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Abstract. Nogood recording from restarts is a form of lightweight learn-
ing that combines nogood recording with a restart strategy. At the end
of each run, nogoods are extracted from the current (rightmost) branch
of the search tree. These nogoods can be used to prevent parts of the
search space from being explored more than once. In this paper, we
propose to reinforce nogood recording (from restarts) by exploiting sym-
metries: every time the solver has to be restarted, not only the nogoods
that are extracted from the current branch are recorded, but also some
additional nogoods that can be computed by means of the previously
identified problem symmetries. This mechanism of computing symmetric
nogoods can be iterated until a fixed-point is reached, and controlled (if
necessary) by limiting the number and/or the size of recorded nogoods.

1 Introduction

The runtime distribution of a randomized search algorithm is sometimes charac-
terized by an extremely long tail with some infinite moment (e.g., see [14]).
For some constraint satisfaction (optimization) problems, it has been found
worthwhile to employ restarts with a randomized search heuristic. However,
if restarts are employed without learning, the average performance of the solver
can be damaged on some problem instances because the same parts of the search
space may be explored several times. At the opposite, nogood recording without
restarts has not yet been shown to be entirely convincing for constraint satisfac-
tion; when uncontrolled, nogood recording can lead to exponential space com-
plexity. Although restarts without nogood recording, and also nogood recording
without restarts, may be of limited use, a combination of both of these techniques
happen to be more useful. For example, in [18], it has been shown that so-called
reduced nld-nogoods can be extracted (to be recorded in a nogood base) from
the current (rightmost) branch of the search tree at the end of each run. These
nogoods can be used to prevent parts of the search space from being explored
more than once. Thus we can then benefit from restarts and learning capabilities
without sacrificing solver performance or space complexity.

On the other hand, symmetry breaking is an important research topic in
constraint programming. The use of symmetries in search problems is concep-
tually simple. If two distinct nodes in a search tree are related by a symmetry,



there is no need to explore both of them because symmetries preserve satisfia-
bility. When a node is an internal dead-end, the nodes that are symmetrical to
it are guaranteed to be internal dead-ends as well. When a node is the root of a
fruitful subtree (i.e., a subtree containing solutions), symmetrical solutions can
be computed automatically, i.e. without exploring symmetrical nodes. Breaking
symmetries can facilitate determining the satisfiability of an instance or count-
ing/computing the full set of solutions.

Symmetry breaking involves two distinct issues. First, symmetries must be
identified. Either the user is asked to perform this (often difficult) task, or oth-
erwise an automatic procedure identifies symmetries. Second, the symmetries
must be exploited. For this, there are two main categories of approaches (apart
from reformulation techniques). One approach posts symmetry-breaking con-
straints during a preprocessing stage, to speed up subsequent search. The other
main strategy is to use symmetries dynamically during search to prevent explo-
ration of irrelevant nodes. For the exploitation of symmetries, published methods
include symmetry-breaking constraints [6, 10, 26], symmetry-breaking heuristics
[20], symmetry breaking during search (SBDS) [1, 13, 12], symmetry breaking
via dominance detection (SBDD) [9, 11, 23, 24], amongst others.

In this paper, we propose to reinforce nogood recording (from restarts) by ex-
ploiting problem symmetries. The principle is quite simple: every time the solver
has to be restarted, not only the nogoods that are extracted from the current
branch are recorded, but also some additional nogoods that can be computed by
means of the problem symmetries. Interestingly, this mechanism of computing
symmetric nogoods can be iterated until a fixed-point is reached. Of course, if
necessary, one can control this form of reinforced learning by limiting the number
of recorded nogoods and/or their size.

2 Technical Background

A constraint network (CN) P is composed of a finite set of n variables, denoted
by vars(P ), and a finite set of e constraints, denoted by cons(P ). Each variable x
has a domain which is the finite set of values that can be assigned to x. The initial
domain of a variable x is denoted by dominit(x) whereas the current domain of x
(in the context of P ) is denoted by domP (x), or more simply dom(x); we always
have dom(x) ⊆ dominit(x). The maximum domain size for a given CN will be
denoted by d. A v-value is a variable-value pair (x, a) where x is a variable and
a ∈ dominit(x). A v-value of a CN P is a v-value (x, a) such that x ∈ vars(P )
and a ∈ domP (x) and v-vals(P ) denotes the set of v-values of P Each constraint
c involves an ordered set of variables, called the scope of c and denoted by scp(c),
and is defined by a relation which is the set of tuples allowed for the variables
involved in c. A unary (resp., binary) constraint involves 1 (resp., 2) variable(s),
and a non-binary one strictly more than 2 variables.

