
HAL Id: hal-00870949
https://hal.science/hal-00870949

Submitted on 19 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using SAT and SQL for Pattern Mining in Relational
Databases

Emmanuel Coquery, Jean-Marc Petit, Lakhdar Saïs

To cite this version:
Emmanuel Coquery, Jean-Marc Petit, Lakhdar Saïs. Using SAT and SQL for Pattern Mining in
Relational Databases. 1st Workshop on COmbining COnstraint solving with MIning and LEarning
(CoCoMile’12), 2012, Montpellier, France. pp.41-46. �hal-00870949�

https://hal.science/hal-00870949
https://hal.archives-ouvertes.fr

Using SAT and SQL for Pattern Mining in
Relational Databases

Emmanuel Coquery1 and Jean-Marc Petit1 and Lakhdar Sais2

Abstract. In this paper, we present an ongoing work bridg-
ing the gap between pattern mining, SQL and SAT for a
particular class of patterns. We extend the work presented
in [2] that proposes a logical query language for rule patterns
satisfying Armstrong’s axioms. Our contributions are the fol-
lowing: firstly, we allow a large part of the relational tuple
calculus (SQL) to be used in the specification of queries. Sec-
ondly, we propose a boolean encoding of the query that can be
used to compute answers even in the case of non Armstrong-
compliant queries. Some experiments have been performed on
top of Derby (embedded Java DBMS) and a modified version
of MiniSat to show the feasibility of the approach.

1 INTRODUCTION

Declarative approaches for pattern mining attracted a grow-
ing attention in the recent years. On one hand, a way to in-
crease declarativity is to devise high level query languages for
data mining [10, 13, 14, 5, 8, 11, 2]. On the other hand, more
declarativity often induce a greater expressivity, at the cost
of a reduced efficiency. Constraint programming approaches
for pattern mining, initiated in [15], were proposed to provide
a good compromise between expressivity and efficiency.

In this paper, we propose to use SQL and SAT together
for pattern mining. We extend the work presented in [2] that
proposes a logical query language for rule patterns satisfying
Armstrong’s axioms. While such patterns can be enumerated
with efficient algorithms they might be seen as too restrictive.
The first contribution of this paper is to allow a large part of
the relational tuple calculus (SQL) to be used in the specifi-
cation of queries. The second one is the use of a SAT solver
for enumerating patterns even in the case of non Armstrong-
compliant queries.

The rest of this paper is organized as follows. Section 2
presents the RLT query language. Section 3 presents the ba-
sic principles of the query boolean encoding. Implementation
principles are presented in section 4 together with a few opti-
mizations, while section 5 provides some ways to reduce the
number of answers. Finally some experimental results are pre-
sented in section 6 and we conclude in section 7.

2 THE RLT LANGUAGE

In this section, we introduce the syntax and semantics of the
RLT language, which is based on a mixture of tuple relational

1 Université de Lyon, CNRS, France, email: first-
name.lastname@liris.cnrs.fr

2 Université d’Artois, CNRS, France, email: sais@cril.univ-artois.fr

calculus [1] and RL language [2].

2.1 Preliminaries

We introduce the following definitions and notations used in
the RLT language:

• U is a set of attributes, noted Ā, B̄ . . .,
• CST is a set of constants,
• CMP is a set of binary3 comparisons over CST . It is as-

sumed that if c̄ and c̄′ are two constants, and if 2 ∈ CMP,
then c̄ 2 c̄′ is computable in constant time.

• a schema R is a finite, nonempty set of attributes from U ,
• a tuple t̄ over a schema R is a total function from R to
CST ,

• t̄[Ā] denotes the value of t̄ for attribute Ā,
• a relation r̄ over a schema R is a set of tuples over R.

• s, t, u, s1, . . . are tuple variables,
• A,B,C,A1, B1 . . . are attribute variables, i.e. capital letters

from the beginning of the alphabet,
• X,Y, Z,X1, Y1 . . . are schema variables, i.e. capital letters

from the end of the alphabet,
• r, r1, r

′ . . . are relation symbols.

To avoid ambiguity with variables, we shall use the follow-
ing notations for attributes, set of attributes and tuples:

• Ā, B̄, C̄, Ā1, B̄1 . . . are single attributes,
• X̄, Ȳ , Z̄, X̄1, Ȳ1 . . . are set of attributes,
• s̄, t̄, t̄1, t̄2, . . . are tuples,
• c̄, c̄1, c̄′ are constants.

