Daniel Le Berre
email: leberre@cril.univ-artois.fr

Anne Parrain
email: parrain@cril.univ-artois.fr

On SAT Technologies for dependency management and beyond

SAT solvers technology is now mature enough to be part of the engineer toolbox side by side with Mixed Integer Programming and Constraint Programming tools. As of June 2008, two great pieces of software are using SAT technology to manage dependency like problems: the open source Linux distribution OpenSuse 11.0, released on June 19, 2008, integrates a custom SAT solver in their dependency manager Zypp. The new update manager of Eclipse 3.4, called Equinox p2, also uses SAT technology to resolve dependencies in their OSGi platform. The use of SAT technology in Software Product Lines has already been pointed out by several authors. We believe that the current interest for solving dependency management problems in SAT technologies opens quite interesting challenges to the SAT community. First, since those problems are met in software with interactive use, SAT engines need to solve them within seconds. Second, providing one solution is usually not sufficient: finding the best solution is usually what users want. Finally, fully supported open source or commercial SAT engines are needed for a broader adoption in the software engineering community.

Introduction

The success of SAT technology in Electronic Design Automation (EDA), in particular in the area of Bounded Model Checking [START_REF] Biere | Symbolic model checking without bdds[END_REF] has pushed forward the development of SAT solvers. They are now being used routinely as lightweight constraint programming solvers. The performance breakthrough due to the Chaff SAT solver [START_REF] Moskewicz | Chaff: Engineering an Efficient SAT Solver[END_REF], and the design some years later of the minimalistic Minisat [START_REF] En | An extensible sat-solver[END_REF] allowed the availability of numerous very efficient SAT engines in various languages. One of the main advantage of SAT solvers against more traditional constraint programming solvers is its simple unified input format (Dimacs [START_REF] Johnson | Second DIMACS implementation challenge : cliques, coloring and satisfiability[END_REF]) that allows SAT solvers to be used just as black boxes, or as SAT components in a more software engineering vocabulary.

If many users of SAT solvers are currently coming from EDA, the use of SAT technology is currently growing in software engineering. Recent works in software design analysis clearly focus on efficient translation into SAT [START_REF] Torlak | Kodkod: A relational model finder[END_REF] and take advantages of new features developed in SAT solvers (e.g. Unsat cores [START_REF] Torlak | Finding minimal unsatisfiable cores of declarative specifications[END_REF]) to improve both user experience and scalability. In Software Product Lines, SAT solvers can be used to decide whether a product configuration is safe or not and how to implement the product configuration [START_REF] Batory | Feature models, grammars, and propositional formulas[END_REF][START_REF] Thaker | Safe composition of product lines[END_REF]. Related work includes the use of CSP and BDD approaches to tackle the same problems [START_REF] Benavides | A first step towards a framework for the automated analysis of feature models[END_REF][START_REF] Benavides | FAMA: Tooling a framework for the automated analysis of feature models[END_REF]. The EDOS project [START_REF] Mancinelli | Managing the complexity of large free and open source package-based software distributions[END_REF][START_REF]The edos project[END_REF] found in SAT technology a good mean to validate the package dependencies for Linux distributions, i.e to answer the question:"Are all the packages of that distribution installable?". In the same spirit, OPIUM [START_REF] Tucker | Opium: Optimal package install/uninstall manager[END_REF] is a dependency manager for the Linspire linux distribution based on pseudo boolean solvers, one of the numerous extensions to SAT.

As a consequence of such research work on dependency management, two great pieces of software are using SAT technology to manage dependency like problems: the open source Linux distribution OpenSuse 11.01 , released on June 19, 2008, integrates a custom SAT solver in their dependency manager ZYpp. The new update manager of Eclipse 3.4, called Equinox p2, also uses SAT technology to resolve dependencies in its OSGi platform 2 . Finally, another famous framework for Java users, Maven, decided recently3 to use SAT technologies to resolve their package dependencies.

Dependency decision problem

Dependencies between packages can be easily modeled using propositional logic. For instance, package A depends on package B and package C can be expressed by the logical formula A → B ∧ C which in turn can be expressed by the two clauses A → B and A → C (or ¬A ∨ B and ¬A ∨ C). If all the dependencies are requirements of a conjunctive form, even if incompatibilities between packages are expressed, the resulting SAT problem is made of Horn clauses, i.e. clauses containing at most one positive literal, thus is solvable in linear time [START_REF] Dowling | Linear-time algorithms for testing the satisfiability of propositional horn formulae[END_REF].

