
HAL Id: hal-00870846
https://hal.science/hal-00870846

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On SAT Technologies for dependency management and
beyond

Daniel Le Berre, Anne Parrain

To cite this version:
Daniel Le Berre, Anne Parrain. On SAT Technologies for dependency management and beyond. First
Workshop on Software Product Lines (ASPL’08), 2008, Limerick, Ireland. pp.197-200. �hal-00870846�

https://hal.science/hal-00870846
https://hal.archives-ouvertes.fr


On SAT Technologies for dependency management and beyond

Daniel Le Berre Anne Parrain∗

Université Lille-Nord de France, Artois, F-62307 Lens
CRIL, F-62307 Lens

CNRS UMR 8188, F-62307 Lens
{leberre,parrain}@cril.univ-artois.fr

Abstract

SAT solvers technology is now mature enough to be part
of the engineer toolbox side by side with Mixed Integer Pro-
gramming and Constraint Programming tools. As of June
2008, two great pieces of software are using SAT technol-
ogy to manage dependency like problems: the open source
Linux distribution OpenSuse 11.0, released on June 19,
2008, integrates a custom SAT solver in their dependency
manager Zypp. The new update manager of Eclipse 3.4,
called Equinox p2, also uses SAT technology to resolve de-
pendencies in their OSGi platform. The use of SAT tech-
nology in Software Product Lines has already been pointed
out by several authors. We believe that the current inter-
est for solving dependency management problems in SAT
technologies opens quite interesting challenges to the SAT
community. First, since those problems are met in software
with interactive use, SAT engines need to solve them within
seconds. Second, providing one solution is usually not suf-
ficient: finding the best solution is usually what users want.
Finally, fully supported open source or commercial SAT en-
gines are needed for a broader adoption in the software en-
gineering community.

1 Introduction

The success of SAT technology in Electronic Design
Automation (EDA), in particular in the area of Bounded
Model Checking [6] has pushed forward the development
of SAT solvers. They are now being used routinely as
lightweight constraint programming solvers. The perfor-
mance breakthrough due to the Chaff SAT solver[19], and
the design some years later of the minimalistic Minisat [13]
allowed the availability of numerous very efficient SAT en-
gines in various languages. One of the main advantage of

∗This work is supported in part by the European research project num-
ber 214898 Mancoosi (www.mancoosi.org).

SAT solvers against more traditional constraint program-
ming solvers is its simple unified input format (Dimacs
[15]) that allows SAT solvers to be used just as black boxes,
or as SAT components in a more software engineering vo-
cabulary.

If many users of SAT solvers are currently coming from
EDA, the use of SAT technology is currently growing in
software engineering. Recent works in software design
analysis clearly focus on efficient translation into SAT
[23] and take advantages of new features developed in
SAT solvers (e.g. Unsat cores [22]) to improve both user
experience and scalability. In Software Product Lines, SAT
solvers can be used to decide whether a product config-
uration is safe or not and how to implement the product
configuration [3, 21]. Related work includes the use of
CSP and BDD approaches to tackle the same problems
[4, 5]. The EDOS project [16, 11] found in SAT technology
a good mean to validate the package dependencies for
Linux distributions, i.e to answer the question:“Are all
the packages of that distribution installable?”. In the
same spirit, OPIUM [24] is a dependency manager for
the Linspire linux distribution based on pseudo boolean
solvers, one of the numerous extensions to SAT.

As a consequence of such research work on dependency
management, two great pieces of software are using SAT
technology to manage dependency like problems: the open
source Linux distribution OpenSuse 11.01, released on June
19, 2008, integrates a custom SAT solver in their depen-
dency manager ZYpp. The new update manager of Eclipse
3.4, called Equinox p2, also uses SAT technology to resolve
dependencies in its OSGi platform2. Finally, another fa-
mous framework for Java users, Maven, decided recently3

to use SAT technologies to resolve their package dependen-
cies.

1http://en.opensuse.org/OpenSUSE_11.0
2http://wiki.eclipse.org/Equinox_P2_Resolution
3http://jira.codehaus.org/browse/MARTIFACT-20



2 Dependency decision problem

Dependencies between packages can be easily modeled
using propositional logic. For instance, package A depends
on package B and package C can be expressed by the
logical formulaA → B ∧C which in turn can be expressed
by the two clausesA → B and A → C (or ¬A ∨ B

and¬A ∨ C). If all the dependencies are requirements
of a conjunctive form, even if incompatibilities between
packages are expressed, the resulting SAT problem is made
of Horn clauses, i.e. clauses containing at most one positive
literal, thus is solvable in linear time [10].