An instantiation I of a set X = {x1, . . . , xk} of variables is a set {(x1, a1),
. . . , (xk, ak)} such that ∀i ∈ 1..k, ai ∈ dominit(xi); X is denoted by vars(I) and
each ai is denoted by I[xi]. An instantiation I on a CN P is an instantiation



of a set X ⊆ vars(P ) ; it is complete if vars(I) = vars(P ). I is valid on P

iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint c iff scp(c) ⊆ vars(I), and
I satisfies a constraint c with scp(c) = {x1, . . . , xr} iff (i) I covers c and (ii)
the tuple (I[x1], . . . , I[xr]) ∈ rel(c). An instantiation I on a CN P is locally
consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is
satisfied by I. A solution of P is a complete locally consistent instantiation on
P ; sols(P ) denotes the set of solutions of P . An instantiation I on a CN P is
globally inconsistent, or a nogood, iff it cannot be extended to a solution of P .

A positive decision δ is a restriction on a variable x of the form x = a whereas
a negative decision is a restriction of the form x 6= a, where a ∈ dominit(x). When
decisions are taken on a CN, we obtain a new CN defined as follows. Let P be
a CN and ∆ be a set of decisions on P , P |∆ is the CN obtained (derived) from
P such that, for each positive decision x = a ∈ ∆, each value b ∈ dom(x) with
b 6= a is removed from dom(x), and, for each negative decision x 6= a ∈ ∆,
a is removed from dom(x). For any set ∆ of decisions, vars(∆) denotes the
set of variables occurring in decisions of ∆. A nogood is defined as a globally
inconsistent instantiation. Such nogoods are sometimes said to be standard and
they correspond to the definition proposed by Dechter in [8]. An alternative
definition for standard nogoods is: a standard nogood of P is a set ∆ of positive
decisions on P such that P |∆ is unsatisfiable. Consideration of positive and
negative decisions as in [11, 16] leads to a generalization of standard nogoods,
called generalized nogoods: A set of decisions ∆ on a CN P is a generalized
nogood of P iff P |∆ is unsatisfiable. Clearly, a (standard) nogood is generalized
but the opposite is not necessarily true. For example, ∆ = {x = a, y = b}
such that P |∆ is unsatisfiable is a standard nogood of P , and consequently by
definition a generalized nogood of P . But ∆ = {x = a, z 6= c}, such that P |∆
is unsatisfiable, is a generalized nogood of P which is not standard. In fact a
generalized nogood can represent an exponential number of standard ones [16].

The search space of a CN can be reduced by a filtering process (called con-
straint propagation) based on some properties (called consistencies) that allow
us to identify and record explicit nogoods in CNs; e.g., identified nogoods of size
1 correspond to inconsistent values that can be safely removed from variable
domains. The most famous consistency is GAC (Generalized Arc Consistency)
defined as follows. A value (x, a) of P is GAC-consistent iff for each constraint c
of P involving x there exists a valid instantiation I of scp(c) such that I satisfies
c and I[x] = a. P is GAC-consistent iff every value of P is GAC-consistent. For
binary constraints, GAC is often referred to as AC (Arc Consistency).

3 Nogood recording from restarts

Henceforward, we consider a backtrack search algorithm using binary branching,
taking positive decisions first, maintaining a consistency at each step, and using
a restart strategy. For any branch of the search tree (built during a run of the
backtrack search algorithm), a set of relevant standard nogoods (instantiations
that cannot lead to a solution) can be identified directly. Nogood recording from



restarts [18] means recording these nogoods but only for the last (rightmost)
branch of the search tree just before the restart.