For any function f : E → E′, we denote by f [e := e′],
where e ∈ E and e′ ∈ E′, the function f ′ which maps e to e′

and maps e1 to f(e1) if e 6= e1.
For any function f : E → E′, and any subset E1 ⊆ E, we

denote by f|E1
the restriction f ′ : E1 → E′ of f to E1, which

maps e1 ∈ E1 to f(e1).

2.2 RL Formulas

This section recalls the syntax and semantics of the RL lan-
guage [2]. In this paper, we restrict the use of tuple vari-
able quantifiers, by removing them from definition 1 and re-
introducing them in section 2.4. We also limit the use of at-
tribute quantifiers to some form of restricted quantification.

3 the binary restriction can be easily lifted, allowing arbitrary SQL
boolean expressions

Let A,B be attribute variables, t, s tuple variables, c̄ a con-
stant, X a schema variable.

Definition 1 The set of RL-formulas, noted δ, δ1, δ, . . ., is
inductively defined as the smallest set verifying:

• t.A 2 c̄, t.A 2 s.B, A = B and A = Ā are atomic RL-
formulas

• If δ is a RL-formula and A an attribute variable, ∀A(X)(δ)
is a RL-formula

• If δ is a RL-formula and A an attribute variable, ∃A(X)(δ)
is a RL-formula

• If δ1 and δ2 are RL-formulas, then ¬δ1 and (δ1 ∧ δ2) are
RL-formulas

Other logical connectors such as ∨,⇒ and abbreviations true,
false are defined as usual.

Definition 2 A RL-interpretation is a quadruplet
(R,Σ, σ, τ) where:

• R ⊆ U is a schema,
• Σ, the schema interpretation, is a function mapping each

schema variable X to a subset of R,
• σ, the attribute interpretation, is a function mapping each

attribute variable A to an attribute Ā ∈ R,
• τ , the tuple interpretation, is a function mapping each tuple

variable t to a tuple t̄ over R.

Definition 3 Let δ be a RL-formula. The satisfaction of δ
with respect to a RL interpretation (R,Σ, σ, τ), denoted by
(R,Σ, σ, τ) |= δ, is defined inductively as follows:

• (R,Σ, σ, τ) |= t.A 2 c̄ if τ(t)[σ(A)] 2 c̄
• (R,Σ, σ, τ) |= t.A 2 s.B if τ(t)[σ(A)] 2 τ(t)[σ(B)]
• (R,Σ, σ, τ) |= A = Ā if σ(A) = Ā
• (R,Σ, σ, τ) |= A = B if σ(A) = σ(B)
• (R,Σ, σ, τ) |= ∀A(X)(δ) if for all Ā ∈ Σ(X),

(R,Σ, σ[A := Ā], τ) |= δ
• (R,Σ, σ, τ) |= ∃A(X)(δ) if for some Ā ∈ Σ(X),

(R,Σ, σ[A := Ā], τ) |= δ
• (R,Σ, σ, τ) |= ¬δ if (R,Σ, σ, τ) 6|= δ
• (R,Σ, σ, τ) |= (δ1∧δ2) if (R,Σ, σ, τ) |= δ1 and (R,Σ, σ, τ) |=
δ2

2.3 Relational Calculus

Here we recall some definitions of the tuple relational cal-
culus [1] (abbreviated TRC in the following). Let Ā, B̄ be
attributes, t, s be tuple variables, c̄ be a constant and r be a
relation symbol.

Definition 4 The set of TRC-formulas, noted ψ,ψ1, ψ
′, . . .,

is inductively defined as the smallest set verifying:

• t.Ā 2 c and t.Ā 2 t.B̄ are atomic TRC-formula
• r(t) is an atomic TRC-formula
• if ψ is a TRC-formula, and t is a tuple variable then ∃t(ψ)

is a TRC-formula
• if ψ1 and ψ2 are TRC-formulas then (ψ1)∧ (ψ2) and ¬(ψ1)

are TRC formulas

Other logical connectors such as ∨,⇒, quantifier ∀ and ab-
breviations true, false are defined as usual.

Now we recall the logical semantics of TRC-formulas. For
sake of simplicity, we assume that all relations and schemas
are defined over the same schemaR. This restriction can easily
be lifted though.