The dependency problem becomes interesting when
a given feature can be provided by several artifacts: this
is the case for instance of several versions of the same
OSGi bundle4 in Eclipse. Sometimes, the same feature
is provided by different packages, depending on their
origin: to install latex in a linux distribution, one can
use for instance texlive-latex or tetex-latex. In that case,
we would express such dependency by something like
latex → texlive latex ∨ tetex latex which is no longer
a Horn clause. Thus the dependency problem becomes
NP-complete [8].

However, SAT solvers can nowadays solve some in-
stances of the SAT problem with as many as millions of
variables and clauses while they were still unable to solve
a custom crafted 117 variables only SAT instance during
the SAT 2007 Solver competition5. So, while there is no
warranty that a SAT solver can solve efficiently SAT in-
stances resulting from the translation of a “real” problem
into SAT, it is often the case that such solvers perform well
on those instances. From our own experience, the depen-
dency decision problem can be easily solved using modern
SAT solvers.

3 From satisfaction to optimization

However, the dependency problem is oftenunder-
constrained, which means that there is usually a lot of
possible solutions. And not all those solutions are usually
equally good. For Linux distributions for instance, one
could take into account the number of packages to install,
or their size, etc in order to propose an installation with
the minimum number of packages or an installation with
the smallest footprint on the hard drive. Those criteria can
be easily modeled in an optimization framework by an
objective function to minimize. Such objective function is
of the form

∑
n

i=1
aixi whereai is an integral coefficient

4OSGi is the component based model component chosen by Eclipse for
its plug-in architecture. Seehttp://www.osgi.org/ for details.

5http://www.satcompetition.org/2007/

andxi is a propositional variable where true is denoted by
value 1 and false is denoted by value 0.

If one wants to minimize the number of installed pack-
ages, allai will be 1 and allxi will correspond to the propo-
sitional variables encoding packages to install. If one wants
to minimize the size of the installed packages, then theai

will encode the size of each packages in bytes for instance.
In the case of SPL, the objective function could encode

to install as many features as possible, to look for the
cheapest or the most expensive product, etc.

Adding such objective function to a set of clauses
creates an instance of the Binate Covering problem [9].
Such problem has already been studied in EDA for logic
synthesis (to minimize the number of components needed
to perform a given operation). From a complexity theory,
that problem is NP-hard, which means that is is at least as
hard as SAT.

The binate covering problem can be seen as a very
specific case of an Integer Linear Program in which case
efficient ILP frameworks exist (e.g. CPLEX). However, it
is currently not clear if ILP solvers are the right approach
to tackle those problems.

Indeed, ILP restricted to boolean variables has been also
a recent area of research in the SAT community, under the
generic name “Pseudo Boolean problems”, inherited from
the very first work on that subject [1, 2]. A competition
of Pseudo Boolean solvers has been organized to assess
the efficiency of existing solutions[18]. Among the cur-
rent best ones, one can note the pure SAT approach of
Minisat+[12], the hybrid approach Pueblo [20] (used in the
tool OPIUM) or the modern branch-and-bound Bsolo [17].
Those solvers have been compared to the Gnu Linear Pro-
gramming toolkit, and in many cases performed better. No
comparison with commercial ILP solvers has been done yet.

In Artificial Intelligence, the binate covering problem
is sometimes presented as a so called “Weighted partial
MAX-SAT problem”: the clauses of the original binate
covering problem are called hard clauses, i.e. they must be
satisfied. The objective function is encoded by weighted
unit clauses, whose weight isai and whose literal is
¬xi. If the weight is the same for all the soft clauses, the
problem is called “partial MAXSAT”. Since 2006, there is
an annual competition of MAXSAT solvers. The interest
on MAXSAT solvers is currently growing so MAXSAT
solvers will be yet another way to tackle the binate covering
problem in the future.

SAT solvers are currently efficient enough to solve SAT



instances mapping real useful problems. Regarding solvers
for SAT extensions like Pseudo Boolean or MAXSAT,
the picture is less clear. Furthermore, we have seen that
the so-called binate covering problem can be solved in
many-ways: the best solution is yet to be determined.