Each branch of the search tree is a sequence of positive and negative de-
cisions. For each branch starting from the root, a generalized nogood can be
extracted from each negative decision [23, 18], as follows. Let Σ = 〈δ1, . . . , δm〉
be a sequence of decisions, if δi is a negative decision, with 1 ≤ i ≤ m, then the
subsequence 〈δ1, . . . , δi〉 of Σ comprising the i first decisions of Σ is called a nld-
subsequence (negative last decision subsequence) of Σ. Let P be a a constraint
network and Σ be the sequence of decisions taken along a branch (starting from
the root) of the search tree built for P . For any nld-subsequence 〈δ1, . . . , δi〉 of
Σ, the set ∆ = {δj ∈ Σ | 1 ≤ j < i}∪ {¬δi} is a generalized nogood of P , called
nld-nogood.
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Fig. 1. A partial search tree built by a backtrack search algorithm.

For example, the sequence of decisions taken along the rightmost branch in
Figure 1 is 〈v = a, w 6= b, y 6= b, x = c, w 6= a, z 6= b〉. The nld-subsequences and
nld-nogoods that can be extracted from this branch are as follows:

nld-subsequences nld-nogoods
〈v = a,w 6= b〉 {v = a,w = b}

〈v = a,w 6= b, y 6= b〉 {v = a,w 6= b, y = b}
〈v = a,w 6= b, y 6= b, x = c, w 6= a〉 {v = a,w 6= b, y 6= b, x = c, w = a}

〈v = a,w 6= b, y 6= b, x = c, w 6= a, z 6= b〉 {v = a,w 6= b, y 6= b, x = c, w 6= a, z = b}

Although Σ is a sequence we use set notations (δj ∈ Σ) because there is no
ambiguity; no decision occurs more than once in Σ. In our particular context,
nld-nogoods can be systematically reduced in size by omitting negative decisions,
thus reducing space requirements and improving pruning capability. Let P be a
constraint network andΣ be the sequence of decisions taken along a branch of the
search tree (starting from the root). For any nld-subsequence Σ′ = 〈δ1, . . . , δi〉
of Σ, the set ∆ = pos(Σ′)∪ {¬δi} is a (standard) nogood of P , called a reduced
nld-nogood, where pos(Σ′) denotes the set of positive decisions of Σ′.



For example, for the rightmost branch in Figure 1 the nld-nogoods and re-
duced nld-nogoods are:

nld-nogoods reduced nld-nogoods
{v = a,w = b} {v = a,w = b}

{v = a,w 6= b, y = b} {v = a, y = b}
{v = a,w 6= b, y 6= b, x = c, w = a} {v = a, x = c, w = a}

{v = a,w 6= b, y 6= b, x = c, w 6= a, z = b} {v = a, x = c, z = b}

The worst-case space complexity to record all reduced nld-nogoods of Σ is
O(n2d). Each nld-nogood is subsumed by its reduced nld-nogood, which has
greater pruning capability. Besides, reduced nld-nogood are easier to manage
because they are standard nogoods. Indeed, standard nogoods, which are sets
(conjunctions) of positive decisions, can be recorded in an equivalent form as
sets (disjunctions) of negative decisions. Using this representation, an efficient
propagation algorithm can enforce generalized arc consistency on these nogood
constraints by means of the SAT technique of watched literals [21, 27]. All no-
goods are collected in a so-called nogood base denoted here by B.

4 Symmetries on Constraint Networks

The first part of this section provides a brief introduction to group theory. A
group is a pair (G, ⋆) composed of a set G and a binary operation ⋆ defined on
G, such that the following requirements are satisfied:

– Closure: ∀f ∈ G, ∀g ∈ G, f ⋆ g ∈ G

– Identity element: ∃e ∈ G | ∀f ∈ G, e ⋆ f = f ⋆ e = f

– Inverse element: ∀f ∈ G, ∃g ∈ G | f ⋆ g = g ⋆ f = e; g is noted f−1

– Associativity: ∀f ∈ G, ∀g ∈ G, ∀h ∈ G, (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h)

For example, (Z,+) is a group, where Z denotes the set of integers, and +
denotes ordinary addition. A subgroup of a group (G, ⋆) is a group (H, ⋆) such
that H ⊆ G. The order of a group (G, ⋆) is the number |G| of elements in G. A
group can be represented by means of a subset of its elements, called generating
set. A generating set of a group (G, ⋆) is a subsetH ofG such that each element of
G can be expressed by composition (using ⋆) of elements of H, called generators,
and their inverses. We write G =< H >. A generating set is irredundant iff no
generator can be expressed by composition of the other generators. Generating
sets allow compact representations of groups since for any group (G, ⋆), there
exists a generating set of size log2(|G|) or smaller.