Definition 5 A TRC interpretation is a pair (d, τ) where:

• d is a function, the database, mapping each relation symbol
r to a relation r̄ over R,

• τ is a function, the tuple interpretation, mapping each tuple
variable t to a tuple t̄ over R.

Definition 6 Let ψ be a TRC-formula. The satisfaction of ψ
with respect to a TRC interpretation (d, τ), denoted (d, τ) |=
ψ, is inductively defined as follows:

• (d, τ) |= t.Ā 2 c̄ if τ(t)[Ā] = c̄
• (d, τ) |= t.Ā 2 t.B̄ if τ(t)(Ā) = τ(t)(B̄)
• (d, τ) |= r(t) if τ(t) ∈ d(r)
• (d, τ) |= ¬(ψ) if (d, τ) 6|= ψ
• (d, τ) |= ∃t(ψ) if there exists a tuple t̄′ over R such that

(d, τ [t := t̄′]) |= ψ
• (d, τ) |= (ψ1) ∧ (ψ2) if (d, τ) |= ψ1 and (d, τ) |= ψ2

In the rest of the paper, we restrict ourselves to authorized
relational calculus [1], a syntactical restriction of the rela-
tion calculus which garanties domain independence. That is,
given a database d, the set of tuple interpretations τ such that
(d, τ) |= ψ only depends on d and ψ.

Definition 7 Given a TRC formula ψ, with t1, . . . , tk as free
variables, the answer of ψ w.r.t. a database d, denoted by
ans(ψ, d), is defined as:

{τ|{t1,...,tk} | (d, τ) |= ψ}

Note that for an authorized TRC formula ψ and a database
d that associate only finite relations to relation symbols, the
answer ans(ψ, d) is finite.

2.4 RLT Queries

We introduce RLT queries, which constitute the RLT -
language.

Definition 8 A RLT query is of the form:

{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}

where

• X1, . . . , Xn are schema variables
• t1, . . . , tk are tuple variables over the same schema R
• ψ is an authorized TRC-formula, that has exactly t1, . . . , tk

as free variables.
• δ is a RL-formula in which:

– the only (free) tuple variables are t1, . . . , tk

– the only (free) schema variables are X1, . . . , Xn

– there is no free attribute variable.

∀t1 . . .∀tk ψ ⇒ δ is said to be the (RLT) formula of the
query.

In order to give an idea of how querying can be done using
RLT , let us consider the following query, which finds func-
tional dependencies in a relation r over R:

Q1 = {〈X,Y 〉 : R | ∀t∀s(r(t) ∧ r(s))⇒
(∀A(X)(t.A = s.A))⇒ (∀B(Y)(t.B = s.B))}

Non Armstrong-compliant queries can also be expressed, such
as:

Q2 = {〈X,Y 〉 : R | ∀t∀s(r(t) ∧ r(s))⇒
(∃A(X)(t.A = s.A))⇒ (∃B(Y)(t.B = s.B))}

or the following query for finding influence of genes

Q3 = {〈X,Y 〉 : R | ∀t r(t) ∧ r(s) ∧ s.īd = t.īd+ 1⇒
(∀A(X)(t.A > 0.6))⇒ (∀B(Y)(t.B < 0.4))}

assuming that >, < and c̄ = c̄′ + 1 are comparisons in CMP.
We now define the semantics of the language, first by defin-

ing the satisfaction ofRLT query formulas, and then by defin-
ing the answers of a RLT query w.r.t. a given database.

Definition 9 A RLT interpretation is a triple (d,R,Σ)
where:

• R ⊆ U is a set of attributes;
• d is a function, the database, mapping each relation symbol
r to a relation r̄ over R;

• Σ, the schema interpretation, is a function mapping each
schema variable X to a subset of R.

Definition 10 Let ζ = ∀t1 . . .∀tk ψ ⇒ δ be a RLT -
formula. ζ satisfies a RLT interpretation (d,R,Σ), denoted
(d,R,Σ) |= ζ, if for any tuple interpretation τ , and any at-
tribute interpretation σ, if (d, τ) |= ψ then (R,Σ, σ, τ) |= ψ.

Taking any tuple interpretation corresponds to the use of ∀
quantifiers in RLT formulas. On the other hand, attribute
interpretation are not important since δ does not contain free
variables.