The evaluation of the solvers is currently done on the
assumption that the solvers are used in batch mode, i.e.
that they can take several minutes, if not hours, to answer.
Indeed, it is often the case in the area of model checking
that the engineer writes its model during the day and let
the SAT solver to check it during the night. In the SAT
competition for instance, the timeout used in the industrial
category is set to 1200 seconds in the first stage, and
10000 seconds in the second stage. As a consequence, the
use of SAT solvers in interactive tools such as Eclipse or
Linux update managers, or a Feature Model Editor such
as FeatureIDE or FAMA requires specifically tailored
solvers (see e.g. custom SAT engines in EDOS (debian) or
OpenSuse.

Finally, the notion of quality of the solution is also a hot
topic in that case: it is unlikely that a solver can efficiently
solve all those NP-hard problems within a second, so non
optimal solutions need to be returned after that time. We
enter here in the area of anytime algorithms, for which local
search algorithms are usually pretty good [14].

4 When modeling matters

The expected results mentioned in the previous section
were simple, and global. However, in real applications,
the user preferences are usually manifold and expressed
in a local manner. Take for instance the case of the use
of SAT technology in Eclipse p2: one expected result of
the objective function is to make sure that most recent ver-
sions are installed preferably to older ones. If there is only
one package, this is not a problem. However, as soon as
there is more than one package, we enter the area of multi-
objective/criteria optimization.

Indeed, suppose that packageA is available in three ver-
sions:A1, A2, A3. Suppose that packageB is available in
two versions:B1, B2. Suppose that packageX depends on
A andB. The best solution would be to pick the latest ver-
sions,B2 andA3. However, they are incompatible. Is it
better to takeA2 andB2 or B1 andA3? There is maybe no
way to answer that question. In that case, an automated so-
lution to solve that dependency problem will answer one of
them, without any assumption that can be made on the so-
lution. If one can add a preference betweenA andB, then
we can discriminate between the two solutions and favor the
first solution for instance ifB is more important thanA or
the second one ifA is more important thanB.

Artificial Intelligence and Operational Research have so-
lutions to deal with such kind of problems. In the specific
case of Eclipse p2, the preferences on the different plugin
versions could be modeled for instance using the Qualita-
tive Choice Logic [7].

5 Research toys or real tools?

There are numerous SAT/Pseudo Boolean/MAXSAT
solvers out there, in various languages, with various fea-
tures. However, very few are really supported in the sense
that there is no clear way to get help, enter bug reports,
etc. And very few are really open source: many solvers
have a license restricting their use for research purpose
only. Most of them are not full featured in the sense
that if they all allow to solve the SAT decision problem,
very few support also proof logging, minimal unsat core,
model enumeration, model counting, optimization support,
support for multi-core processors, etc. In that sense, users
of SAT technology must first define all the features they
really need in order to choose the right solver (or the right
solvers, since it might be just impossible to find a solver
with all needed features). In that sense, SAT solvers are
still research toys.

On the other hand, various products (from both academia
and private companies) are now based on currently avail-
able SAT solvers. So the same solvers can be considered as
real tools too.

The main current issue is certainly the input format used
in the SAT community: the Dimacs format created for the
Second Dimacs Challenge[15]. It is a simple integer based
input format very convenient for SAT solver developers. It’s
simplicity is one key element of the incredible evolution of
SAT solvers: everybody can easily read or produce SAT
instances using that format, in any language. As a conse-
quence, SAT solvers became quickly “black-boxes” fed us-
ing Dimacs formatted SAT instances. It was thus easy to
compare the behavior of several solvers on the same bench-
marks, organize sat competitions, etc. However, it is not
a nice input format for people willing to try SAT technol-
ogy: one needs to design an abstraction layer between its
problem and the Dimacs format or the SAT solver first. The
audience of SAT technology growing, a more user friendly
input format is now necessary.

6 Conclusion

We have seen that SAT technology receives currently a
lot of attention in the software engineering community, es-
pecially in the area of dependency management, that is also



a concern inherent to Software Product lines. We have seen
that the basic decision problem related to dependency man-
agement is in practice easily solvable with current state-of-
the-art SAT solvers. However, dependency management
in real software is likely to be better modelled as an opti-
mization problem called binate covering problem for which
numerous solutions exist. We currently do not know the
best approach for solving binate covering instances encod-
ing the dependency problem. Another issue with depen-
dency management lies in the fact that the problem is likely
to be under-constrained, i.e. it is likely that the problem ad-
mit several equivalent solutions for the solver. As a con-
sequence, it will be very difficult to control the answers
provided by the solver, and to offer some warranties about
those solutions. It must be clear for users of such technol-
ogy that the most important part of the work is to properly
express their problem in terms of preferences among pos-
sible solutions, then to deduce from those preferences the
objective function of their binate covering problem. Finally,
the use of solvers in interactive tools is likely to change the
solvers landscape since most of them are currently designed
to be used in batch mode.