We are interested in permutation groups because we will be concerned with
the symmetries that are permutations. A permutation on a set D is a bijection
σ defined from D onto D. The image of an element a ∈ D by σ is denoted
by aσ. For example, let D = {1, 2, 3, 4} be a set of four integers. A possible
permutation σ on D is: 1σ = 2, 2σ = 3, 3σ = 1 and 4σ = 4. A permutation can
be represented by a set of cycles of the form (a1, a2, . . . , ak) which means that ai



is mapped to ai+1 for i ∈ 1..k − 1 and ak is mapped to a1. The set of cycles for
our permutation σ is {(1, 2, 3), (4)}, but in practice, cycles of length one can be
omitted because such cycles have no effect, thereby we obtain {(1, 2, 3)}. Let D
be a set and let σ1, σ2 be two permutations on D. The composition σ3 = σ1 ◦σ2

of σ1 and σ2 is defined as follows: ∀a ∈ D, aσ3 = aσ1◦σ2 = (aσ2)σ1 . For the
previous example, if σ′ = {(2, 4), (1, 3)} is a second permutation on D, then
σ′′ = σ′ ◦ σ is: 1σ

′′

= 4, 2σ
′′

= 1, 3σ
′′

= 3 and 4σ
′′

= 2, which gives {(1, 4, 2)} in
cyclic form.

For constraint networks, two definitions of symmetries have been recognized
[5] as particularly relevant because they are sufficiently general to encompass
most of the previous definitions in the literature. Generality comes from the
set on which symmetries are defined: this is the set of v-values (variable-value
pairs). The first definition, which is used for example in [17, 22], introduces so-
lution symmetries that only preserve sets of solutions. The second definition
introduces constraint symmetries (or problem symmetries) that preserve the set
of constraints. The second definition is less general than the first but is more
applicable in practice. A constraint symmetry is a syntactical symmetry [2] that
is not limited by necessarily choosing values in the same domain.

A simple mechanism to define symmetries, including solution and constraint
symmetries, is to refer to instantiations. Sets of valid instantiations play the role
of structure:

Definition 1. Let P be a constraint network and R be a set of valid instantia-
tions on P . A symmetry on P for R is a permutation σ of v-vals(P ) such that
Rσ = R.

Sometimes symmetries are restricted so that only variables or values are per-
muted. A variable symmetry does not change values whereas a value symmetry
does not change variables. Let P be a constraint network and R be a set of valid
instantiations on P , a variable symmetry on P for R is a symmetry σ on P for
R such that for every (x, a) ∈ v-vals(P ), (x, a)σ = (xσvars , a) where σvars is a
permutation of vars(P ). Clearly, a variable symmetry is defined (equivalently)
by a permutation on vars(P ). We shall mainly use this simpler permutation.

To illustrate symmetries on constraint networks, let us consider the 4-queens
instance: can we put 4 queens on a board of size 4 × 4 such that no two
queens attack each other? We can model this problem using one variable per
queen (column) such that the domains contain values that denote row num-
bers. Denoting the variables by xa, xb, xc and xd, to clarify the correspondence
with columns, Figure 2 shows the two solutions for this instance. The first is
{(xa, 2), (xb, 4), (xc, 1), (xd, 3)} and the second is {(xa, 3), (xb, 1), (xc, 4), (xd, 2)}.
This instance has exactly eight constraint symmetries. Among these eight sym-
metries, if we disregard the identity permutation, only fh (reflection through the
horizontal middle line) is a variable symmetry and only fv (reflection through
the vertical middle line) is a is value symmetry. Using a simplified notation for fh

where only variables are swapped, we obtain in cyclic form {(xa, xd), (xb, xc)},
which means that xa is swapped with xd and xb is swapped with xc.