Definition 11 Given a database d and a RLT query Q =
{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}, the answer of Q in d,
denoted by ans(Q, d) is defined as:
ans(Q, d) = {〈Σ(X1), . . . ,Σ(Xn)〉 | (d,R,Σ) is a RLT in-

terpretation and (d,R,Σ) |= ∀t1 . . .∀tk ψ ⇒ δ}

3 BOOLEAN ENCODING

In order to find answers of a query Q = {〈X1, . . . , Xn〉 : R |
∀t1 . . .∀tk ψ ⇒ δ} w.r.t. a database d, we propose an encod-
ing of the query and the database into a boolean formula.
More precisely, for each interesting tuple interpretation τ , we
generate a boolean formula representing the truth value of δ
w.r.t. Σ. A tuple interpretation is considered to be interest-
ing if, together with d, it satisfies ψ. The boolean formula for
computing ans(Q, d) is then the conjunction of the formulas
for each interesting tuple interpretation.

3.1 Translation To Boolean Formula

Domain The domain, that is the boolean variables encod-
ing an answer in ans(Q, d), is defined straightforwardly as

follows: for each schema variable X ∈ {X1, . . . , Xn} and each
attribute Ā ∈ R, the boolean variable pXĀ is true whenever
Ā ∈ Σ(X).

The following definition explains how the boolean formula
is built from the RL formula. This definition relies on an
attribute interpretation. However, this interpretation has no
influence on top-level RL formulas, as they have no free at-
tribute variable.

Definition 12 Given a RL formula δ, a tuple interpretation
τ , an attribute interpretation σ and a set of attributes R, the
boolean encoding of δ, denoted by enc(δ, τ, σ,R), is inductively
defined as:

• enc(t.A = c̄, τ, σ,R) = true if τ(t)[σ(A)] = c̄, false other-
wise

• enc(t.A = s.B, τ, σ,R) = true if τ(t)[σ(A)] = τ(s)[σ(B)],
false otherwise

• enc(A = Ā, τ, σ,R) = true if σ(A) = Ā
• enc(A = B, τ, σ,R) = true) if σ(A) = σ(B), false other-

wise
• enc(¬δ, τ, σ,R) = ¬enc(δ, τ, σ,R)
• enc(δ1 ∧ δ2, τ, σ,R) = enc(δ1, τ, σ,R) ∧ enc(δ2, τ, σ,R)
• enc(∀A(X)δ, τ, σ,R) =∧

Ā∈R(pXĀ ⇒ enc(δ, τ, σ[A := Ā], R))
• enc(∃A(X)δ, τ, σ,R) =∨

Ā∈R(pXĀ ∧ enc(δ, τ, σ[A := Ā], R))

Definition 13 A boolean interpretation I is a function from
boolean variables to {true, false}. It satisfies a boolean for-
mula γ, denoted by I |= γ, if the formula obtained by replacing
each variable p by I(p) is equivalent to true in the boolean al-
gebra.

Property 1 Let Σ be a schema interpretation, δ a RL for-
mula, τ a tuple interpretation, σ an attribute interpretation
and R a set of attributes. Let IΣ be a boolean interpretation
such that for any schema variable X and any attribute Ā,
IΣ(pXĀ) = true if and only if Ā ∈ Σ(X).

Then (R,Σ, σ, τ) |= δ if and only if IΣ |= enc(δ, τ, σ,R).

Proof By definitions 3 and 12.

Definition 14 The boolean encoding of a query Q =
{〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ} w.r.t. a database d,
denoted by enc(Q, d) is defined as:∧

τ∈ans(ψ,d)

enc(δ, τ, σ,R)

where σ is any attribute interpretation4.

Property 2 Let Q = {〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}
be a RLT query, d a database and Σ a schema interpretation.
Let IΣ be a boolean interpretation such that for any schema
variable X and any attribute Ā, IΣ(pXĀ = true) if and only if
Ā ∈ Σ(X).
〈Σ(X1), . . . ,Σ(Xn)〉 ∈ ans(Q, d) if and only if IΣ |=

enc(Q, d).

4 σ is not actually used in the encoding since δ is closed w.r.t.
attribute variables

Proof By definitions 11, 7 and 14, by property 1 and by re-
marking that if τ|{t1,...,tk} = τ ′|{t1,...,tk}, then enc(δ, τ, σ,R) =
enc(δ, τ ′, σ, R).

