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A selected multireference configuration interaction (CI) method and the corresponding code are pre-
sented. It is based on a procedure of localization that permits to obtain well localized occupied and
virtual orbitals. Due to the local character of the electron correlation, using local orbitals allows one
to neglect long range interactions. In a first step, three topological matrices are constructed, which
determine whether two orbitals must be considered as interacting or not. Two of them concern the
truncation of the determinant basis, one for occupied/virtual, the second one for dispersive inter-
actions. The third one concerns the truncation of the list of two electron integrals. This approach
permits a fine analysis of each kind of approximation and induces a huge reduction of the CI size and
of the computational time. The procedure is tested on linear polyene aldehyde chains, dissociation
potential energy curve, and reaction energy of a pesticide-Ca2+ complex and finally on transition
energies of a large iron system presenting a light-induced excited spin-state trapping effect. © 2011
American Institute of Physics. [doi:10.1063/1.3600351]

I. INTRODUCTION

The multireference configuration interaction (MRCI)
method is well suited to address problems where the physics
is not described by a single reference wave function. This
includes many studies concerning spectroscopy and also
molecules in which the ground state is of multireference char-
acter, such as magnetic systems. Compared to perturbative ap-
proaches such as complete active space perturbation theory
at second order (CASPT2), MR-single and double CI (MR-
SDCI) additionally takes into account the effect of the non-
active orbitals on the CAS wave function and their interac-
tion between themselves at all perturbation orders. The lack
of size extensivity due to the truncation of the CI is a great
problem especially for large systems, but several efficient cor-
rections to this error have been proposed, such as - for mul-
tireference CI - coupled electron pair (MR-CEPA(0)),1 MR-
CEPA,2 average coupled pair functional (MR-ACPF),1, 3 aver-
age quadratic coupled cluster (MR-AQCC),4 and others, such
as class dressed correction.5 MR-CEPA(0), MR-CEPA, and
class dressed corrections have already been implemented in
the presented MR-SDCI code.5

In the most popular MRCI approach, a full CI (FCI) is
performed in a reduced space of active orbitals, namely, the
complete active space and all single and double excitations
from the CAS (CAS+SD) are added, as justified by the pres-
ence of at most two-body operators in the Hamiltonian. Sev-
eral codes have been written for some tens of years, such as

a)Author to whom correspondence should be addressed. Electronic mail:
benamor@irsamc.ups-tlse.fr.

the MR-DCI of Buenker and Peyerimhoff,6, 7 the MELDF pro-
gram of Davidson and co-workers,8 the CASDI developed in
our group,9 or the MRCI included in the COLUMBUS10 and
MOLCAS11 packages. The size of the CAS space grows expo-
nentially with the number of active orbitals so that the num-
ber of active electrons and active orbitals is hardly larger than
(16/16). The computational cost of the non-active part grows
as N6, where N is the number of orbitals. As a consequence,
without further approximations, the MRCI methods are re-
stricted to rather small systems.

A large number of approaches have been proposed to
reduce the cost of the method. For example, Werner and
Knowles12 proposed the internally contracted MRCI. In this
method, all configurations with one electron in the external
space are generated as in a non-contracted CI but, for double
excitations – the most numerous ones –, pair excitations
operators are applied to the reference wave function (cor-
responding to the CAS part) as a whole. Compared to the
non-contracted MRCI, where the pair excitation operators
are applied to each determinant of the CAS space, the size of
the CI matrix is smaller by a factor equal to the dimension of
the CAS space. The dependence on the number N of orbitals
remains N6, but the prefactor is dramatically reduced, even if
the calculation cost of the CI matrix is higher compared with
a non-contracted CI matrix of the same size. Another way
to reduce the computational cost is the approach of Bytautas
and Ruedenberg that proposed a procedure of extrapolation
of the FCI expansion.13, 14

Another possibility is to reduce the size of the CI
matrix by keeping only the most important configurations or
determinants. Indeed, in a MRCI calculation, CAS+SD, for
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example, the large majority of them correspond to improbable
situations that have a very small weight in the wave function.
The important determinants can be chosen one by one
on physical criteria, but an automated choice is preferred.
This can be obtained by using a perturbative step as in the
configuration interaction through perturbation and selected
iterations (CIPSI)15 and ORCA16 codes. Starting from a
set of one or some reference determinants, a perturbative
calculation generates all the determinants simply and doubly
excited with respect to these references and calculates their
energy contribution. One defines a threshold, and the most
important determinants are added to the variational space.
The process can be iterative.

More recently, the reduction of the computational time
has been obtained by the use of localized orbitals, as in the
recent works of Bories et al.17 or Chwee et al.18–21 This ap-
proach allows one to neglect long range interactions, thanks to
the fact that electron correlation is a local phenomenon.22–25

As a consequence, the proportion of determinants that have
a small weight in the wave function is even smaller. This
approach leads to a “linear scaling” behavior. A method is
said to be linear scaling when its computational cost grows
as N, the particle number of the system. Several such meth-
ods have been implemented, for example self consistent field
(SCF), second order Moller–Plesset (MP2), coupled clus-
ter CCSD(T), or MP2 gradient.18, 26–33 One must notice that,
compared to other approaches, only the use of localized or-
bitals can yield linear scaling calculations.

As soon as one intends to neglect small interactions,
one or several thresholds must be introduced to decide what
should be taken into account and what can be neglected.
The choice of thresholds or parameters is always delicate. A
first methodological part of this paper presents a discussion
about what quantities can be neglected, according to which
criterion, and what was already investigated on this subject
in the past. In a second step, the effect of the various ways
to reduce the computational cost is successively analyzed
using calculations on a series of linear polyene aldehydes
CnHn+1O. The goal of this work is to produce a selected
MRSDCI method and a code that gives complete MRSDCI
results, but the size-consistency error of the original MRSDCI
method is an important problem as noticed above. In general,
a simple Davidson correction is applied. As this correction
depends on the correlation energy and coefficients of the
wave function, we have discussed the effect of the threshold
on this correction. Thereafter, we have investigated the
dissociation of the [Ca2+ – atrazine model pesticide] complex
as a possible discontinuity along the potential energy curve
can occur when using thresholds. The accuracy of the method
on reaction energies has been analyzed on the same complex.
Finally, a spectroscopic study of the 2,6 di-(pyrazol-1-yl)
pyridine]2-FeII complex presenting a light induced spin state
trapping (LIESST) effect has been performed.

II. METHOD

A. Computational cost of a CI calculation

The CI matrix is diagonalized using the iterative
Davidson34, 35 algorithm. At iteration n, the coefficient Ci

n of

the current trial vector �n is updated as follows (Eq. (1)):

δCn
i = EnCn

i − σ n
i

Hii − En
; σ n

i =
∑

j

Hi j C
n
j . (1)

The most time consuming part is by far the product σ n

= H�n , where H is the Hamiltonian matrix and �n is the
current CI vector. Three quantities are concerned in the calcu-
lation of the product: two vectors σ n and �n, and the matrix
elements of H that are essentially two electron repulsion inte-
grals. During the computation of the product, two of them are
usually kept in memory, and it is possible to read sequentially
the third one from disk.