1

2

3

a c d

4

b
(a) 1st Solution

1

2

3

4

ba c d
(b) 2nd Solution

Fig. 2. The two solutions of the 4-queens instance.

5 Symmetry-reinforced Nogood Recording

In this section, we present our approach to reinforce nogood recording from
restarts by means of symmetries. First we introduce symmetries on instanti-
ations and nogoods together with symmetry rules that can be connected to
earlier works (e.g., [25]), and then we describe an original algorithm to com-
pute symmetrical nogoods. As a related work, the authors of [4] combine lazy
clause generation and dynamic symmetry breaking in order to generate symmet-
ric 1UIP (First Unique Implication Point) nogoods. Although we propose here
to generate symmetric reduced nld-nogoods at each restart, Chu et al. propose
to compute symmetric 1UIP nogoods after each failure during search. Note that
the minimization technique presented in [18] would allow us to further improve
the quality of nogoods partially in the spirit of the explanations used to com-
pute 1UIPs. The idea of handling symmetric nogoods in the context of restarted
solvers has also been studied in [15].

5.1 Symmetries on Nogoods

Because symmetries preserve the structure of constraint networks, we can reason
from instantiations and nogoods as explained below. We first need to introduce
the notion of admissible instantiations [26].

Definition 2 (Admissibility). Let P be a constraint network, σ be a symmetry
on P and I be a valid instantiation on P . I is admissible for σ iff Iσ is an
instantiation on P .

For example, consider the instantiation I = {(xa, 1), (xb, 2)} for the 4-queens

instance. For the symmetry r90 (rotation by 90◦ right), we obtain Ir
90

= {(xa, 4),
(xb, 3)}, which is an instantiation. Thus I is admissible for r90. Now if I ′ =

{(xa, 1), (xb, 1)}, by r90, we obtain I ′r
90

= {(xa, 4), (xa, 3)}, which is not an in-
stantiation, so I ′ is not admissible for r90. By definition, an instantiation cannot
contain two v-values involving the same variable.

Note that valid instantiations are always admissible for variable symmetries
and for value symmetries.



Symmetries preserve solutions. The following proposition is related to Propo-
sition 2.1 in [6].

Proposition 1. Let P be a constraint network, σ be a symmetry on P and I be
a complete valid instantiation on P . I is a solution of P iff Iσ is a solution of
P .

Proof. If I ∈ sols(P ) then necessarily Iσ ∈ sols(P ) since sols(P )σ = sols(P ).
The other direction holds because σ−1 is also a solution symmetry.

For example, for the 4-queens instance, {(xa, 2), (xb, 4), (xc, 1), (xd, 3)}
fh

gives
{(xd, 2), (xc, 4), (xb, 1), (xa, 3)} which is the second solution. Interestingly, this
result can be refined as follows.

Proposition 2. Let P be a constraint network, σ be a symmetry on P and I be
a valid instantiation on P . I is a good (globally consistent instantiation) on P

iff Iσ is a good on P .

Proof. If I is a good, this means that there exists at least a solution I ′ of P
that extends I. We know from Proposition 1 that I ′σ is also a solution of P .
Necessarily, I ′σ extends Iσ, so Iσ is a good.

Corollary 1. Let P be a constraint network, σ be a symmetry on P and I be
a valid instantiation on P . I is a nogood (globally inconsistent instantiation) on
P iff either I is not admissible for σ or Iσ is a nogood on P .

Proof. From Proposition 2, we know that I is a good on P iff Iσ is a good on P .
This is equivalent to: I is not a good on P iff Iσ is not a good on P . Because I is
by hypothesis a valid instantiation, I is necessarily a nogood. However, nothing
can be said precisely about Iσ. Iσ is not a good, which means that either I is
not admissible for σ or Iσ is a nogood.

