
HAL Id: hal-00870841
https://hal.science/hal-00870841v1

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abscon 112: towards more robustness
Christophe Lecoutre, Sébastien Tabary

To cite this version:
Christophe Lecoutre, Sébastien Tabary. Abscon 112: towards more robustness. 3rd International
Constraint Solver Competition (CSC’08), 2008, Sydney, Australia. pp.41-48. �hal-00870841�

https://hal.science/hal-00870841v1
https://hal.archives-ouvertes.fr


Abscon 112

Toward more Robustness

Christophe Lecoutre and Sebastien Tabary

CRIL-CNRS UMR 8188,
Université d’Artois

Lens, France
{lecoutre, tabary}@cril.fr

Abstract. This paper describes the three main improvements made
to the solver Abscon 109 [9]. The new version, Abscon 112, is able to
automatically break some variable symmetries, infer allDifferent con-
straints from cliques of variables that are pair-wise irreflexive, and use
an optimized version of the STR (Simple Tabular Reduction) technique
initially introduced by J. Ullmann for table constraints.

1 From Local to Global Variable Symmetries

In [10], we have proposed to automatically detect variable symmetries of CSP
instances by computing for each constraint scope a partition exhibiting locally
symmetrical variables. From this local information that can be obtained in poly-
nomial time, we can build a so-called lsv-graph whose automorphisms correspond
to (global) variable symmetries. Interestingly enough, our approach allows us to
disregard the representation (extension, intension, global) of constraints. Be-
sides, the size of the lsv-graph is linear wrt the number of constraints (and
their arity). To break symmetries from the generators returned by a graph au-
tomorphism algorithm, a classical approach is to post lexicographic ordering
constraints defined on two vectors of variables. We have proposed a new variant
of an algorithm enforcing GAC (generalized arc consistency) on such constraints
which is able to deal with shared variables. This algorithm is quite simple to
implement and well-adapted to general-purpose constraint solvers. Our experi-
mental results show the robustness of the overall approach with different search
heuristics: on a large number of series, more instances can be solved while the
cpu time required for symmetry identification is observed as negligible. These
results confirm that automatically breaking symmetries constitutes a significant
breakthrough for black-box CSP solvers.

In order to show the practical interest of this approach, we have then con-
ducted an extensive experimentation on a cluster of Xeon 3.0GHz with 1GiB
of RAM under Linux. Here, performance is measured in terms of cpu time (in
seconds) and number of visited nodes. We have integrated to the classical MAC
algorithm, that is to say the algorithm that maintains (generalized) arc consis-
tency at each node of the search tree, several variants of the symmetry breaking



MAC MACLe MACLex MAC∗

Le MAC∗

Lex

scen11-f12
cpu 1.88 2.0 2.05 1.71 1.82

nodes 390 614 721 4, 140 4, 140

scen11-f11
cpu 1.77 1.97 1.95 1.82 1.83

nodes 390 614 721 4, 216 4, 216

scen11-f10
cpu 1.77 1.82 2.08 1.81 1.9

nodes 468 327 722 109 77

scen11-f9
cpu 2.15 1.96 2.23 1.84 1.97

nodes 1, 064 576 922 109 90

scen11-f8
cpu 2.1 2.09 2.28 2.02 2.0

nodes 1, 354 558 997 112 115

scen11-f7
cpu 4.83 2.28 2.37 1.91 2.05

nodes 8, 369 955 1, 247 121 135

scen11-f6
cpu 8.29 2.14 2.37 2.1 2.08

nodes 17, 839 571 1, 333 172 157

scen11-f5
cpu 32.0 2.2 3.13 2.19 2.13

nodes 85, 104 988 3, 465 253 226

scen11-f4
cpu 112 2.66 3.88 2.36 2.53

nodes 345K 1, 983 5, 007 593 903

scen11-f3
cpu 403 3.41 7.98 2.55 2.45

nodes 1, 300K 3, 926 17, 259 946 696

scen11-f2
cpu time-out 4.32 16.4 2.95 2.92

nodes − 6, 014 40, 615 1, 700 1, 591

scen11-f1
cpu time-out 7.56 19.7 3.49 3.4

nodes − 14, 997 47, 318 3, 199 2, 609

Table 1. Cost of running MAC and its symmetry breaking variants on hard RLFAP
instances (38 generators). The variable ordering heuristic is dom/wdeg.

approach described in [10]. For this experimentation, no restarts and no nogood
recording were activated.