The question of storing in memory both vectors or one
vector and the integrals has no definitive answer. The most
relevant choice is to read from disk the largest file. In gen-
eral, the integrals are more numerous, since their number
grows as N4, while the number of determinants grows only
as Noc

2Nv
2, where Noc and Nv are, respectively, the numbers

of occupied, and virtual orbitals. Furthermore, for very large
systems, the size of the vectors can be reduced by performing
a lower level CI (CI of single excitations or difference dedi-
cated CI (DDCI), where all two hole two particle excitations
are excluded,36 for example), while the number of integrals
can hardly be reduced. However, the prefactor corresponding
to the dimension of the CAS space can be large. In the pre-
ceding code17 and in its new version presented in this study,
the two vectors are stored in memory and the integrals are
sequentially read from disk during the direct CI calculation.

To reduce the computational cost, it is convenient to elim-
inate some integrals as well as to truncate the determinant ba-
sis, i.e., the size of the CI matrix. Actually, it is more impor-
tant to reduce the number of determinants than the number of
integrals. If there are many integrals and if they are read from
disk, the calculation will be time-consuming, since the pro-
gram is “integral driven” (the external loop consists in reading
them) and the computational time is therefore proportional to
their number. However, in theory, the calculation remains al-
ways possible. On the contrary, if the matrix dimension is too
big, it will be impossible for reasons of memory storage.

B. Reducing the scaling by using localized orbitals

The recently developed methods that intend to reduce the
computational cost of a CI calculation are based on the use of
localized orbitals, which takes benefit of the local character
of the electron correlation. Some years ago we have proposed
a method of a priori localization of molecular orbitals,37–39

which yields well localized core, valence, and even virtual or-
bitals. In the standard localization methods, SCF or CASSCF
orbitals are first obtained and then localized by rotations in
each one of the occupied, active and virtual subspaces. In
our a priori approach, a set of local orbitals (LO) is build
as a first step. Each one of these LOs is spanned by only
the neighbor atomic orbitals. For example, a LO correspond-
ing to a bond between atoms A and B is a linear combina-
tion of the atomic orbitals of these two atoms. These LOs
are of poor quality, i.e., the determinant in which all LOs
are occupied by two electrons up to the Fermi level has a
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very high energy compared to the Hartree-Fock solution. In
a second step, these orbitals are “optimized” to reach a SCF
or CASSCF quality. Two approaches are possible. One can
project the LOs onto delocalized canonical SCF or CASSCF
orbitals, or use a super-CI like procedure, which improve the
orbitals through successive rotations that maintain their local
character (see Ref. 37). One may notice that it is possible to
obtain well localized orbitals even for delocalized systems as
polyene chains, for example.40 In this case, localized π or-
bitals on the double bonds have been obtained as in a Lewis
picture, and the relatively high π electron density on the sin-
gle bonds of these kinds of molecules is obtained by the tails
of the neighbor double ones. It is sometimes impossible to
get localized orbitals. For example, again in the example of
a polyene – but for the first excited π → π* state – if one
chooses to have only two active orbitals and two active elec-
trons, these orbitals will be the π and π* HOMO and LUMO.
As each of them is unique in its symmetry, their shapes are
completely imposed by the CASSCF calculation. If, in the
standard CASSCF solution, they are not localized – and actu-
ally, they are not – it is impossible to localize them with any
method.

As we have a complete set of localized (occupied and
virtual) orbitals, all of them will be treated in the same way.
The procedure of selected MRCI starts with the construction
of a topological matrix, which determines if two local orbitals
must be considered as “interacting” (they are in the same re-
gion of space) or not. A first problem is to choose a criterion to
build the topological matrix. It would be possible to use a dis-
tance criterion. Beyond a certain distance d between two or-
bitals, their interaction would no more be taken into account.
A drawback of this simple criterion is that it does not distin-
guish between different type of orbitals, core, valence, virtual,
or diffuse, σ or π , and so on. Some preliminary tests have
shown that it yields poor results. Choosing the exchange inte-
gral Kij as cut off criterion is quite relevant to decide whether
two local orbitals i and j must be considered as in interaction
or not. If Kij is lower than a given threshold Th, the interaction
is neglected. Kij has the advantage to be always positive and,
contrary to the overlap, it is never zero for symmetry reasons.
It decreases exponentially, much faster than the coulomb in-
tegral, which makes easier the definition of a distance cut off.

Moreover, using it in various situations seems to witness
that it has a real physical content. We have verified that, in a
polyene, for example, the distance of interaction (i.e., the dis-
tance between i and j for which Kij is larger than the thresh-
old) is larger for the π than for the σ orbitals, which is quite
satisfactory.

The Kij exchange integral is also chosen as an interaction
criterion, for example, in the Cholesky decomposition41, 42

used in the MOLCAS package43–45 or by Whitten.46

The time consuming product σ n = H�n can be decom-
posed in a series of elementary products cμ

′ = Hμνcν , where
cμ

′, cν are, respectively, coefficients of σ n , �n and Hμν is in
most cases a two-electron integral. The most time consuming
product occurs when determinants μ and ν are doubly ex-
cited. They are described by double excitations ij → ab and
kl → cd. Among the 8 indices, only 6 can be different if the
determinants interact, for example, ij → ab and ij → cd. In

this case, the two-electron integral connecting the two deter-
minants is (ac|bd). There are 6 different and independent in-
dices, and this is the reason why the computational cost of the
product σ n = H�n grows as N6.

If some indices are not independent from the others, the
scaling decreases. For example, the integral (ac|bd) is small if
the pairs (a, c) and (b, d) are not interacting pairs and can be
eliminated (let us recall that the pair (a, c) is not considered
as an “interacting pair” according to a distance criterion, but
according to the fact that Kij is larger than the Th threshold).
Therefore, one can consider that a and b vary from 1 to N
while c varies from 1 to NNa, number of neighbors of a (the
local orbitals interacting with a) and d varies from 1 to NNb.
The scaling is now NN

2N4, where NN is the average number
of neighbors of a localized orbital and does not depend on the
size of the molecule. Finally, a linear scaling behavior is ob-
tained if one imposes the six orbitals to be in the same region
of space.

C. Truncating the basis of determinants
and the list of integrals

In this part, we shall present the rules for the elimination
of singly and doubly excited determinants of the CI matrix
basis and the way to truncate the list of two electron integrals.

The approach presented in this paper differs from what
can be found in the literature, especially in Refs. 18–21 for
what concerns the manner to reduce the size of the CI and
the number of two electron integrals. Saebo and Pulay25, 47–51

proposed various localized treatment of electron correlation.
They obtain occupied localized orbitals (OLO) using the
Boys52 or Pipek-Mezey53 methods. As it is difficult to local-
ize virtuals with these techniques, they built a local basis set
around each OLO starting from the OLO and the atomic or-
bitals that are in the vicinity. In these works, but also in the re-
cent proposals of Chwee and Carter,18–21 the truncation of the
determinant or configuration state functions basis is obtained
through the weak pair approximation (WP)– interaction be-
tween OLOs and the truncation of virtuals (TOV)– interaction
between occupied and virtual orbitals, while the reduction of
the number of integrals results from the application of pre-
screening techniques.28, 54, 55

1. Reducing the determinant basis

A first condition is to keep spin symmetry in the wave
function (the final eigenvectors must be eigenfunctions of S2).
This is simply obtained by observing the following condition.
If a given determinant D = [CAS] ij → ab is kept in the basis,
where [CAS] represents the distribution of electrons on the
active orbitals, all its spin equivalent determinants, i.e., those
obtained from D by all spin permutations on singly occupied
orbitals, will also be kept. As a consequence, spin is never
considered in the topological matrix that defines the orbital
interactions.