3.2 Theoretical Complexity

The cost of evaluating a RLT query using a boolean formula
can be evaluated by the size of the formula and its number
of boolean variables. Except for quantifiers, each construc-
tion of RL formula generate only a constant amount of ad-
ditional symbols in the encoding. For each use of a quantifier
2A(X)δ, if the size of enc(δ, τ, σ,R) is n, then the size of
enc(2A(X)δ, τ, σ,R) is in O(|R| × n).

Let us consider a RLT query Q = {〈X1, . . . , Xn〉 : R |
∀t1 . . .∀tk ψ ⇒ δ}. Let n∀∃ be the maximal number of quan-
tifiers on a branch of the abstract syntax tree of δ. Then, an
upper bound on the size of enc(Q, d) is O(|ans(ψ, d)| × |δ| ×
|R|n∀∃).

Let timeψ,d be the time required to evaluate ans(ψ, d).
Then an upper bound on the time complexity of the evalua-
tion of a RLT query is timeψ,d+O(|ans(ψ, d)|×|δ|×|R|n∀∃×
2n×|R|).

4 IMPLEMENTATION AND
OPTIMIZATION

In this section we present the principles used in the imple-
mentation of RLT , as well as a few optimizations that help to
drastically reduce the size of generated formulas. In this sec-
tion, we assume given both RLT query Q = {〈X1, . . . , Xn〉 :
R | ∀t1 . . .∀tk ψ ⇒ δ} and database d. Figure 1 presents the
different steps used in the computation of answers.

RLT Query

SQL Query

Eval. using DBMS

Atomic Formula
Evaluations

CNF

Enumerate using
SAT Solver

Answers

Decode

SAT Models
Intermediate

Formula

Figure 1. Architecture

4.1 Naive translation

The first step in generating enc(Q, d) is to evaluate answers
ans(ψ, d). Since ψ is an authorized TRC formula, it can evalu-
ated using a SQL engine, at the cost of an attribute renaming
to avoid attribute name clashes between tuples. We will see
in section 4.3 that in the final implementation this problem
disappears. Using SQL allows to easily extend the comparison
predicates and expressions used in the TRC formula ψ. Then
for each tuple combination τ we generate enc(δ, τ, σ,R), with
σ being uninitialized5.

4.2 Getting Answers From Boolean
Formula

Because of property 2, the answers ans(Q, d) can be ob-
tained by the boolean interpretations satisfying the formula

5 In fact, we just initialize the data structure for representing the
function

enc(Q, d). We use a modified SAT-solver [6] based on Min-
isat [7]. Using a SAT solver requires the formula to be trans-
lated into conjunctive normal form (CNF). For this we use
a linear translation based on [16]. This translation propa-
gates constants through standard logical equivalences such
as η1∧ true ≡ η1 and η1∧ false ≡ false. The translation into
CNF also introduce new variables. However, the value of these
new variables can be deduced from the values of the variables
in the original formula. This information can be transmitted
to the enumerating SAT solver, allowing it to branch only on
variables of the original formula. Moreover the use of modern
SAT solvers allows to benefit from efficient propagation tech-
niques, learning [12, 17] and dynamic search heuristics [17, 4].
For an extensive overview of current techniques to solve SAT,
the reader is referred to [3].

4.3 Caching Subformulas

By looking at definition 12, one can see that the generated
formula for each tuple interpretation depend on the structure
of δ and on the evaluation of the atomic sub formulas of δ
for (all) the possible attribute interpretations σ. That is, the
actual value of tuples is not important, only the value they
give to atomic formulas in δ matters.

For each atomic formula δ1 in δ, we introduce a series of
boolean variables qδ1σ for all possible attribute interpretation
σ : A → R where A is the set of attribute variables appearing
in δ1.

Definition 15 The intermediate encoding enc′(δ, σ,R) is in-
ductively defined as follows:

• enc′(t.A = c̄, σ, R) = qt.A=c̄
σ|{A}

• enc′(t.A = s.B, σ,R) = qt.A=s.B
σ|{A,B}

• enc′(A = Ā, σ,R) = true if σ(A) = Ā
• enc′(A = B, σ,R) = true) if σ(A) = σ(B), false otherwise
• enc′(¬δ, σ,R) = ¬enc′(δ, σ,R)
• enc′(δ1 ∧ δ2, σ, R) = enc′(δ1, σ, R) ∧ enc′(δ2, σ, R)
• enc′(∀A(X)δ, σ,R) =∧

Ā∈R(pXĀ ⇒ enc′(δ, σ[A := Ā], R))
• enc′(∃A(X)δ, σ,R) =∨

Ā∈R(pXĀ ∧ enc
′(δ, σ[A := Ā], R))

This definition is similar to definition 12, except for atomic
formulas where tuple variables appear. By construction, for a
given tuple interpretation τ , enc(δ, τ, σ,R) can be obtained by
replacing each variable qδ1σ1 in enc′(δ, σ,R) by enc(δ1, τ, σ1, R).