To identify variable symmetries, we have used Saucy. For each generator
of the symmetry group returned by Saucy, we have considered four distinct
symmetry breaking procedures. For the first one, denoted by MACLe, a binary
constraint of difference Le (constraint of the form x ≤ y) that involves the
two first variables of the first cycle of the generator is posted. For the second
one, denoted by MACLex, a lexicographic ordering constraint Lex (involving all
variables of all cycles of the generator) is posted. Clearly, a Lex constraint is
stronger than the corresponding Le constraint: its filtering capability is greater.
Notice that when the two first variables of the first cycle of the generator are
included in the scope of a (non-global) constraint c of the network, one can
merge c with a binary constraint Le. In practice, if c is defined in intension,
its associated predicate is modified whereas if c is defined in extension, the set
of tuples disallowing the constraint Le are removed from the table associated
with c. When such a merging method is applied, one obtains two additional
procedures, denoted by MAC∗

Le and MAC∗

Lex.



Here, we only provide some results (see Table 1) obtained for the hardest
instances (which involve 680 variables and a greatest domain size of about 50
values) built from the real-world Radio Link Frequency Assignment Problem
(RLFAP). Clearly, the symmetry breaking methods allow us to be far more effi-
cient than the classical MAC algorithm. In practice, MAC∗

Lex has been observed
as the best method and has been used for the CSP competition.

2 Exploiting Cliques

Some instances contain hidden structures such as backbones, (strong) backdoors
and unsatisfiable cores. Cliques also belong to this category. A clique is a graph
such that there exists an edge between any two vertices. Interestingly, sometimes,
we observe that for any pair (x, y) of variables of a sub-network P ′ of P whose
constraint graph is a clique, the relation associated with the constraint involving
x and y is irreflexive. Otherwise stated, we know that ∀{x, y} ⊂ vars(P ′), x 6= y.
We can then infer an additional global constraint allDifferent that can be
useful to better prune the search space. However, in some constraint solvers,
the filtering procedure (propagator) attached to allDifferent achieves a local
consistency weaker than generalized arc consistency. But, even in this case, in-
ferring allDifferent global constraints can be quite effective provided that the
following (trivial) proposition is exploited.

Proposition 1. Let c : allDifferent(x1, . . . , xr) be a constraint. If we have
| ∪r

i=1 dom(xi)| < r, then c is disentailed (i.e. the set of supports of c is empty).

This approach is quite simple, and to the best of our knowledge, employed by
some other solvers engaged in the 2008 competition. It suffices to detect cliques
in a greedy manner, determine if irreflexivity is guaranteed between each pair of
variables, and post a constraint allDifferent that at least exploits Proposition
1. Interestingly, it is not so rare to find cliques in non-random problems. As an
illustration, the instance blackHole-4-4-e-0 (see its constraint graph in Figure 1)
contains a 16-clique that enables us to infer a global constraint allDifferent. As
one can show that this additional constraint is disentailed by using Proposition
1, the instance is directly proved to be unsatisfiable.

3 Simple Tabular Reduction

Table constraints play an important role within constraint programming. Re-
cently, many schemes or algorithms have been proposed to propagate table con-
straints or/and to compress their representation. In [7], we have shown that
simple tabular reduction (STR), a technique proposed by J. Ullmann [11] to
dynamically maintain the tables of supports, is very often the most efficient
practical approach to enforce generalized arc consistency within MAC. We have
also described an optimization of STR which allows limiting the number of op-
erations related to validity checking or search of supports. Interestingly enough,



V0

V2

V3

V4

V6

V7

V9

V10

V12

V13

V15

V16

V18V19

V21

V22

V24

V25

V27

V28

V30

V31

V33V34

V36

V37

V39

V40

V42

V43

V45

V46

V1

V49

V5

V50

V8

V51

V11

V52

V14

V53

V17

V54

V20

V55

V23

V56

V26

V57

V29

V58

V32

V59

V35

V60

V38

V61

V41

V62

V44

V63

V47

V48

V0

V3

V6

V9

V12

V15

V18

V21

V24

V27

V30

V33

V36

V39

V42

V45

Fig. 1. The constraint graph of the instance blackHole-4-4-e-0 contains a 16-clique. A
constraint allDifferent generated from this clique can be shown to be disentailed.



this optimization makes STR potentially r times faster where r is the arity
of the constraint(s). The results of an extensive experimentation that we have
conducted with respect to random and structured instances indicate that the op-
timized algorithm we propose is usually around twice as fast as the original STR
and can be up to one order of magnitude faster than previous state-of-the-art
algorithms on some series of instances.