The dependency problem becomes interesting when a given feature can be provided by several artifacts: this is the case for instance of several versions of the same OSGi bundle 4 in Eclipse. Sometimes, the same feature is provided by different packages, depending on their origin: to install latex in a linux distribution, one can use for instance texlive-latex or tetex-latex. In that case, we would express such dependency by something like latex → texlive latex ∨ tetex latex which is no longer a Horn clause. Thus the dependency problem becomes NP-complete [START_REF] Cook | The complexity of theorem-proving procedures[END_REF].

However, SAT solvers can nowadays solve some instances of the SAT problem with as many as millions of variables and clauses while they were still unable to solve a custom crafted 117 variables only SAT instance during the SAT 2007 Solver competition 5 . So, while there is no warranty that a SAT solver can solve efficiently SAT instances resulting from the translation of a "real" problem into SAT, it is often the case that such solvers perform well on those instances. From our own experience, the dependency decision problem can be easily solved using modern SAT solvers.

From satisfaction to optimization

However, the dependency problem is often underconstrained, which means that there is usually a lot of possible solutions. And not all those solutions are usually equally good. For Linux distributions for instance, one could take into account the number of packages to install, or their size, etc in order to propose an installation with the minimum number of packages or an installation with the smallest footprint on the hard drive. Those criteria can be easily modeled in an optimization framework by an objective function to minimize. Such objective function is of the form n i=1 a i x i where a i is an integral coefficient 4 OSGi is the component based model component chosen by Eclipse for its plug-in architecture. See http://www.osgi.org/ for details. 5 http://www.satcompetition.org/2007/ and x i is a propositional variable where true is denoted by value 1 and false is denoted by value 0.

If one wants to minimize the number of installed packages, all a i will be 1 and all x i will correspond to the propositional variables encoding packages to install. If one wants to minimize the size of the installed packages, then the a i will encode the size of each packages in bytes for instance.

In the case of SPL, the objective function could encode to install as many features as possible, to look for the cheapest or the most expensive product, etc.

Adding such objective function to a set of clauses creates an instance of the Binate Covering problem [START_REF] Coudert | On solving covering problems[END_REF]. Such problem has already been studied in EDA for logic synthesis (to minimize the number of components needed to perform a given operation). From a complexity theory, that problem is NP-hard, which means that is is at least as hard as SAT.

The binate covering problem can be seen as a very specific case of an Integer Linear Program in which case efficient ILP frameworks exist (e.g. CPLEX). However, it is currently not clear if ILP solvers are the right approach to tackle those problems. Indeed, ILP restricted to boolean variables has been also a recent area of research in the SAT community, under the generic name "Pseudo Boolean problems", inherited from the very first work on that subject [START_REF] Barth | Linear 0-1 inequalities and extended clauses[END_REF][START_REF] Barth | A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization[END_REF]. A competition of Pseudo Boolean solvers has been organized to assess the efficiency of existing solutions [START_REF] Manquinho | The first evaluation of pseudo-boolean solvers (pb'05)[END_REF]. Among the current best ones, one can note the pure SAT approach of Minisat+ [START_REF] Eén | Translating pseudo-boolean constraints into sat[END_REF], the hybrid approach Pueblo [START_REF] Sheini | Pueblo: A Hybrid Pseudo-Boolean SAT Solver[END_REF] (used in the tool OPIUM) or the modern branch-and-bound Bsolo [START_REF] Manquinho | On using cutting planes in pseudo-boolean optimization[END_REF]. Those solvers have been compared to the Gnu Linear Programming toolkit, and in many cases performed better. No comparison with commercial ILP solvers has been done yet.

In Artificial Intelligence, the binate covering problem is sometimes presented as a so called "Weighted partial MAX-SAT problem": the clauses of the original binate covering problem are called hard clauses, i.e. they must be satisfied. The objective function is encoded by weighted unit clauses, whose weight is a i and whose literal is ¬x i . If the weight is the same for all the soft clauses, the problem is called "partial MAXSAT". Since 2006, there is an annual competition of MAXSAT solvers. The interest on MAXSAT solvers is currently growing so MAXSAT solvers will be yet another way to tackle the binate covering problem in the future.

SAT solvers are currently efficient enough to solve SAT instances mapping real useful problems. Regarding solvers for SAT extensions like Pseudo Boolean or MAXSAT, the picture is less clear. Furthermore, we have seen that the so-called binate covering problem can be solved in many-ways: the best solution is yet to be determined.

The evaluation of the solvers is currently done on the assumption that the solvers are used in batch mode, i.e. that they can take several minutes, if not hours, to answer. Indeed, it is often the case in the area of model checking that the engineer writes its model during the day and let the SAT solver to check it during the night. In the SAT competition for instance, the timeout used in the industrial category is set to 1200 seconds in the first stage, and 10000 seconds in the second stage. As a consequence, the use of SAT solvers in interactive tools such as Eclipse or Linux update managers, or a Feature Model Editor such as FeatureIDE or FAMA requires specifically tailored solvers (see e.g. custom SAT engines in EDOS (debian) or OpenSuse.