This suggests a change in the generation of enc(Q, d): the
SQL engine can be used to evaluate the value of atomic for-
mulas in δ w.r.t. all relevant attribute interpretations σ, that
is w.r.t. all combination of values for attribute variables ap-
pearing in the sub formula. The encoding of the RL formula
for this tuple combination is then obtained by propagating
these boolean values in the intermediate encoding.

The benefits of this change are twofold. Firstly, the com-
parison operator and expressions used in atomic RL formulas
can easily be extended to any operator supported by the SQL
engine. Secondly, and more importantly, given two tuple inter-
pretations τ1 and τ2, if the evaluation of all atomic formulas
w.r.t. all attribute interpretation are the same for τ1 and τ2,
then enc(δ, τ1, σ, R) = enc(δ, τ2, σ, R). Since the occurrence of

these two formulas are used in same conjunction, one of them
is useless and can be discarded. This discarding behavior can
be obtained, either by the use of the DISTINCT keyword in
the SQL query, or more efficiently, by the use of a prefix tree
to store and search for atomic formula evaluations. This opti-
mization can be essential for the diminution of the size of the
generated formula as shown in section 6.

4.4 Attribute Variable Combinatorics

Another way to reduce the size of enc(Q, d) is to try to reduce
the number of nested attribute quantifiers in δ. We assume,
without loss of generality, that each attribute variable appears
exactly in one quantifier in δ. The attribute quantifiers can
be “pushed down” towards atomic formulas in δ, by using the
following standard logical equivalences:

• ∀A(X)(δ1 ∧ δ2) ≡ (∀A(X)δ1) ∧ δ2 if A does not appear in
δ2

• ∃A(X)¬δ1 ≡ ¬∀A(X)δ1
• ∀A(X)∀B(Y)δ1 ≡ ∀B(Y)∀A(X)δ1

For example, using these equivalences ∃A(X)∀B(Y)(t.A =
1 ⇒ t.B = 1) ≡ (∀A(X)t.A = 1) ⇒ (∀B(Y)t.B = 1). The
size of the generated formula in the second case is O(|R|)
smaller than the one generated in the first case.

The use of ∧ commutativity and associativity may allow
for more optimizations such as ∀A(X)∀B(Y)(δ1∧ (δ2∧δ3)) ≡
∀B(Y)(δ2)∧∀A(X)(δ1 ∧ δ3) if A does not appear in δ2 and B
does not appear in δ1 nor δ3. From this point of view, this kind
of optimization can be brought near rule based optimization
in relational queries [1].

5 REDUCING RESULT SIZE

As the search space size is 2n×|R|, it is interesting to reduce
the number of results. For example, it is usual when mining
functional dependancies to output a minimal base of rules
from which all rules can be inferred using Armstrong’s ax-
ioms [9]. However, since our language is not supposed to be
Armstrong-compliant [2], we express a wider class of queries
without knowing a priori whether or not a given property
is true (e.g. transitivity or reflexivity).Thus a canonical con-
densed representation of rules may not exist. Nevertheless, we
provide means to end-users to reduce the number of results,
while keeping interesting information. These means come in
two flavors: firstly constraining the resulting sets of attributes,
and secondly output only minimal sets (or maximal) w.r.t. set
inclusion for some schema variables.

5.1 Constraining schema variables

The following examples illustrate how RL formulas can
be used to constrain schema variables. Assume one wants
to constraint two schema variables X and Y , such that
Σ(X) ∩ Σ(Y) = ∅. This constraint can be expressed by
∀A(X)∀B(Y) ¬A = B. The formula ∃A(X) true imposes
that Σ(X) contains at least one attribute, while the formula
∀A(X)∀B(X) A = B imposes that Σ(X) contains at most
one attribute.

