
HAL Id: hal-00870938
https://hal.science/hal-00870938v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Data Structure Boosting The Performance of Local
Search For CSP Solving

Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure

To cite this version:
Éric Grégoire, Jean-Marie Lagniez, Bertrand Mazure. A Data Structure Boosting The Performance
of Local Search For CSP Solving. International Conference on Metaheuristics and Nature Inspired
Computing (META’12), 2012, Port El-Kantaoui, Tunisia. �hal-00870938�

https://hal.science/hal-00870938v1
https://hal.archives-ouvertes.fr

A data structure boosting the performance
of local search for CSP solving

É. Grégoire1 and J.-M. Lagniez2 and B. Mazure1

1 CRIL UMR 8188 CNRS, Université d’Artois, rue Jean Souvraz, F-62307 Lens Cedex
{gregoire,mazure@cril.fr}

2 Institute for Formal Models and Verification, Johannes Kepler University, AT-4040 Linz, Austria
jmlagniez@gmail.com

Abstract

This paper is concerned with local search techniques (LS) for solving CSPs (Constraint Satisfaction
Problems). An efficient data structure is presented that allows the performance of LS to be boosted.
Experimentations on benchmarks from the last international CSP competitions illustrate its very
positive impact. It has been implemented in wcspδ: an efficient open-ended and open-source local
search platform for CSP that can accommodate various meta-heuristics.

1 CSPs

Let us recall what a (discrete) CSP (Constraint Satisfaction Problem) is. A CSP is pair (V, C)
where

1. V is a finite set of n variables s.t. each variable x ∈ V has an associated finite instantiation
domain, denoted dom(x), which contains the set of values allowed for x,

2. C is a set of constraints s.t. each constraint c ∈ C involves a subset of variables of V, called
scope and denoted vars(c), and has an associated relation rel(c), which contains the set of
tuples allowed for the variables of its scope.

Solving a CSP P = (V, C) consists in checking whether P admits at least one solution, i.e. an
assignment of values for all variables of V s.t. all constraints of C are met. When P admits at least
one solution, P is said to be satisfiable, otherwise P is said unsatisfiable. This decision problem is
naturally generalized into an optimization one, called MAX-CSP, which consists in searching for
one largest possible subset of constraints that can be satisfied at the same time.

2 Local search for CSP: an enhanced data structure

The use of LS for CSP solving has been the subject of many studies these last decades [4, 1, 6].
It is well-known that smart data structures can play a key role in the performance of the various
possible LS algorithms. In this specific context, we considered the data structure first proposed in
[1], which is now quite standard in LS for CSPs. The key idea of the structure is to record, for
each constraint c, for each possible value val of each variable v occurring in c, the corresponding
number of unsatisfied constraints to which the variable v would belong if the next move from the
current interpretation consists in adopting the value val for the variable v. Indeed, as most moves
will involve adopting the value of a variable that would decrease the number of falsified constraints,
such a recorded information allows this selection to be made efficiently. Moreover, updating the
data structure only concerns the constraints affected by this last move. Accordingly, this data
structure allows many repetitive checks and computations to be avoided during the successive
iterative steps of LS.

Although this data structure records information about the impact that the change of value
of a variable entails, it does not record whether or not the constraints containing the variables
would see their satisfiability status affected by this change, although this is already computed.
Accordingly, we enhanced the data structure by recording for each value val for each variable in
each constraint c, whether a move to this value val would allow the constraint c to be satisfied

2 Grégoire, Lagniez and Mazure

2-EXT 2-INT N-EXT N-INT

Method sat uns tot sat uns tot sat uns tot sat uns tot

wcsps(WalkSat) 239 0 239 160 0 160 179 0 179 271 0 271

wcspδ(WalkSat) 248 0 248 167 0 167 181 0 181 283 0 283

wcsps(novelty) 308 0 308 159 0 159 222 0 222 338 0 338

wcspδ(novelty) 315 0 315 165 0 165 223 0 223 350 0 350

wcsps(rnovelty) 319 0 319 161 0 161 208 0 208 321 0 321

wcspδ(rnovelty) 325 0 325 173 0 173 209 0 209 325 0 325
Table 1. Comparaison between wcspδ and wcsps.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

(a) WalkSat

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

(b) novelty

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

(c) rnovelty
Fig. 1. Scatter plot comparing the runtimes of wcsps (x-axis) and wcspδ (y-axis).

or not. Interestingly, this information can be computed and recorded in constant additional time
while initializing and updating the data structure of [1]. Moreover, this simplifies the updating
process of the initial data structure since the satisfiability status of a constraint does not have to
be computed but is simply consulted in the enhanced data structure.

3 Experimentations

Not surprisingly, this enhancement of the data structures has a very positive impact on the LS
performance. It has been experimented extensively on all benchmarks from the CSP’2008 inter-
national competition (on Intel Xeon 3.2. GHZ 2G RAM under Linux 2.6) through wcspδ, which
is our generic, open-ended and open-source LS platform for CSP. As a case study, we considered
the seminal WalkSAT [5] LS algorithm and its variants involving the Novelty and RNovelty [3]
paradigms. Table 1 shows that adopting the enhanced data structure allowed more instances to be
solved within a preset 1200 seconds CPU time limit. Figure 1 also show the very positive impact
of the enhanced data structure on the required CPU time to solve instances (x-axes and y-axes
give computing time for each instance, with or without the enhancement of the data structure,
respectively). The performance of wcspδ has also been demonstrated as a building block of an
hybrid CSP solver based on this LS platform [2].

References
1. Galinier P. and Hao J.-K.: A general approach for constraint solving by local search. Proc. of CP 1997,

LNCS 1330, pp. 196-208 (1997).
2. Grégoire. É., Lagniez J.-M. and Mazure B.: A CSP solver focusing on FAC variables, Proc. of CP 2011,

LNCS 6876, pp. 493-507 (2011).
3. McAllester D.A., Selman B. and Kautz H.A.: Evidence for invariants in local search. Proc. of AAAI’97,

pp. 321-326 (1997).
4. Minton S., Johnston M., Philips A. and Laird P.: Solving large-scale constraint satisfaction and schedul-

ing problems using a heuristic repair method. Proc. of AAAI 1990, pp. 17-24 (1990).
5. Selman N., Kautz H.A. and Cohen B.: Noise strategies for improving local search. Proc. of AAAI’94,

pp. 337-343 (1994). Proc. of AAAI 1990, pp. 17-24 (1990).
6. Van Hentenryck P. and Michel L. 2005. Constraint-Based Local Search. Cambridge, Mass.: The MIT

Press. ISBN 9780262220774.