5.2 An Algorithm to Reinforce Nogood Recording from Restarts

Following [18], when the current run is stopped, the function extractNogoods,
Algorithm 1, derives reduced nld-nogoods from the current branch of the search
tree. This function admits as a parameter the sequence of decisions taken along
the current rightmost branch and returns a set of standard nogoods. Each neg-
ative decision in this sequence yields a standard nogood. From the root to the
last decision of the current branch, we record successive positive decisions (in a
set denoted by positiveDecisions). For each negative decision encountered, the
algorithm constructs a standard nogood ∆ from the negation of this decision
and all previous positive decisions recorded (line 7). Computed nogoods are col-
lected in a set Γ . Additionally, for each nogood ∆ identified from the sequence
of decisions, the procedure computeSymmetricNogoodsOf (Algorithm 2) is called
at line 8 to compute a set of symmetrical nogoods from ∆ that can be added to
Γ . Nogoods in the set Γ computed by extractNogoods will be later added to the
global nogood base B, and exploited in subsequent runs.



Algorithm 1: extractNogoods(Σ: sequence of decisions): set of nogoods

Input: Σ = 〈δ1, . . . , δm〉
Output: a set Γ of nogoods, computed from Σ

Γ ← ∅1

positiveDecisions ← ∅2

for i ranging from 1 to m do3

if δi is a positive decision then4

positiveDecisions ← positiveDecisions ∪ {δi}5

else6

∆← positiveDecisions ∪ {¬δi}7

Γ ← Γ ∪ {∆} ∪ computeSymmetricNogoodsOf(∆)8

return Γ9

The function computeSymmetricNogoodsOf admits as a parameter a nogood
∆ and returns a set of standard nogoods that are all symmetric to ∆. Note that
this function uses three global data: B, Ψ and updateQueue. B is the global
nogood base. Ψ is a set of symmetries identified for the CN to be solved. For
example, this set may only contain in practice the symmetries corresponding to
the generators returned by a graph automorphism software. updateQueue is a
Boolean that indicates whether a fixed point has to be reached or not, that is to
say, whether all symmetrical nogoods have to be computed or not.

Algorithm 2: computeSymmetricNogoodsOf(∆: nogood): set of nogoods

Global: a nogood base B

Global: a set of symmetries Ψ of the CN to be solved
Global: a Boolean updateQueue
Input: a nogood ∆
Output: a set of nogoods Γ

Γ ← ∅1

Q← {∆}2

while Q 6= ∅ do3

pick and delete ∆′ from Q4

foreach symmetry σ of Ψ do5

∆′′ ← ∆′σ
6

if ∆′ is admissible for σ and ∆′′ /∈ B then7

Γ ← Γ ∪ {∆′′}8

if updateQueue then9

Q← Q ∪ {∆′′}10

return Γ11



A set Q is used to store nogoods from which symmetrical variants have to
be sought. Initially, Q is initialized with the nogood ∆ given as a parameter.
Each nogood ∆′ is successively picked and deleted from Q and symmetrical
nogoods are computed. More precisely, a nogood ∆′′ is computed from ∆′ for
each symmetry σ in Ψ . If ∆′ is not admissible for σ (this may be checked from
∆′′, for example) and if∆′′ is not already present in B (because already obtained
using another symmetry, for example) then ∆′′ is added to Γ . If a fixed point
has to be reached (updateQueue set to true), ∆′′ is added to Q in order to
keep computing symmetrical nogoods from ∆′′ in a next step. Notice that ∆′ is
necessarily admissible when Ψ only contains variable symmetries.

To illustrate symmetry-reinforced nogood recording from restarts, let us con-
sider the 4-queens instance, and suppose that Ψ only contains the variable sym-
metry fh. Figure 3 depicts the search tree built by FC (Forward Checking : a
backtrack search algorithm maintaining a partial form of arc consistency at each
node) after three decisions. Suppose that after the current decisions xa = 1 and
xb 6= 2, the current run is stopped (due to the restart strategy). One can extract
a nld-subsequence from the current branch : 〈xa = 1, xb 6= 2〉 and derive a nld-
nogood ∆ : {xa = 1, xb = 2}. When fh is applied on ∆, the symmetrical nogood
∆′ = {xd = 1, xc = 2} is obtained (after swapping xa with xd and xb with xc).
Suppose now that Ψ contains a second symmetry f i. This means that fh and
f i can be composed to generate more symmetrical nogoods (if updateQueue is
set to true). For example, one can compute:

(∆)f
h

, (∆)f
i

, ((∆)f
i

)f
h

, ((∆)f
h

)f
i

, . . .

until a fixed point is reached because no new symmetrical nogood can be gener-
ated.

xa = 1

xb 6= 2

nld-subsequence : 〈xa = 1, xb 6= 2〉

nld-nogood : ∆ = {xa = 1, xb = 2}

∆′ = (∆)f
h

= {xd = 1, xc = 2}

fh = {(xa, xd), (xb, xc)}

xa = 1

xb = 2

⊥ ⊥

xb 6= 2

Restart

Fig. 3. Simple illustration of symmetry-reinforced nogood recording from restarts.