One can remark that (R,Σ, σ, τ) |= ∃A(X)X = Ā if and
only if Ā ∈ Σ(X). Therefore enc(∃A(X)X = Ā, τ, σ,R) ≡

pXĀ
6. This allows constraining schema variables by using any

boolean formula on the variables pXĀ through the RL formula
of an RLT query. A consequence of this remark is that given
d and Q, the problem of determining whether ans(Q, d) 6= ∅
is NP-Hard.

5.2 Minimizing/Maximizing Schema
Variables

Another way to reduce the number of results is to minimize
or maximize schema interpretation values for some variables.

Definition 16 A schema interpretation Σ is said to be min-
imal (resp. maximal) w.r.t. a schema variable X, a database
d and RLT query Q = {〈X1, . . . , Xn〉 : R | ζ}, if there
is no RX such that RX ⊂ Σ(X) (resp. RX ⊃ Σ(X)) and
(d,R,Σ[X := RX]) |= ζ.

Σ is said to be locally minimal (resp. maximal) w.r.t. X, d
and Q if there is no RX such that RX ⊂ Σ(X) with |RX | =
|Σ(X)| − 1 (resp. RX ⊃ Σ(X) with |RX | = |Σ(X)| + 1) and
(d,R,Σ[X := RX]) |= ζ.
Q is said to be monotone (resp. antimonotone) w.r.t. X

if for all d, Σ and RX such that Σ(X) ⊂ RX ⊆ R (resp.
RX ⊂ Σ(X)), if (d,R,Σ) |= ζ then (d,R,Σ[X := RX]) |= ζ.

It is clear that if Q is monotone (resp. antimonotone) w.r.t.
X, then if Σ is locally minimal (resp. maximal) w.r.t. X, d
and Q then it is maximal (resp. minimal) w.r.t. X, d and Q.
We propose the following boolean encoding of the locally mini-
mal/maximal constraint on a schema variable X, a database d
and aRLT query Q = {〈X1, . . . , Xn〉 : R | ∀t1 . . .∀tk ψ ⇒ δ}.
Given a boolean formula γ, we denote by γ[γ′/p] the formula
obtained by replacing each occurrence of p in γ by γ′.

• encmin(X, d,Q) =
∧
Ā∈R p

X
Ā ⇒ ¬(enc(Q, d)[false/pXĀ])

• encmax(X, d,Q) =
∧
Ā∈R ¬p

X
Ā ⇒ ¬(enc(Q, d)[true/pXĀ])

The size of this constraint’s boolean encoding is |R| times the
size of the original query’s boolean encoding.

6 PRELIMINARY EXPERIMENTS

The CNF generator has been coded in Java, while the mod-
ified MiniSat solver in C++. We have used an embedded
DBMS (Derby), since it allows to include the execution of
SQL statements in CPU time results. The experiments were
conducted on a 2GHz dual core Athlon processor with 3GB
of RAM, running Linux.

This section presents a few experimental results on the fol-
lowing RLT query:

{〈X,Y 〉 : R | ∀t1∀t2 r(t1) ∧ r(t2)⇒
((∀A(X)t1.A = t2.A)⇒ (∀B(Y)t1.B = t2.B))
∧(∀A(X)∀B(Y) ¬A = B)
∧(∃B(Y) true) ∧ (∀B1(Y)∀B2(Y) B1 = B2)}

This query finds functional dependancies X → Y in r, X
and Y having an empty intersection and Y being a singleton.
Moreover X was minimized.

The relation initially contains 2013 tuples and 27 attributes.
Figure 2 shows evolution of CPU time w.r.t. the number m

6 This simplification is automatically performed through the prop-
agation of true and false in the generated boolean formula.

 1

 10

 100

 1000

 0 5 10 15 20 25 30

total
minisat

CNF gen.

Figure 2. CPU time (in sec.) w.r.t. |R|

of attributes in R, i.e. only m attributes were kept in the re-
lation r. As expected, the CPU time increases exponentially
w.r.t. the number of attributes, as it increases both the search
space and the size of the boolean formula. Figure 3 shows the

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

CNF size
tuple inter.

useful tuple inter.

Figure 3. cache influence w.r.t. # tuples in r

size of the generated CNF (in number of variable occurrences)
and the number of attribute interpretations w.r.t. the num-
ber of tuples, the query being run on the 27 attributes of the
relation. As expected, the number of interpretations grows
quadratically as there are two uncorrelated tuple variables in
the query. One can remark that the size of the CNF, increases
slowly. This is due to the low number of useful additional
tuple interpretations. Indeed the size of the generated CNF
increases proportionally to the number of useful tuple inter-
pretations. This shows the efficiency of the cache optimization
on boolean formula generation.