Finally, the notion of quality of the solution is also a hot topic in that case: it is unlikely that a solver can efficiently solve all those NP-hard problems within a second, so non optimal solutions need to be returned after that time. We enter here in the area of anytime algorithms, for which local search algorithms are usually pretty good [START_REF] Hoos | Stochastic Local Search: Foundations & Applications[END_REF].

When modeling matters

The expected results mentioned in the previous section were simple, and global. However, in real applications, the user preferences are usually manifold and expressed in a local manner. Take for instance the case of the use of SAT technology in Eclipse p2: one expected result of the objective function is to make sure that most recent versions are installed preferably to older ones. If there is only one package, this is not a problem. However, as soon as there is more than one package, we enter the area of multiobjective/criteria optimization.

Indeed, suppose that package A is available in three versions: A 1 , A 2 , A 3 . Suppose that package B is available in two versions: B 1 , B 2 . Suppose that package X depends on A and B. The best solution would be to pick the latest versions, B 2 and A 3 . However, they are incompatible. Is it better to take A 2 and B 2 or B 1 and A 3 ? There is maybe no way to answer that question. In that case, an automated solution to solve that dependency problem will answer one of them, without any assumption that can be made on the solution. If one can add a preference between A and B, then we can discriminate between the two solutions and favor the first solution for instance if B is more important than A or the second one if A is more important than B.

Artificial Intelligence and Operational Research have solutions to deal with such kind of problems. In the specific case of Eclipse p2, the preferences on the different plugin versions could be modeled for instance using the Qualitative Choice Logic [START_REF] Brewka | Qualitative choice logic[END_REF].

Research toys or real tools?

There are numerous SAT/Pseudo Boolean/MAXSAT solvers out there, in various languages, with various features. However, very few are really supported in the sense that there is no clear way to get help, enter bug reports, etc. And very few are really open source: many solvers have a license restricting their use for research purpose only. Most of them are not full featured in the sense that if they all allow to solve the SAT decision problem, very few support also proof logging, minimal unsat core, model enumeration, model counting, optimization support, support for multi-core processors, etc. In that sense, users of SAT technology must first define all the features they really need in order to choose the right solver (or the right solvers, since it might be just impossible to find a solver with all needed features). In that sense, SAT solvers are still research toys.

On the other hand, various products (from both academia and private companies) are now based on currently available SAT solvers. So the same solvers can be considered as real tools too.

The main current issue is certainly the input format used in the SAT community: the Dimacs format created for the Second Dimacs Challenge [START_REF] Johnson | Second DIMACS implementation challenge : cliques, coloring and satisfiability[END_REF]. It is a simple integer based input format very convenient for SAT solver developers. It's simplicity is one key element of the incredible evolution of SAT solvers: everybody can easily read or produce SAT instances using that format, in any language. As a consequence, SAT solvers became quickly "black-boxes" fed using Dimacs formatted SAT instances. It was thus easy to compare the behavior of several solvers on the same benchmarks, organize sat competitions, etc. However, it is not a nice input format for people willing to try SAT technology: one needs to design an abstraction layer between its problem and the Dimacs format or the SAT solver first. The audience of SAT technology growing, a more user friendly input format is now necessary.

Conclusion

We have seen that SAT technology receives currently a lot of attention in the software engineering community, especially in the area of dependency management, that is also a concern inherent to Software Product lines. We have seen that the basic decision problem related to dependency management is in practice easily solvable with current state-ofthe-art SAT solvers. However, dependency management in real software is likely to be better modelled as an optimization problem called binate covering problem for which numerous solutions exist. We currently do not know the best approach for solving binate covering instances encoding the dependency problem. Another issue with dependency management lies in the fact that the problem is likely to be under-constrained, i.e. it is likely that the problem admit several equivalent solutions for the solver. As a consequence, it will be very difficult to control the answers provided by the solver, and to offer some warranties about those solutions. It must be clear for users of such technology that the most important part of the work is to properly express their problem in terms of preferences among possible solutions, then to deduce from those preferences the objective function of their binate covering problem. Finally, the use of solvers in interactive tools is likely to change the solvers landscape since most of them are currently designed to be used in batch mode.

http://en.opensuse.org/OpenSUSE_11.0

http://wiki.eclipse.org/Equinox_P2_Resolution

http://jira.codehaus.org/browse/MARTIFACT-20

This work is supported in part by the European research project number 214898 Mancoosi (www.mancoosi.org).