Classically, computing compositions of generators is not performed due to
space and time explosion. Above, we have proposed to revisit indirectly compo-
sitions (when updateQueue is set to true) by iteratively computing symmetrical
nogoods until a fixed point is reached. In our context, as the number of extracted
nld-nogoods after each run is quite reasonable (polynomial wrt the number of
variables and the greatest domain size), one can expect that the overhead will
not be prohibitive.



6 Experiments

To show the practical value of symmetry-reinforced nogood recording from res-
tarts, we have conducted an experimentation using a cluster of Xeon 3.0GHz
with 1 GB of RAM under Linux. We have measured performance in terms of
CPU time (in seconds) and the number of visited nodes. We have tested MAC
(the backtrack search algorithm that maintains generalized arc consistency dur-
ing search) with three variants of (symmetry-reinforced) nogood recording from
restarts. The first variant, denoted by NG, is the classical nogood recording from
restarts technique. The second variant, denoted by NG+Sym1, is the technique
of symmetry-reinforced nogood recording from restarts, Algorithm 1, when the
Boolean updateQueue is set to false. That means that when a run is stopped,
NG+Sym1 exactly computes a single symmetrical nogood for each extracted nld-
nogood and for each symmetry in Ψ . The third variant, denoted by NG+Sym∗, is
the technique of symmetry-reinforced nogood recording from restarts, Algorithm
1, when the Boolean updateQueue is set to true. That means that all possible
symmetrical nogoods are computed from extracted nld-nogoods and symmetries
in Ψ (i.e., the process is run until a fixed point is reached). We have also tested
different variable ordering heuristics, namely dom/ddeg and dom/wdeg [3], and
the time-out has been set to 20 minutes per instance. Finally, note that we
have employed a geometric restart policy in which the number of backtracks is
increased by a factor 1.5.

Instance NG NG+Sym1 NG+Sym∗

dom/ddeg #solved 1, 604 1, 610 1,618
cpu (1, 602) 39.4 36.1 35.2

dom/wdeg #solved 1, 893 1, 898 1,909
cpu (1, 889) 37.1 32.1 31.4

Table 1. Number of solved instances and average cpu time on a benchmark
composed of 2, 657 instances, given 20 minutes.

To identify automatically symmetries, we have used the lightweight detec-
tion technique of variable symmetries presented in [19]. For each instance, the
generators (of the symmetry group) returned by Saucy [7] have been collected
and recorded in the set Ψ . Note that the time spent by Saucy to compute these
generators is quite negligible.

We have tested the three variants of MAC on 2, 657 instances coming from
www.cril.fr/~lecoutre/benchmarks.html after having selected all problems
that contain variable symmetries (and that can be identified by our automatic
lightweight detection technique). Table 1 provides an overview of the results in
terms of the number of solved instances within the time limit. The average CPU
time is computed from instances solved by the three methods. Note that the
number of instances solved by the three methods is given into round brackets.



Instance NG NG+Sym1 NG+Sym∗

2-insertions-3-3 cpu 4.36 2.33 1.25
#gen=2 nodes 48, 975 20, 238 7, 375

3-insertions-3-3 cpu 387 231 66.9
#gen=2 nodes 5, 744K 3, 191K 929K

3-insertions-4-3 cpu 844 507 124
#gen=2 nodes 10M 5, 913K 1, 397K

fpga-10-10 cpu 908 197 196
#gen=26 nodes 5, 788K 1, 251K 1, 251K
fpga-10-9 cpu 151 255 262
#gen=23 nodes 1, 187K 2, 075K 2, 075K