A first possibility to reduce the CI size is to keep only the
double excitations ij → ab for which (i,a) and (j,b) [or (i,b)
and (j,a)] are interacting pairs according to the topological
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i j

ba

SCHEME 1.

interaction, which corresponds to the above referred TOV ap-
proximation. The corresponding exchange integrals between
an occupied and a virtual orbital are Kia and Kjb [or Kib and
Kja], and the determinant is kept if both exchange integrals are
larger than a given threshold Th1. This is equivalent to state
that, in the ij → ab determinant, no orbital should be isolated,
as for example, in the following case (Scheme 1).

This criterion keeps all determinants whose orbitals are
in the same region of space but also those composed of two
occupied/virtual pairs, such as presented in Scheme 2.

The latter determinants are responsible for the dispersive
interactions. Depending on the system under study, they can
also be eliminated by using a second criterion similar to the
WP approximation. The criterion chosen in this work is to en-
force that at least one orbital of the (i,a) pair must interact with
one of (j,b), i.e., at least one of the exchange integrals Kib, Kij,
Kja, or Kab is larger than the second threshold Th2 (notice that,
in this example, we have already Kia > Th1 and Kjb > Th1).
Contrarily to the case of Th1, all kinds of exchange integrals
(occupied/occupied, occupied/virtual, and virtual/virtual) are
concerned. Giving Th1 �= 0 and Th2 �= 0 ensures that all or-
bitals of the determinant are in the same region of space, since
only one index can be chosen without constraint and the size
of the CI matrix grows as N.

Generally, the dispersive interactions are small, and then
the determinants eliminated by Th2 are expected to play a
minor role. However, in some cases, the latter determinants
should not be ignored. Thus, two different topological matri-
ces have been used, in order to keep the possibility to partly
neglect or not the dispersive effects. In the following, Th1 and
Th2 will be called “general” and “dispersion” thresholds, re-
spectively.

The active orbitals, which span the CAS, deserve a spe-
cial treatment. As they play an important role in the physics of
the problem, it has been decided that all of them should be in
interaction between themselves. Finally, one defines another
topological matrix describing the interaction of the active and
non-active spaces. According to this criterion, a non-active
orbital interacts with the CAS if, using the general threshold
Th1, it interacts with at least one active orbital.

i j

ba

SCHEME 2.

CAS1h or 1p

CAS 2h or 2p

CAS1h,1p ; CAS

CAS2h,1p or 
1h,2p 

; CAS

2h,2p CAS ; CAS ; CAS

CAS

SCHEME 3. The scheme gathers all criteria used in the code to keep a
determinant.

Finally, the action of Th1 and Th2 are resumed on
Scheme 3, where all different situations are shown for all
numbers of holes (h) and particles (p). To be kept, a deter-
minant has to belong to one of the cases in Scheme 3.

The dot lines represent the interactions between a non-
active orbital and an active one, the arrows the interaction be-
tween two non-active orbitals, while the dashed lines depict
the interaction between pairs (we recall here that two pairs in-
teract if at least one orbital of pair 1 interacts with one orbital
of pair 2).

For example, the conditions for a 2-hole/1-particle deter-
minant may be found in the line “2h, 1p or 1h, 2p.” A 2h,
1p determinant corresponds to an excitation CAS → p and
one h → p. There are two possibilities to keep the determi-
nant. Either all non-active orbitals interact with the CAS or
only one hole, but in this case the other hole and the parti-
cle must interact one with each other. The last case (dashed
square) corresponds to the situation where the determinant is
eliminated if Th2 is non-zero.

This approach allows one to truncate also less excited
CIs, such as, for example, DDCI or single excitation CI.

2. Reducing the number of two-electron
repulsion integrals

The rules to eliminate small integrals are similar to those
that shorten the list of determinants. Here again, topological
matrices are used. A two-electron integral (ac| 1/r12 |bd) rep-
resents the interaction between the ac and bd distributions (a,
b, c, and d are any orbitals). If a and c (or b and d) are local-
ized orbitals and are spatially distant, the value of the integral
is small. It is therefore convenient to consider only the inte-
grals for which c is a neighbor of a and d is a neighbor of b.
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a b

dc

a b

dc

a b

dc

or or…

SCHEME 4.

Their number grows as N2, since only a and b are indepen-
dent.

To reach a N-scaling behaviour, it is necessary to in-
troduce additional approximations. The sole possibility is to
eliminate also interactions between pairs (a,c) and (b,d) when
this interaction is weak, which will happen when the pairs
are distant one from another. In their recent papers, Chwee
et al.18–21 evaluate an upper bond of the integral value by us-
ing the Cauchy-Schwartz approach and test densities, accord-
ing to the work of Schütz et al.,28, 31 which allows them to
achieve linear scaling. We have preferred to use the criterion
based on the values of exchange integrals described above. To
check the interaction between (a,c) and (b,d) pairs, one must
consider the four exchange integrals Kab, Kad, Kcb, and Kcd,
in which each index belongs to a different pair. The condition
to keep an integral (a, c, b, d) is then that all a, c, b, and d lo-
calized orbitals must be directly or indirectly connected, i.e.,
every one of them has an exchange integral larger than a given
threshold Thi with at least one other index, as in the example
of Scheme 4.

The value of the integral (ac|bd) decreases exponentially
with the distances a-c and b-d. It decreases only as 1/r with
the distance between the (a,c) and (b,d) pairs. However, only
one threshold is used for both kinds of interactions. One must
notice that the use of the upper bond of Schütz et al.31 does
not guarantee by itself a linear scaling behaviour. The test
eliminates small integrals, and it appears that the number
of remaining integrals grows as N. The reason for this lin-
ear growing should be that, due to distance considerations,
integrals (ac|bd) vanish when the (a,c) and (b,d) pairs are
distant.

One may notice that the elimination of determinants on
one hand and of integrals on the other hand are not indepen-
dent. Indeed, considering the interaction between two deter-
minants ij → ab and ij → cd through the integral (ac|bd), the
linear scaling is obtained when all six orbitals are in the same
region of space. If Th1 and Th2 are larger than zero, all or-
bitals describing each determinant (i, j, a, b and i, j, c, d) must
be close to one another and as a consequence, also a, b, c, d.
Thi seems then to be unnecessary. However, it is relevant to
introduce three conditions, because a larger number of small
integrals would be kept in the calculation.

Indeed, using Thi, one keeps the integral (ac|bd) by con-
sidering the value of the corresponding exchange integrals
and, thus, each index a, b, c, and d interacts with another in-
dex of the same list. Using only the determinant thresholds
is less demanding, since it keeps the case where two indices
interact only through i or j, and not necessarily directly (see
Scheme 5). This is not equivalent, even if linear scaling would
also be obtained, but with larger sizes. In the same way,

i

j

a

b

c

d

SCHEME 5. Using only Th1 and Th2 thresholds, (i j → ab|H |i j → cd) is
computed. However, the introduction of Thi eliminates it if (a,b) does not
interact with (c,d), since it eliminates the integral.

giving Th1 and Thi non-zero values should be sufficient to
ensure linear scaling.