References

[1] P. Barth. Linear 0-1 inequalities and extended clauses.
Technical Report MPI-I-94-216, Max-Plank-Institut fr In-
formatik, Saarbrücken, Germany, 1994.

[2] P. Barth. A Davis-Putnam based enumeration algorithm
for linear pseudo-Boolean optimization. Technical Re-
port MPI–I–95–2–003, Max-Planck Institut fr Informatik,
Saarbrücken, 1995.

[3] D. S. Batory. Feature models, grammars, and propositional
formulas. In J. H. Obbink and K. Pohl, editors,SPLC, vol-
ume 3714 ofLecture Notes in Computer Science, pages 7–
20. Springer, 2005.

[4] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts.A
first step towards a framework for the automated analysis of
feature models. InManaging Variability for Software Prod-
uct Lines: Working With Variability Mechanisms, 2006.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Corts.
FAMA: Tooling a framework for the automated analysis of
feature models. InProceeding of the First International
Workshop on Variability Modelling of Software-intensive
Systems (VAMOS), 2007.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
model checking without bdds. In R. Cleaveland, editor,
TACAS, volume 1579 ofLecture Notes in Computer Science,
pages 193–207. Springer, 1999.

[7] G. Brewka, S. Benferhat, and D. L. Berre. Qualitative choice
logic. Artif. Intell., 157(1-2):203–237, 2004.

[8] S. A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

[9] O. Coudert. On solving covering problems. InDesign Au-
tomation Conference, pages 197–202, 1996.

[10] W. F. Dowling and J. H. Gallier. Linear-time algorithmsfor
testing the satisfiability of propositional horn formulae.J.
Log. Program., 1(3):267–284, 1984.

[11] The edos project. http://www.edos-project.org.
[12] N. Eén and N. Sörensson. Translating pseudo-booleancon-

straints into sat.Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 2:1–26, 2006.

[13] N. E. en and N. Sörensson. An extensible sat-solver. In
Proceedings of the Sixth International Conference on The-
ory and Applications of Satisfiability Testing, LNCS 2919,
pages 502–518, 2003.

[14] H. H. Hoos and T. Stützle.Stochastic Local Search: Foun-
dations & Applications. Elsevier / Morgan Kaufmann, 2004.

[15] D. Johnson and M. Trick, editors.Second DIMACS imple-
mentation challenge : cliques, coloring and satisfiability,
volume 26 ofDIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical So-
ciety, 1996.

[16] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Du-
rak, X. Leroy, and R. Treinen. Managing the complex-
ity of large free and open source package-based software
distributions. InProceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE06), pages 199–208, Tokyo, JAPAN, september 2006.
IEEE Computer Society Press.

[17] V. Manquinho and J. Marques-Silva. On using cutting planes
in pseudo-boolean optimization.Journal on Satisfiabil-
ity, Boolean Modeling and Computation (JSAT), 2:209–219,
2006. Research Note.

[18] V. Manquinho and O. Roussel. The first evaluation of
pseudo-boolean solvers (pb’05).Journal on Satisfiabil-
ity, Boolean Modeling and Computation (JSAT), 2:103–143,
2006.

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Design Automation Conference
(DAC’01), pages 530–535, 2001.

[20] H. M. Sheini and K. A. Sakallah. Pueblo: A Hybrid Pseudo-
Boolean SAT Solver. Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), 2:165–182, 2006.

[21] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe com-
position of product lines. InGPCE ’07: Proceedings of the
6th international conference on Generative programming
and component engineering, pages 95–104, New York, NY,
USA, 2007. ACM.

[22] E. Torlak, F. S.-H. Chang, and D. Jackson. Finding min-
imal unsatisfiable cores of declarative specifications. In
J. Cuéllar, T. S. E. Maibaum, and K. Sere, editors,FM, vol-
ume 5014 ofLecture Notes in Computer Science, pages 326–
341. Springer, 2008.

[23] E. Torlak and D. Jackson. Kodkod: A relational model
finder. In O. Grumberg and M. Huth, editors,TACAS, vol-
ume 4424 ofLecture Notes in Computer Science, pages 632–
647. Springer, 2007.

[24] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Opium:
Optimal package install/uninstall manager. InICSE, pages
178–188. IEEE Computer Society, 2007.