fpga-12-10 cpu time-out 736 738
#gen=28 nodes - 4, 751K 4, 751K

graceful–K4-P2 cpu 1.13 0.91 1.37
#gen=4 nodes 1, 924 708 503

graceful–K5-P2 cpu 599 630 150
#gen=4 nodes 2, 566K 2, 573K 526K

haystacks-04 cpu 0.48 0.38 0.48
#gen=8 nodes 328 149 114

haystacks-05 cpu 24.5 6.99 0.89
#gen=15 nodes 305K 74, 951 2, 451

haystacks-06 cpu time-out time-out 869
#gen=24 nodes - - 10M

pigeons-10 cpu 33.2 13.6 1.78
#gen=9 nodes 456K 168K 10, 018

pigeons-11 cpu 348 131 11.2
#gen=10 nodes 4, 641K 1, 716K 125K

pigeons-12 cpu time-out time-out 190
#gen=11 nodes - - 1, 731K

scen11-f1 cpu time-out 951 634
#gen=38 nodes - 5, 728K 3, 729K
scen11-f2 cpu 708 332 243
#gen=38 nodes 4, 154K 2, 010K 1, 352K
scen11-f3 cpu 207 103 63.0
#gen=38 nodes 1, 269K 597K 353K

series-14 cpu 63.4 20.0 21.5
#gen=1 nodes 424K 130K 130K
series-15 cpu 199 73.9 78.6
#gen=1 nodes 1, 210K 461K 461K
series-16 cpu time-out 432 428
#gen=1 nodes - 2, 696K 2, 696K

val17-42 cpu 753 193 57.3
#gen=2 nodes 1, 944K 473K 134K
val18-42 cpu 118 69.0 12.9
#gen=4 nodes 247K 139K 20, 745
val18-44 cpu 75.0 75.1 74.7
#gen=4 nodes 371K 371K 371K

Table 2. Illustrative results obtained on some problem instances.
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Fig. 4. Pairwise comparisons (cpu time) on a benchmark composed of 2, 657 instances.



Whatever variable ordering heuristic is used, the number of solved instances
increases when symmetry-reinforced nogood recording is used. Also, the vari-
ant NG+Sym∗ outperforms NG+Sym1 both in terms of solved instances and
CPU time. It is interesting to note that there is no significant overhead when
NG+Sym∗ is used (in other words, this is not really penalizing to compute in-
directly “composition” of symmetries). This is due to the fact that the number
of extracted nld-nogoods is limited and a fixed point can be reached quickly in
practice.

Table 2 focuses on some illustrative instances when the heuristic dom/wdeg is
used. Clearly, for the hardest RLFAP instances, the symmetry-reinforced meth-
ods allow greater efficiency. For example, the two NG+Sym approaches solve the
scen11-f1 instance while this instance remains unsolved by NG. The gap between
NG+Sym1 and NG+Sym∗ is less significant on some other series such as series.
On well-known symmetrical problems such as haystack or pigeons (modeled as a
clique of binary difference constraints), NG+Sym∗ outperforms (unsurprisingly)
the other variants.

Finally, Figure 4 represents scatter plots displaying pairwise comparisons for
NG, NG+Sym1 and NG+Sym∗ when the heuristics dom/ddeg (subfigures on the
left) and dom/wdeg (subfigures on the right) are used. Note the presence of many
dots located under the diagonal line of subfigures 4(c) and 4(d), which represent
instances solved quicker by the methods whose name labels the y-axis. Clearly,
NG+Sym1 and NG+Sym∗ outperform NG. When NG+Sym1 and NG+Sym∗

are compared, it appears that NG+Sym∗ is slightly better.

7 Conclusion

In this paper, we have introduced the principle of symmetry-reinforced nogood
recording from restarts. An original method is NG+Sym∗ that allows us to
benefit indirectly from the composition of symmetries by iteratively computing
symmetrical nogoods (until a fixed point is reached). It is worthwhile to recall
that classically, only a small set of symmetries is used in practice (e.g., the
generators of a symmetry group identified by a graph automorphism software),
and no composition is computed. As a first perspective, we would like to study
the practical interest of NG+Sym∗ with other kinds of symmetries such as value
symmetries and variable-value symmetries. A second perspective is to compare
our approach with classical symmetry-breaking methods.
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