7 CONCLUSION

We presented an ongoing work on the query language RLT
for pattern mining. Namely, we presented the semantics of the
language, as well as a translation of queries and data into a
boolean formula. Implementation techniques used for imple-
menting a query engine were presented and some experimental
results show the feasibility of the approach.

Several issues remain to be explored. One the theoretical
side, it would be interesting to characterize the complexity
of answering RLT queries (e.g. the complexity of determin-

ing the emptiness of a query). One the practical side, per-
formances of the query engine and query optimization tech-
niques have to be investigated through a comprehensive set
of databases.The performance of the current implementation
could be improved either through high level optimization in
order to generate better, more easy to solve, formulas, or
through the elaboration of (SAT) engines dedicated to the
enumeration of models of boolean formulas. An other direc-
tion of improvement is to enrich the language, for example
with counting statements to be able to take into account the
well-known frequency constraint in data mining. This could
be treated using pseudo-boolean constraints such as in [15].

REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu, Foundations of
Databases, Addison Wesley, 1995.

[2] Marie Agier, Christine Froidevaux, Jean-Marc Petit, Yoan
Renaud, and Jef Wijsen, ‘On Armstrong-compliant Logical
Query Languages’, in 4th International Workshop on Logic
in Databases (LID 2011), pp. 33–40. ACM, (March 2011).

[3] Handbook of Satisfiability, eds., A. Biere, M. J. H. Heule,
H. van Maaren, and T. Walsh, volume 185 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2009.

[4] Armin Biere, ‘Adaptive restart strategies for conflict driven
SAT solvers’, in Theory and Applications of Satisfiability
Testing, pp. 28–33, (2008).

[5] Toon Calders and Jef Wijsen, ‘On monotone data mining
languages’, in 8th International Workshop on Database Pro-
gramming Languages, (2001).

[6] Emmanuel Coquery, Säıd Jabbour, and Lakhdar Sais, ‘A con-
straint programming approach for enumerating motifs in a se-
quence’, in Workshop on Declarative Pattern Mining, ICDM
Workshops, pp. 1091–1097, (2011).

[7] Niklas Eén and Niklas Sörensson. Minisat. http://minisat.
se/.

[8] Fosca Giannotti, Giuseppe Manco, and Franco Turini, ‘To-
wards a logic query language for data mining’, in Database
Support for Data Mining Applications, LNCS 2682, pp. 76–
94, (2004).

[9] G. Gottlob and L. Libkin, ‘Investigations on Armstrong rela-
tions, dependency inference, and excluded functional depen-
dencies’, Acta Cybernetica, 9(4), 385–402, (1990).

[10] Tomasz Imielinski and Heikki Mannila, ‘A database perspec-
tive on knowledge discovery’, Commun. ACM, 39(11), 58–64,
(1996).

[11] Hong-Cheu Liu, Aditya Ghose, and John Zeleznikow,
‘Towards an algebraic framework for querying inductive
databases’, in DASFAA (2), pp. 306–312, (2010).

[12] Joao P. Marques-Silva and Karem A. Sakallah, ‘GRASP -
A New Search Algorithm for Satisfiability’, in Proceedings
of International Conference on Computer-Aided Design, pp.
220–227, (1996).

[13] Rosa Meo, Giuseppe Psaila, and Stefano Ceri, ‘An extension
to sql for mining association rules’, Data Min. Knowl. Dis-
cov., 2(2), 195–224, (1998).

[14] Amir Netz, Surajit Chaudhuri, Jeff Bernhardt, and Usama M.
Fayyad, ‘Integration of data mining with database technol-
ogy’, in VLDB, pp. 719–722, (2000).

[15] Luc De Raedt, Tias Guns, and Siegfried Nijssen, ‘Constraint
programming for itemset mining’, in KDD, pp. 204–212,
(2008).

[16] G.S. Tseitin, ‘On the complexity of derivations in the propo-
sitional calculus’, in Structures in Constructives Mathematics
and Mathematical Logic, Part II, ed., H.A.O. Slesenko, pp.
115–125, (1968).

[17] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz,
and Sharad Malik, ‘Efficient conflict driven learning in
Boolean satisfiability solver’, in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, pp.
279–285, (2001).

