problem EXPOS(Γ) are existential positive first-order formulas over this signature. It is easy to see from the proofs in the previous section that when Γ is not locally refutable, then EXPOS(Γ) is still NP-hard (with the same definition of local refutability as before).

The case when Γ is locally refutable becomes more intricate when Γ has functions. We present an example of a locally refutable structure Γ where EXPOS(Γ) is NP-hard. Let the signature of Γ be the structure (2 N ; =, ∩, ∪, c, 0, 1) where = is the binary disequality relation, ∩ and ∪ are binary functions for intersection and union, respectively, c is a unary function for complementation, and 0, 1 are constants (i.e., 0-ary functions) for the empty set and the full set N, respectively.

Proposition 9

The structure (2 N ; =, ∩, ∪, c, 0, 1) is locally refutable. Proof: By Lemma 6 is suffices to show that if Ψ is a conjunction of atomic formulas that are satisfiable in Γ, then Ψ is satisfiable over Γ. Since the only relation symbol in the structure is =, every conjunct in Ψ is of the form t 1 = t 2 , where t 1 and t 2 are terms formed by variables and the function symbols ∩, ∪, c, 1 and 0. By Boole's fundamental theorem of Boolean algebras, t = t ′ can be re-written as t ′′ = 0. Therefore, Ψ can be written as t 1 = 0 ∧ • • • ∧ t n = 0. Since Γ is an infinite Boolean algebra, Theorem 5.1 in [START_REF] Marriott | Negative boolean constraints[END_REF] shows that if t i = 0 is satisfiable in Γ for all i ≤ n, then Ψ is satisfiable in Γ as well.

Proposition 10 The problem EXPOS(2 N ; =, ∩, ∪, c, 0, 1) is NP-hard.

Proof: The proof is by reduction from SAT. Given a Boolean formula Ψ in CNF with variables x 1 , . . . , x n , we replace each conjunction in Ψ by ∩, each disjunction by ∪, and each negation by c. Let t be the resulting term over the signature {∩, ∪, c} and variables x 1 , . . . , x n . It is easy to verify that ∃x 1 , . . . , x n .t = 0 is true in Γ if and only if Ψ is a satisfiable Boolean formula.

Conclusion

In this paper, we proved that for an arbitrary (finite or infinite) relational structure the problem EXPOS(Γ) is in LOGSPACE if Γ is locally refutable, or otherwise complete for the class CSP(Γ) NP under deterministic polynomial-time many-one reductions. In particular, if Γ is not locally refutable then the problem EXPOS(Γ) is NP-hard. Structures with a finite domain are locally refutable if and only if they are a-valid for some value a of the domain D. Finally, we present an example of a structure that shows that our result cannot be straightforwardly extended to structures Γ with function symbols, since local refutability of Γ no longer implies that EXPOS(Γ) is in LOGSPACE when Γ contains function symbols.

1≤a,k 1

 1 ,...,k l ≤t (y k 1 , . . . , y k l )   can be re-written in existential positive form Φ without blow-up: we can replace implications α → β by ¬α ∨ β, and then move the negation to the atomic level, where we can remove negation by exchanging the role of ϕ 0 and ϕ 1 . Hence, Φ can be computed by M ′ in polynomial time.

  satisfiable in Γ false otherwise Definition 2 We call a structure Γ locally refutable if every existential positive sentence Φ is true in Γ if and only if the Γ-localizer F (Φ) is logically equivalent to true. First suppose that Γ is locally refutable, and let ϕ be a conjunction of atomic formulas with variables x 1 , . . . , x n . Then every conjunct of ϕ is satisfiable in Γ if and only if F (ϕ) is true. By local refutability of Γ this is the case if and only if ∃x 1 , . . . , x n .ϕ is true in Γ, which shows the claim.

	Proposition 3 A structure Γ is locally refutable if and only if every unsatisfiable conjunction of atomic
	formulas contains an unsatisfiable conjunct.
	Proof:

Acknowledgment

We would like to thank Víctor Dalmau for helpful suggestions, and Moritz Müller for the encouragement to study the case where the structure Γ contains function symbols.