III. TESTS

The effects of the three thresholds (general Th1, disper-
sion Th2 and integral Thi) will be successively studied. In a
first step, Th2 = Thi = 0 and the dependence of the correlation
and transition energies on Th1 is analyzed for small chains of
CnHn+1O aldehyde molecules (n = 3 to 9). The influence on
the reference weights (

∑
I∈CAS CI

2) and the Davidson correc-
tion to the energy are also discussed.

In a second step, the effects of the other thresholds are
analyzed. Th1, Thi, and Th2 are successively introduced in the
calculation of the transition energies of a series of aldehyde
molecules CnHn+1O (n = 3 to n = 25).

A time dependence of the calculations is finally pre-
sented.

The complex of a model of the atrazine pesticide
molecule with Ca2+, a soil abundant cation, is studied using
various sets of thresholds. On the one hand, we investigate the
behaviour of the dissociation potential energy curve, plotted
as a function of the distance. On the other hand, the com-
plexation energy is computed. In this case, the problem of the
size-consistency is pointed.

The last example study is devoted to a large iron-
containing system. It concerns the metal centered spec-
troscopy of the [2,6-di(pyrazol-1-yl) pyridine]2 FeII complex.

A. Aldehyde molecules CnHn+1O

1. Computational details

The calculations were based on atomic natural orbitals-
relativistic correlation consistent (ANO-S)56 basis sets with
the following contraction scheme: for C a (10s6p3d) set con-
tracted to [3s2p1d] and for H a (7s3p) set contracted to [2s1p].
The starting MOs for MRCI calculations are localized MOs
of SCF quality. The electronic ground and n → π* singlet ex-
cited states have been calculated with 2 electrons correlated
in 2 active orbitals. This active space includes the n lone pair
and the π anti-bonding orbital of the CO group, which corre-
sponds to 4 determinants. Idealized structures have been used,
with dC-O = 1.22 Å, dC-C = 1.45 Å, dC = C = 1.35 Å, and dC-H

= 1.1 Å. All angles are identical and equal to 120◦. The sym-
metry group is Cs.
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FIG. 1. Correlation energies of ground (straight line) and n → π* singlet
excited (dashed line) states for the CnHn+1O molecules (n = 3 to 9).

2. Evolution of the correlation energy and reference
weights as a function of the general Th1 threshold for
the CnHn+1O molecules (n = 3 to 9)

In Table I, we present the variation of the correlation en-
ergies when Th1 increases, compared with the reference CAS-
SDCI values for both ground and n → π* states. For the
smallest 0.0003 a.u. value of Th1, the percentage of the re-
covered correlation energy is about 99.8% for C3H4O. Both
percentages are found to be similar for the ground and excited
states and decrease slowly when the size of the molecule in-
creases. The error on transition energies is less than 0.005 eV
with this threshold. With the largest value (0.003 a.u.), the per-
centage of correlation energy is lesser, around 96% but still
similar for ground and excited states. The error introduced
on the calculated transition energy is found reasonable, from

0.07 eV for the smallest chain until 0.02 eV for larger chains.
When n varies from 3 to 9, the difference on the transition
energies introduced by the truncation diminishes. This is due
to the fact that, in this example, the correlation energies of the
ground and excited states are closer in the larger systems (Fig-
ure 1). One may also notice that the correlation energy curves
have very similar slopes.

The truncated CI methods are known to present dramatic
size-consistency error. The easiest solution is to apply the
well-known Davidson correction to the total energy, while
more sophisticated diagonal energy corrections such as MR-
CEPA(0),1 MR-ACPF,1, 3 MR-AQCC,4 or class dressed5 also
modify the wave-function. The Davidson correction of the
size-inconsistency consists in modifying the correlation en-
ergy by a factor depending on the coefficients of the refer-
ences in the wave function57 (Eq. (2)),

ESDCI+Q = E0 + Ec

(
2 −

∑
I∈CAS

CI
2

)
. (2)

The correlation energy (Ec) is the energy brought by the ex-
citations from the CAS. E being the energy resulting from
the MRSDCI diagonalization, Ec = E –〈�0|H|�0〉, where �0

is the eigenfunction of the CASCI. We note E0 the reference
CASCI energy.

Table II presents the reference weights of ground and n
→ π* excited states. The reference weight of the excited state
is slightly more affected than the ground state by the increase
of the threshold. As expected, the reference weights are higher
for largest thresholds while the percentage of correlation en-
ergy is lower. These two tendencies act in the same direction
on the corrected Davidson energy: since the threshold aug-
ments as this energy increases. Table III presents the David-
son corrected total and transition energies. The transition en-
ergies obtained at complete SDCI level (Th1 = 0.0 a.u.) are

TABLE I. Evolution of the correlation energy as a function of the general threshold Th1 for the CnHn+1O molecules (n = 3 to 9).

Th1 (a.u.)
Reference E0 and correlation Ec energies

and %Ec for the ground state
Reference E0 and Correlation Ec

energies and %Ec for the n → π* state
Transition energy

n → π* (eV)

C3H4O E0 = −190.794182 a.u. E0 = −190.529107 a.u.
0.0000 Ec = −0.517339 a.u. Ec = −0.580722 a.u. 5.49
0.0003 99.79% 99.80% 5.49
0.0010 99.05% 98.98% 5.52
0.0030 96.11% 96.06% 5.56

C5H6O E0 = −267.695371 a.u. E0 = −267.426281 a.u.
0.0000 Ec = −0.706763 a.u. Ec = -0.755907 a.u. 5.99
0.0003 99.67% 99.80% 5.99
0.0010 98.72% 98.98% 6.00
0.0030 95.35% 96.06% 6.04

C7H8O E0 = −344.595265 a.u. E0 = −344.324861 a.u.
0.0000 Ec = −0.879937 a.u. Ec = −0.920389 a.u. 6.26
0.0003 99.60% 99.61% 6.26
0.0010 98.57% 98.60% 6.26
0.0030 94.97% 95.09% 6.28

C9H10O E0 = −421.494771 a.u. E0 = −421.223808 a.u.
0.0000 Ec = −1.040769 a.u. Ec = −1.075227 a.u. 6.43
0.0003 99.53% 99.56% 6.43
0.0010 98.47% 98.53% 6.45
0.0030 94.81% 94.94% 6.45
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TABLE II. Evolution of the reference weights
∑

I∈CAS CI
2as a function of

the general threshold Th1 for the CnHn+1O molecules (n = 3 to 9).

CAS-SDCI CAS-SDCI CAS-SDCI CAS-SDCI
Th1 (a.u.) 0.0 0.0003 0.001 0.003

C3H4O GS 0.85786 0.85819 0.85939 0.86269
n → π* 0.78159 0.78248 0.78674 0.79396

C5H6O GS 0.82559 0.82610 0.82778 0.83182
n → π* 0.78485 0.78582 0.78832 0.79455

C7H8O GS 0.80127 0.80183 0.80370 0.80823
n → π* 0.77572 0.77653 0.77873 0.78388

C9H10O GS 0.78215 0.78263 0.78456 0.78922
n → π* 0.76425 0.76511 0.76706 0.77194

dramatically changed by the Davidson correction particularly
for the smallest chains. The error on the transition energies
computed at the selected SDCI level is larger when the David-
son correction is applied and increases with the threshold Th1

(from 0.02 eV with Th1 = 0.0003 a.u. until 0.25 eV with
Th1 = 0.003 a.u. for C3H4O). This is partly due to the differ-
ence on the excited state’s reference weight. Similarly to the
SDCI results, when the system becomes larger, the Davidson
correction and the effect of the thresholds are less important
since the correlation energies and the reference weights of the
ground and excited states are closer in the larger systems.