In order to show the practical interest of simple tabular reduction, and in par-
ticular the optimization we propose, we have then experimented using a cluster of
Xeon 3.0GHz with 1GiB of RAM under Linux, employing MAC with dom/ddeg
and lexico as variable1 and value ordering heuristics, respectively. We have com-
pared classical schemes to enforce GAC on (positive) table constraints with
STR. More precisely, we have implemented the three schemes GACv, GACa and
GACva described in [8]. We do believe that GACva is a representative state-of-
the-art algorithm for table constraints. Our own experience confirms the results
reported in [4]: GACva and the trie approach are quite robust and close in terms
of performance.

Here, we only provide some results obtained for some series of Crossword
puzzles. For each grid, there is a variable per white square which can be assigned
any of the 26 letters of the Latin alphabet, and a constraint for any sequence of
white squares which corresponds to a word that we must put in the grid. Such
constraints are defined by a table which contains all words of the right length.
The series prefixed by cw-m1c are defined from blank grids and only contain
positive table constraints (contrary to model m1 in [1] where no two identical
words can be put in the grid, which is then naturally expressed in intension).
The arity of the constraints is given by the size of the grids: for example, cw-
m1c-lex-vg5-6 involves table constraints of arity 5 and 6 (the grid being 5 by
6).

The results that we have obtained (see Table 2) with respect to 4 dictionaries
(lex, words, uk, ogd) of different length show the good performance of STR for
such series. GACstr is the original algorithm, GACstr2 is the optimized version
and GACstr2+ is GACstr2 made incremental. On the most difficult instances,
GACstr2+ is about two times faster than GACstr and one order of magnitude
faster than GACva. Note that we do not provide mean results for these series
because many instances cannot be solved within 1, 200 seconds.

4 What about Max-CSP?

In order to participate to the part of the competition dedicated to Max-CSP, we
have implemented in Abscon a variant of the PFC-MRDAC algorithm [6]. This
variant lies between PFC-MRDAC and PFC-MPRDAC [5].

For preprocessing, we have used a tabu search algorithm in order to obtain
an initial lower bound of good quality. For (complete) search, we have used our
PFC-MRDAC variant. We have integrated the pruning approach presented in [2].

1 In our implementation, using dom/wdeg does not guarantee exploring the same
search tree with classical and STR schemes.



Classical GAC schemes Simple Tabular Reduction
GACv GACa GACva GACstr GACstr2 GACstr2+

Crossword puzzles with dictionary lex (24, 974 words)

cw-m1c-lex-vg5-6 cpu > 1, 200 38.8 54.2 14.3 12.4 10.7
#nodes=26, 679 mem 2, 889K 2, 928K 2, 932K 2, 935K 2, 968K

cw-m1c-lex-vg5-7 cpu > 1, 200 357 875 134 114 96.3
#nodes=171K mem 4, 134K 4, 173K 8, 005K 8, 055K 8, 059K

cw-m1c-lex-vg6-6 cpu > 1, 200 2.98 4.29 1.28 1.05 0.91
#nodes=1, 602 mem 4, 422K 4, 344K 4, 226K 4, 203K 4, 296K

cw-m1c-lex-vg6-7 cpu > 1, 200 436 1, 174 176 143 118
#nodes=152K mem 5, 887K 5, 692K 9, 458K 9, 437K 9, 555K

Crossword puzzles with dictionary words (45, 371 words)

cw-m1c-words-vg5-5 cpu > 1, 200 0.04 0.05 0.05 0.05 0.04
#nodes=38 mem 4, 969K 4, 987K 4, 823K 4, 791K 4, 809K

cw-m1c-words-vg5-6 cpu > 1, 200 1.19 1.46 0.48 0.37 0.33
#nodes=718 mem 6, 508K 6, 526K 6, 348K 6, 273K 6, 348K

cw-m1c-words-vg5-7 cpu > 1, 200 18.6 36.0 6.61 5.21 4.03
#nodes=6, 957 mem 8, 470K 8, 489K 8, 276K 8, 145K 8, 237K

cw-m1c-words-vg5-8 cpu > 1, 200 866 > 1, 200 273 229 187
#nodes=256K mem 4, 604K 10M 10M 10M

