É Grégoire
email: gregoire@cril.fr

J.-M Lagniez
email: jmlagniez@gmail.com

B Mazure
email: mazure@cril.fr

A data structure boosting the performance of local search for CSP solving

This paper is concerned with local search techniques (LS) for solving CSPs (Constraint Satisfaction Problems). An efficient data structure is presented that allows the performance of LS to be boosted. Experimentations on benchmarks from the last international CSP competitions illustrate its very positive impact. It has been implemented in wcsp δ : an efficient open-ended and open-source local search platform for CSP that can accommodate various meta-heuristics.

CSPs

Let us recall what a (discrete) CSP (Constraint Satisfaction Problem) is. A CSP is pair (V, C) where 1. V is a finite set of n variables s.t. each variable x ∈ V has an associated finite instantiation domain, denoted dom(x), which contains the set of values allowed for x, 2. C is a set of constraints s.t. each constraint c ∈ C involves a subset of variables of V, called scope and denoted vars(c), and has an associated relation rel(c), which contains the set of tuples allowed for the variables of its scope.

Solving a CSP P = (V, C) consists in checking whether P admits at least one solution, i.e. an assignment of values for all variables of V s.t. all constraints of C are met. When P admits at least one solution, P is said to be satisfiable, otherwise P is said unsatisfiable. This decision problem is naturally generalized into an optimization one, called MAX-CSP, which consists in searching for one largest possible subset of constraints that can be satisfied at the same time.

Local search for CSP: an enhanced data structure

The use of LS for CSP solving has been the subject of many studies these last decades [START_REF] Minton | Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair method[END_REF][START_REF] Galinier | A general approach for constraint solving by local search[END_REF][START_REF] Hentenryck | Constraint-Based Local Search[END_REF]. It is well-known that smart data structures can play a key role in the performance of the various possible LS algorithms. In this specific context, we considered the data structure first proposed in [START_REF] Galinier | A general approach for constraint solving by local search[END_REF], which is now quite standard in LS for CSPs. The key idea of the structure is to record, for each constraint c, for each possible value val of each variable v occurring in c, the corresponding number of unsatisfied constraints to which the variable v would belong if the next move from the current interpretation consists in adopting the value val for the variable v. Indeed, as most moves will involve adopting the value of a variable that would decrease the number of falsified constraints, such a recorded information allows this selection to be made efficiently. Moreover, updating the data structure only concerns the constraints affected by this last move. Accordingly, this data structure allows many repetitive checks and computations to be avoided during the successive iterative steps of LS.

Although this data structure records information about the impact that the change of value of a variable entails, it does not record whether or not the constraints containing the variables would see their satisfiability status affected by this change, although this is already computed. Accordingly, we enhanced the data structure by recording for each value val for each variable in each constraint c, whether a move to this value val would allow the constraint c to be satisfied or not. Interestingly, this information can be computed and recorded in constant additional time while initializing and updating the data structure of [START_REF] Galinier | A general approach for constraint solving by local search[END_REF]. Moreover, this simplifies the updating process of the initial data structure since the satisfiability status of a constraint does not have to be computed but is simply consulted in the enhanced data structure.

Experimentations

Not surprisingly, this enhancement of the data structures has a very positive impact on the LS performance. It has been experimented extensively on all benchmarks from the CSP'2008 international competition (on Intel Xeon 3.2. GHZ 2G RAM under Linux 2.6) through wcsp δ , which is our generic, open-ended and open-source LS platform for CSP. As a case study, we considered the seminal WalkSAT [START_REF] Selman | Noise strategies for improving local search[END_REF] LS algorithm and its variants involving the Novelty and RNovelty [START_REF] Mcallester | Evidence for invariants in local search[END_REF] paradigms. Table 1 shows that adopting the enhanced data structure allowed more instances to be solved within a preset 1200 seconds CPU time limit. Figure 1 also show the very positive impact of the enhanced data structure on the required CPU time to solve instances (x-axes and y-axes give computing time for each instance, with or without the enhancement of the data structure, respectively). The performance of wcsp δ has also been demonstrated as a building block of an hybrid CSP solver based on this LS platform [START_REF] Grégoire | A CSP solver focusing on FAC variables[END_REF].

Fig. 1 .

 1 Scatter plot comparing the runtimes of wcsps (x-axis) and wcsp δ (y-axis).

Table 1 .

 1 Comparaison between wcsp δ and wcsps.

		2-EXT	2-INT	N-EXT	N-INT
	Method	sat uns tot sat uns tot sat uns tot sat uns tot
	wcsps(WalkSat) 239 0	239 160 0	160 179 0	179 271 0	271
	wcsp δ (WalkSat) 248 0 248 167 0 167 181 0 181 283 0 283
	wcsps(novelty) 308 0	308 159 0	159 222 0	222 338 0	338
	wcsp δ (novelty) 315 0 315 165 0 165 223 0 223 350 0 350
	wcsps(rnovelty) 319 0	319 161 0	161 208 0	208 321 0	321
	wcsp δ (rnovelty) 325 0 325 173 0 173 209 0 209 325 0 325