3. Dimensions and time dependence of the
calculations as a function of the various thresholds
for the CnHn+1O molecules (n = 3 to 25)

a. General Threshold Th1 Table IV gives the number of
determinants in the CI, the time per iteration and the transition

energies from the ground state to the n → π* excited state for
CnHn+1O molecules (n = 3 to 25) as a function of Th1.

For systems larger than n = 9, the complete CAS-
SDCI could not be performed. However, satisfactory refer-
ence values could be obtained as described below. Indeed, the
0.0003 a.u. Th1 threshold gives an error on the transition en-
ergy smaller than 0.01 eV for n = 3 to 9. Thus, we have
assumed that, beyond n = 9, the results obtained with this
threshold can be taken as reference values. Th1 = 0.0003 a.u.
can be used up to the C15H16O chain. For larger systems, the
calculation becomes unfeasible, and a similar procedure will
be applied with a greater value of Th1.

Using larger values of Th1 affects more the transition en-
ergies of the small chains. Compared with the new reference
Th1 = 0.0003 a.u., (i) for C3H4O molecule, the transition en-
ergy error is 0.03 eV for Th1 = 0.001 a.u., up to 0.07 eV for
Th1 = 0.003 a.u.; (ii) for C5H6O molecule, this discrepancy is
smaller: 0.01 eV to 0.05 eV; (iii) reliable results are obtained
with the 0.003 a.u. threshold from the C7H8O molecule, with
an error of 0.02 eV while finally, (iv) the error is smaller than
0.01 eV for n = 13 and n = 15. As the error decreases with
the size of the system, the Th1 = 0.003 a.u. value will be taken
as new reference values for n ≥ 13.

When the system becomes larger, the sizes of the calcula-
tions are dramatically decreased, if one compares with the Th1

= 0 a.u. For C7H8O, the dimension of the complete CI calcu-
lation is 48 × 106 determinants. With the largest threshold
(Th1 = 0.003 a.u.), this size is reduced to 10%. For C19H20O,
the same threshold generates around 1% of the determinants.
In addition to the reduced disk space, the consequence is
that it saves a considerable amount of time. For C7H8O,
36 850 seconds per iteration are necessary for the complete

TABLE III. Total and transition energies obtained at MR-SDCI and MR-SDCI+Q (Davidson correction) levels as a function of the general threshold Th1 for
the CnHn+1O molecules (n = 3 to 9).

Total energy (a.u.) of the ground state Total energy (a.u.) of the n → π* state n → π* (eV) n → π* (eV)

Th1 (a.u.) SDCI SDCI+Q SDCI SDCI+Q SDCI SDCI +Q

C3H4O
0.0000 −191.311522 −191.385057 −191.109829 −191.236666 5.49 4.04
0.0003 −191.310416 −191.383624 −191.108650 −191.234710 5.49 4.05
0.0010 −191.306603 −191.378670 −191.103883 −191.226581 5.52 4.14
0.0030 −191.291413 −191.359687 −191.086975 −191.201919 5.56 4.29

C5H6O
0.0000 −268.402134 −268.525404 −268.182188 −268.344825 5.99 4.91
0.0003 −268.399799 −268.522296 −268.179663 −268.341021 5.99 4.93
0.0010 −268.393121 −268.513397 −268.172463 −268.330476 6.00 4.98
0.0030 −268.369297 −268.482634 −268.147444 −268.295608 6.04 5.09

C7H8O
0.0000 −345.475202 −345.650072 −345.245250 −345.451671 6.26 5.40
0.0003 −345.471681 −345.645358 −345.241616 −345.446484 6.26 5.41
0.0010 −345.462596 −345.633021 −345.232368 −345.433271 6.26 5.44
0.0030 −345.430921 −345.591179 −345.200054 −345.389203 6.28 5.50

C9H10O
0.0000 −422.535349 −422.762080 −422.299035 −422.552517 6.43 5.70
0.0003 −422.530685 −422.755861 −422.294307 −422.545762 6.43 5.72
0.0010 −422.519644 −422.740676 −422.283240 −422.530161 6.45 5.73
0.0030 −422.481552 −422.689549 −422.244599 −422.477397 6.45 5.77
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TABLE IV. Influence of the general threshold (Th1) on the transition energy, on the number of determinants (Ndet), and on the central processing unit (cpu)
time per iteration for the CnHn+1O molecules (n = 3 to 25).

Th1 (a.u.) 0.0000 0.0003 0.001 0.003

n Ndet cpu/it (s) �E (eV) Ndet cpu/it (s) �E (eV) Ndet cpu/it (s) �E (eV) Ndet cpu/it (s) �E (eV)

3 3 014 784 200 5.49 2 231 727 135 5.49 1 580 881 60 5.52 728 639 25 5.56
5 15 359 724 2960 5.99 7 540 710 765 5.99 4 677 247 270 6.00 1 861 211 70 6.04
7 48 703 616 36850 6.26 16 296 029 3560 6.26 9 462 412 705 6.26 3 490 663 230 6.28
9 119 142 900 Xa 6.43 28 544 009 4490 6.43 15 897 206 1415 6.43 5 652 906 305 6.45
11 247 386 816 44 276 307 9240 6.55 24 088 120 2505 6.55 8 369 850 580 6.56
13 458 757 404 63 334 747 15160 6.64 34 071 310 4125 6.64 11 515 128 745 6.64
15 783 189 504 86 079 605 20580 6.71 45 946 192 6220 6.71 15 250 250 1185 6.71
17 1 255 230 756 112 249 091 59 487 722 8980 6.76 19 509 650 2285 6.76
19 1 914 041 600 142 168 877 74 781 304 24 293 316 3165 6.81
21 2 803 395 276 175 539 609 91 827 218 29 516 980 3620 6.85
25 5 471 888 084 252 615 781 131 175 220 41 589 140 6600 6.90

aFor n = 9, the calculation was so computationally demanding that we used the classical MRCI code (CASDI9), which takes more benefit of the symmetry Cs group.

CAS-SDCI calculation, while it only takes 230 seconds for
the 0.003 a.u. threshold. This makes possible the calculation
of a large molecule as C25H26O, with reliable results for only
41 × 106 determinants instead of 5 × 109.

b. Integral Threshold Thi. Scaling of the number of integrals
In a second step, we have introduced an integral threshold Thi,
keeping the general Th1 threshold fixed to 0.003 a.u. The re-
sults are presented in Table V and Figure 2. With respect to
Thi = 0 a.u., the largest value of the integral threshold (Thi

= 0.003 a.u.) presents a maximal error on the transition en-
ergy of 0.02 eV, while it reduces the number of integrals by a
factor thousand and the time by a factor 10 for the C25H26O
molecule. One must notice that this discrepancy 1000/10 is
not surprising, since, with Th1 �= 0, a lot of integrals are in the
list but are not involved in any σ n = H�n product.