Crossword puzzles with dictionary uk (225, 349 words)

cw-m1c-uk-vg5-5 cpu > 1, 200 0.05 0.05 0.1 0.07 0.07
#nodes=28 mem 12M 12M 12M 12M 12M

cw-m1c-uk-vg5-6 cpu > 1, 200 0.55 0.5 0.21 0.17 0.17
#nodes=145 mem 17M 17M 16M 16M 16M

cw-m1c-uk-vg5-7 cpu > 1, 200 2.97 5.18 0.51 0.37 0.34
#nodes=408 mem 22M 22M 22M 22M 22M

cw-m1c-uk-vg5-8 cpu > 1, 200 82.5 71.9 7.08 5.71 4.78
#nodes=8, 148 mem 12M 12M 11M 11M 11M

Crossword puzzles with dictionary ogd (435, 705 words)

cw-m1c-ogd-vg6-6 cpu > 1, 200 0.37 0.31 0.23 0.17 0.15
#nodes=98 mem 46M 47M 46M 46M 48M

cw-m1c-ogd-vg6-7 cpu > 1, 200 95.3 56.1 12.0 8.01 6.81
#nodes=9, 522 mem 11M 11M 11M 11M 11M

cw-m1c-ogd-vg6-8 cpu > 1, 200 53.0 6.44 2.91 2.0 1.72
#nodes=2, 806 mem 24M 23M 22M 22M 24M

cw-m1c-ogd-vg6-9 cpu > 1, 200 727 214 35.1 25.1 19.1
#nodes=23, 283 mem 42M 41M 39M 37M 40M

Table 2. Representative results obtained on series of Crossword puzzles using dictio-
naries of different length. Cpu time is given in seconds and mem(ory) in MiB. The
number of nodes (#nodes) explored by MAC is given below the name of each instance.



As a consequence, a requirement was that the value ordering heuristic always
selects the value with the lowest aic (arc-inconsistency count). Two variable
ordering heuristics were tested: dom/wdeg [3] and dom ∗ gap/ddeg that involves
the aic gap of the variables [2]. More precisely, the ratio dom/ddeg is multiplied
by the aic gap in order to favour variables for which there is a large gap between
the best value and the following one.

Unfortunately, we omitted to remove a trace used for debugging. Conse-
quently, the solvers have been considerably slowed down.

5 Some Deficiencies

Abscon 112 has suffered from two main deficiencies. First, in the category of
global constraints, the solver was not ready altogether. Indeed, the constraint
cumulative was not implemented and the filtering procedure for the constraint
element not optimized. Second, as mentioned above, for Max-CSP, a trace output
by the solver has considerably slowed down the resolution.

Acknowledgements

This work has been supported by the CNRS and by the “IUT de Lens”.

References

1. A. Beacham, X. Chen, J. Sillito, and P. van Beek. Constraint programming lessons
learned from crossword puzzles. In Proceedings of Canadian Conference on AI,
pages 78–87, 2001.

2. H. Bennaceur, C. Lecoutre, and O. Roussel. A decomposition technique for solving
Max-CSP. In Proceedings of ECAI’08, 2008.

3. F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

4. I.P. Gent, C. Jefferson, I. Miguel, and P. Nightingale. Data structures for gen-
eralised arc consistency for extensional constraints. In Proceedings of AAAI’07,
pages 191–197, 2007.

5. J. Larrosa and P. Meseguer. Partition-Based lower bound for Max-CSP. Con-
straints, 7:407–419, 2002.

6. J. Larrosa, P. Meseguer, and T. Schiex. Maintaining reversible DAC for Max-CSP.
Artificial Intelligence, 107(1):149–163, 1999.

7. C. Lecoutre. Optimization of simple tabular reduction for table constraints. In
Proceedings of CP’08, 2008.

8. C. Lecoutre and R. Szymanek. Generalized arc consistency for positive table con-
straints. In Proceedings of CP’06, pages 284–298, 2006.

9. C. Lecoutre and S. Tabary. Abscon 109: a generic CSP solver. In Proceedings of
the 2006 CSP solver competition, pages 55–63, 2007.

10. C. Lecoutre and S. Tabary. Des symétries locales de variables aux symétries glob-
ales. In Proceedings of JFPC’08 (in french), pages 181–190, 2008.

11. J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information
Science, 177:3639–3678, 2007.