The Thi threshold on the (ac|bd) integrals imposes the
four orbitals a, b, c, d to be in the same region of space.
As a consequence, when Thi is not equal to zero, the num-
ber of integrals grows linearly with the size of the system, as
shown on Figure 2. However, one may notice that the con-

dition Thi �= 0 does not guarantee by itself the linear scaling
for the computational time. Indeed, if we consider the inter-
action of two determinants ij → ab and ij → cd through the
(ac|bd) integral, (i) the Thi threshold on the integrals imposes
the four orbitals a, b, c, d to be in the same region of space,
but does not impose any condition on i an j. (ii) The conditions
Th1 �= 0 and Thi �= 0 impose the four orbitals i, j, a, b and also
i, j, c, d to be in the same region of space. Then, all determi-
nants involve connected orbitals and the dependence should
be linear. For Th1 = 0, the dependence is N3.

c. Dispersion Threshold Th2. Scaling of the number of
determinants Finally, the third threshold named dispersion
threshold (Th2) is introduced, keeping the preceding validated
0.003 a.u. value for Th1. In order to analyse the dispersive ef-
fects, we have reset Thi to zero. In Table VI, one can notice
the very small effect of these dispersion determinants on the
transition energy between the ground and the n → π* excited
state in aldehydes: a maximal deviation of 0.03 eV is found
when Th2 = 0.003 a.u. As can be seen in Figure 3, the number
of determinants grows linearly with n.

TABLE V. Influence of the integral threshold (Thi) on the transition energy (�E) and on the dimensions of the calculation with Th1 = 0.003 a.u. Nint is the
number of integrals for the CnHn+1O molecules (n = 3 to 25).

Thi (a.u.) 0.000 0.0003 0.003

n Nint cpu/it (s) �E (eV) Nint cpu/it (s) �E (eV) Nint cpu/it (s) �E (eV)

3 3 086 370 25 5.56 2 622 981 25 5.56 630 594 10 5.55
5 16 077 285 70 6.04 9 015 105 55 6.04 1 137 297 23 6.02
7 51 536 628 230 6.28 17 785 848 130 6.28 1 622 127 42 6.27
9 126 890 415 305 6.45 27 062 781 205 6.45 2 109 078 69 6.43
11 264 603 510 580 6.56 36 544 479 270 6.56 2 578 194 128 6.55
13 492 179 625 745 6.64 45 892 659 330 6.64 3 051 750 176 6.63
15 842 161 320 1185 6.71 55 425 315 400 6.71 3 537 267 238 6.70
17 1 352 130 003 2285 6.76 64 996 539 730 6.76 4 018 164 314 6.75
19 2 064 705 930 3165 6.81 74 572 395 855 6.81 4 499 979 360 6.80
21 3 027 548 205 3620 6.85 84 120 105 960 6.85 4 975 506 471 6.84
25 5 919 862 455 6600 6.90 102 659 277 1450 6.90 5 930 955 680 6.89
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Integral number dependence to the size of the system
(Th1 = 0.003 a.u.)
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FIG. 2. Scaling of the number of integrals number with the number of basis
functions for the CnHn+1O molecules (n = 3 to 25).

TABLE VI. Influence of the dispersion threshold (Th2) on the transition
energy (�E) and on the dimensions of the calculation with Th1 = 0.003 a.u.
and Thi = 0.0 a.u for the CnHn+1O molecules (n = 3 to 25).

Th2 (a.u.) 0.000 0.003

n Ndet cpu/it (s) �E (eV) Ndet cpu/it (s) �E (eV)

3 728 639 25 5.56 476 243 14 5.55
5 1 861 211 70 6.04 882 963 36 6.02
7 3 490 663 235 6.28 1 266 247 62 6.26
9 5 652 906 305 6.45 1 665 006 103 6.42
11 8 369 850 585 6.56 2 080 906 160 6.54
13 11 515 128 745 6.64 2 457 704 236 6.62
15 15 250 250 1170 6.71 2 864 762 344 6.69
17 19 509 650 2270 6.76 3 268 866 483 6.74
19 24 293 316 3165 6.81 3 675 732 660 6.79
21 29 516 980 3655 6.85 4 060 132 880 6.83
25 41 589 140 6555 6.90 4 848 260 1460 6.89
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FIG. 3. Scaling of the determinant number with the number of basis func-
tions for the CnHn+1O molecules (n = 3 to 25). Th1 = 0.003 a.u. and
Th2 = 0.003 a.u.

d. Scaling of the computational time with the size of the
system Finally, the three thresholds are introduced at the
same time. As we can see in Table VII, a good agreement is
obtained for transition energies (maximum error of 0.06 eV);
the number of determinants and the number of integrals are
lowered until 0.1% for the more extended system while the
time per iteration is now around 0.06% for C7H8O.

The accuracy of the MRCI transition energies obtained
with non-zero thresholds is comparable with the same cal-
culations without any approximation, in particular when the
molecule is extended.

The scaling of the computational time is represented
on Figure 4. Two curves are represented: one with Th1

= Th2 = Thi = 0.003 a.u., the other one with Th1 = Th2

= Thi = 0.001 a.u. Despite that the number of integrals and
of determinants grows linearly with the size of the system,
there is a deviation from linearity. Several reasons may be
mentioned:

– Some not time consuming processes do not grow lin-
early with N during the calculation. In particular, con-
cerning the truncation of the list of integrals, all those
that have at least two equal indices are kept. In partic-
ular, (ij|il) integrals appearing in the interaction of two
determinants that differ with only one excitation are kept
whatever the values of the exchange integrals Kij, Kil,

TABLE VII. Influence of all thresholds on the transition energy �E and on the dimensions of the calculation for the CnHn+1O molecules (n = 3 to 25).

Th1 = Thi = Th2 (a.u.) 0.000 0.003

n Ndet Nint cpu/it (s) �E (eV) Ndet Nint cpu/it (s) �E (eV)

3 3 014 784 3 086 370 200 5.49 476 243 630 594 8 5.55
5 15 359 724 16 077 285 2960 5.99 882 963 1 137 297 14 6.01
7 48 703 616 51 536 628 36 850 6.26 1 266 247 1 622 127 21 6.26
9 119 142 900 126 890 415 X 6.43 1 665 006 2 109 078 29 6.43
11 247 386 816 264 603 510 2 080 906 2 578 194 47 6.54
13 458 757 404 492 179 625 2 457 704 3 051 750 59 6.62
15 783 189 504 842 161 320 2 864 762 3 537 267 72 6.69
17 1 255 230 756 1 352 130 003 3 268 866 4 018 164 86 6.75
19 1 914 041 600 2 064 705 930 3 675 732 4 499 979 102 6.79
21 2 803 395 276 3 027 548 205 4 060 132 4 975 506 119 6.83
25 5 471 888 084 5 919 862 455 4 848 260 5 930 955 180 6.89
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and Kjl. In the same way, some determinants correspond-
ing to distant excitations are kept in the basis even when
applying Th2 such as, in Scheme 3, the second cases of
the last two lines (“2h1p or 1h2p”, “2h2p”). There would
be no technical difficulty in applying the same truncation
rules as defined before, but it deteriorates the results for
a small saving of computational time.

– Another reason for the non-linear scaling of the compu-
tational time has perhaps a more technical origin. In a
CAS+SDCI code without any truncation, it is easy to
code the σ n = H�n product in such a way that many
coefficients of σ n and �n that appear sequentially in the
operation are contiguous in the memory of the computer.
For example, if one considers the case [ij → ab]n = H.[ij
→ cd]n, the determinants ij → ab and ij → cd can be
addressed by blocks beginning at (1,1,a,b) and (1,1,c,d)
the lengths of which are the number of possible values
of the pair (i,j), as illustrated in Scheme 6. In the present
code, the determinants are no more addressed accord-
ing to their indices i, j, a, and b, but according to the
pairs (i,a), ( j,b) to guarantee a list without lacking deter-
minant. As a consequence, the above product no more
concerns quantities that are stored in memory in a con-
tiguous way. When the size N of the CI is large, the cost
of the product grows with a scaling slightly larger than
N if the coefficients appear in a random order.

σn determinants 

Ψn determinants 

[ij ab]n=H.[ij cd]n

σn

Ψn

11 11

11 ab 

11 cd

ij ab block

ij cd block

SCHEME 6.

B. Complexation reaction of an atrazine
metabolite with Ca2+

The 2-chloro-1,3,5-triazine-4,6-diamine molecule de-
noted AtraMod thereafter (see Figure 5(a)) is a metabolite of
the well-known atrazine pesticide. To understand the adsorp-
tion and desorption processes of pesticide in soil, the study
of their complexes with soil abundant cations is interesting.
To evaluate the ability of selected SDCI calculations to com-
pute energy pathways, the lowest complex of AtraMod with
Ca2+ has been chosen for its large complexation energy.58

Figure 5 shows the complexation reaction of AtraMod
(Figure 5(a)) with Ca2+ which leads to the AtraMod-Ca2+

complex (Figure 5(b)).

1. Computational details

The computations have been performed using geome-
tries optimized with the GAUSSIAN 03 package59 at the
B3LYP hybrid functional60–62 level with the standard Pople
6–31G* basis set for C, N, H, and the corresponding Francl
for Cl63 and Blaudeau for Ca.64 This double-zeta plus
polarisation (DZP) basis set has also been used for the dissoci-
ation potential energy curve. However, an extended triple-zeta
plus polarisation (TZP) basis set such as the 6–311+G(2d,
2p) is necessary to compute accurate complexation energy.
This standard basis set was used for the first row atoms, the
corresponding basis sets of MacLean-Chandler for Cl65 and
Blaudeau for Ca (Ref. 64) were used in this case.

2. The dissociation potential energy curve

The dissociation potential energy curve has been plot-
ted on Figure 6 as a function of the AtraMod-Ca2+

(a) (b)
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FIG. 5. Complexation of (a) AtraMod. (b) AtraMod-Ca2+.
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SDCI levels.

distance at the SDCI/DZP level using various sets of
thresholds (with Th1 = Th2 = Thi). For these sets of
equal thresholds, we will use the Th denomination there-
after. From the lowest AtraMod-Ca2+ minimum, the Ca2+

cation has been moved away from AtraMod. The dis-
tance has been varied from the equilibrium situation
(2.372 Å to the closest cycle nitrogen) to 12.372 Å, which
corresponds to a total elongation of 10 Å, keeping the θ an-
gle constant (see Figure 5(b)). When thresholds Th of 0.0001
a.u. are used, the number of determinants (Ndet) is divided by
three and the results are about as accurate as with the SDCI
performed without thresholds. On Figure 7, the relative er-
ror to the SDCI results (without thresholds) is represented for
each set of thresholds.

With Th = 0.0001 a.u., the largest error is of 0.5 kcal/mol,
which is lower than the expected precision of the calculation.
Using Th of 0.0003 a.u. also gives accurate results with a max-
imum error of 1.3 kcal/mol. The other sets of thresholds (Th
= 0.001 and 0.003 a.u.) lead to larger maximum error (3.1
and 6.5 kcal/mol, respectively).

Far from the equilibrium region, the error in the interac-
tion energy is expected to be very small for any threshold,
since dispersion (Scheme 7(c)) and double excitation charge

Scheme 7.c   Scheme 7.d    
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FIG. 7. Relative errors of the selected SDCI to the complete SDCI energies
for AtraMod-Ca2+.

transfer (Scheme 7(d)) involving the Ca2+ ion should van-
ish. Indeed, all curves are parallel but do not superimpose
(Figure 6), since local single and double excitations
(Schemes 7(a) and 7(b)) are taken into account on each frag-
ment with an increasing error on total energy for the AtraMod
fragment. As a consequence, the asymptotic value of the
curves of Figure 6 is lower for smaller thresholds.

In the schemes 7, the two points represent AtraMod and
Ca2+ and the arrows intra- or inter molecular excitations.

During the Ca2+ approach to AtraMod, the error in-
creases up to the equilibrium distance.

The behaviour for intermediate distances shows that the
intersystem contributions to the energy appear for an elonga-
tion around 3 to 4 Å.

Some discontinuities in the potential energy curve of
selected SDCI method can be observed. However, for the
two smallest thresholds, this phenomenon is quite weak and
as no consequence for the shape of the curve. Even for Th
= 0.003 a.u., the result can be considered as not satisfactory,
not because of the noise on the curve, but because of the error
of 6.5 kcal mol−1 on the interaction energy. To avoid this phe-
nomenon, a solution would be to have the same topological
interaction matrix for all distances, for example, by transfer-
ring the matrix of the equilibrium to the other distances.

3. Complexation energy calculations

The complexation energy Ecomp of AtraMod with Ca2+

has been computed at the SDCI/TZP level using various sets
of thresholds from the largest Th = 0.003 a.u. to the small-
est 0.0001 a.u. The reference SDCI/TZP computation has
been performed without threshold. To be comparable to the
already computed CCSD(T)/TZP results,58 each complex-
ation energy has been corrected from size-consistency er-
ror with the Davidson correction (see SDCI+Q energies in
Table VIII). The reference SDCI+Q/TZP complexation en-
ergy is in good agreement with the CCSD(T)/TZP value
(+0.7 kcal/mol). The largest thresholds results are far from
the expected value (+7.7 kcal/mol to the complete SDCI+Q).
At the contrary, the Th = 0.0001 a.u. set of thresholds gives
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TABLE VIII. Complexation energies of AtraMod-Ca2+ in kcal mol−1 at
the CCSD(T)/TZP, SDCI/TZP, and SDCI+Q/TZP levels. Reference results
(obtained without thresholds) are given in bold. The number of determinants
(Ndet) is given for the selected and complete SDCI calculations.

Th1 = Th2

= Thi (a.u.) 0.003 0.001 0.0003 0.0001 0

CCSD(T)/TZP −91.6
SDCI/TZP −69.1 −68.1 −70.7 −72.5 −73.4
SDCI+Q /TZP −83.3 −83.2 −87.0 −89.6 −90.9
Ndet 1 146 303 4 459 744 17 278 731 36 666 784 99 662 193

reasonable results when compared to the reference SDCI and
SDCI+Q complexation energies (+0.9 and +1.3 kca/mol, re-
spectively), while it corresponds to a quite important reduc-
tion of the number of determinants.

As a conclusion of Sec. II B, the complexation en-
ergy computed with Davidson size-consistency correction is
nearly as accurate as the CCSD(T)/TZP value when using
Th = 0.0001 a.u. Moreover, the dissociation energy curve
of AtraMod-Ca2+ is perfectly described when using thresh-
olds Th of 0.0001 a.u. and correctly reproduced with Th
= 0.0003 a.u. In these two cases, the small discontinuities
can hardly be detected.

Compared with the above study on transition energies,
smaller thresholds have to be used in order to get results of
similar quality. Indeed, as the number of interacting entities
grows, an increasing number of intersystem interactions are
neglected when thresholds are applied.

One can also notice another interesting use of the thresh-
olds. It permits to identify the elongation distance for which
the dispersive effects begin to be non-negligible in the associ-
ation process of Ca2+ with AtraMod.

C. d-d spectroscopy of a metal transition complex

The [2,6 di-(pyrazol-1-yl)pyridine]2-FeII complex
(Figure 8, hydrogen atoms are not shown) presents a LIESST
effect. At low temperature, the ground state is low spin. The
spin state transition occurs at 260 K. In the x-ray structure66,

FIG. 8. [2,6 di-(pyrazol-1-yl) pyridine]2-FeII.

the two ligand geometries deviated slightly from the C2V

symmetry.
In this example, we studied the d-d spectroscopy of the

low spin complex in the C2V “symmetrized” geometry. A
Barandiaran effective core potential (ECP) with the associ-
ated basis set (9s6p6d3f contracted to [3s3p4d1f] is used for
Fe (14 valence electrons)67 and ANO-L68 basis sets were em-
ployed for C (14s9p4d3f)/[3s2p], N (14s9p4d3f)/[3s2p1d] and
H (8s4p3d)/[2s].

In order to study d-d transitions, the active space was
composed of the 6 d-electrons and the 5 d-orbitals of the iron
generating 100 determinants in the reference space. The seven
lowest states have been calculated: the a1A1 ground state,
three quintets (a5B1, a5B2, a5A2) and three triplets (a3B1,
a3B2, a3A2). The localized ground state CASSCF molecular
orbitals were used to start all the calculations performed at the
SDCI level (Table IX).

The dimension of a complete CAS-SDCI without any
threshold is 68 × 109 ,while the CAS-SDCI with the three
thresholds set to 0.003 a.u. generates 272 × 106 determi-
nants. In order to test the validity of this level of approxima-
tion, we have reduced the active space to multireference de-
terminants for which the coefficients are greater than 0.05 in
the CI wave functions, keeping spin eigenfunctions. Thus, the
weight of the CAS references is very slightly modified (less

TABLE IX. d-d transition energies of [2,6 di-(pyrazol-1-yl) pyridine]2-FeII complex obtained at SDCI level (in eV).

CAS-SDCI (CAS-SDCI+Q) MR-SDCI MR-SDCI MR-SDCI MR- SDCI MR- SDCI

Th1 0.003 0.003 0.001 0.0005 0.003 0.001
Thi 0.003 0.003 0.003 0.003 0.001 0.001
Th2 0.003 0.003 0.003 0.003 0.003 0.001
a1A1 0.00 0.00 0.00 0.00 0.00 0.00
a5B1 0.42 (0.53) 0.40 0.42 0.43 0.39 0.41
a5B2 0.43 (0.54) 0.41 0.43 0.44 0.40 0.42
a5A2 0.69 (0.79) 0.67 0.68 0.70 0.66 0.68
a3B1 1.17 (1.21) 1.22 1.23 1.24 1.22 1.23
a3B2 1.08 (1.13) 1.13 1.14 1.14 1.13 1.14
a3A2 0.69 (0.74) 0.74 0.73 0.74 0.73 0.73
cpu/it/root (s) 10 900 1800 10 000 35 000 3100 13 730
Ndet (millions) 272 70 200 486 70 268
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than 10−3), while the largest reference space is reduced by a
factor 5 (19 determinants). This allows one to lower the val-
ues of the thresholds and therefore to test the stability of the
results. This approximation introduces a small deviation of
0.02 eV for the singlet-quintets excitation energies and until
0.05 eV for the singlet-triplets ones. Then, the general Th1

threshold has been decreased to 0.001 a.u. and 0.0005 a.u.
The transition energies are very slightly modified (at most
0.03 eV) while the number of determinants is considerably
augmented (from 70 × 106 until 486). The integral thresh-
old as well as the dispersion one does not change the re-
sults when there are lowered to 0.001 a.u., respectively, for
a reasonable supplementary computational cost. Finally, the
results are very stable and the largest thresholds are already
satisfactory.

Concerning the size-consistency error, as the coefficients
are very similar for each set of quintet or triplet states what-
ever thresholds are concerned, the Davidson correction has
also very similar effect on the transition energies: between
0.09 eV and 0.11 eV on the transition energies of the quin-
tet states and between 0.03 and 0.05 eV for the triplet ones.
So, only one set of Davidson corrected transition energies are
reported in Table IX (values between parentheses given in
column 2).

IV. CONCLUSION

A MRCI procedure using localized orbitals in order to
reduce the size of the CI matrix has been proposed. Thank
to the introduction of two parameters (Th1 and Th2) to reduce
the number of determinants and a third one (Thi) to shorten the
list of repulsion integrals, a quasi- linear scaling behaviour is
obtained.

The reductions of the size of the CI matrix and of the
number of two electron repulsion integrals are based on topo-
logical considerations. Two localized orbitals i and j are con-
sidered as interacting, if the corresponding exchange integral
Kij is larger than a given threshold. The code lets the possi-
bility to use different thresholds for the integrals (Thi) and for
the determinants. In the latter case, two thresholds are avail-
able: a first one (Th1) concerns the occupied/virtual interac-
tions and a second one (Th2) can be used to reduce even more
the number of determinants by neglecting some dispersive ef-
fects. Th1 and Th2 can also be considered as analyzing tools.
Concerning the repulsion integrals, a second parameter Thi2
could be introduced to distinguish, in the integral (ij| 1/r12 |kl),
what concerns the overlap between i and j (respectively k and
l) and the interaction between the ij and kl distributions.

The various studied applications show that the choice of
the thresholds seems to depend on what is under consideration
(transition energy, reaction energy, etc. . . ) and – as for the size
of the atomic basis sets – has to be converged to guarantee
quality of the results.

This approach permits a huge reduction of the CI size
and of the computational time, which makes possible to per-
form CI calculations for the ground and excited states of large
molecules. The dependence of the computational time to the
number of basis function is not strictly linear. But one must
notice that, in the examples presented in this work, the re-

duction of the computational cost was large enough so that
the CI is no more the bottleneck of the calculation. The parts
corresponding to the calculation of atomic integrals and the
integral transformation are by far more demanding steps. In
the study of the C25H26O molecule, the atomic integrals cal-
culation, the SCF step and the integral transformation (MOL-
CAS package11, without using the Cholesky decomposition)
took respectively 2h20, 0h30, and 1h40 of computational time
for while the CI step needed only 0h55 (Th1 = Th2 = Thi

= 0.003 a.u.). All calculations have been performed on an
Intel Xeon 2.66 GHz computer. Work is in progress to use
Cholesky decomposition41, 42 in the integral transformation to
obtain an efficient code at all steps of the calculation.
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