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1. Introduction

Though computers run faster and faster, the extensive use of
numerics for parametric studies still requires fast numerical models
to be developed. In the present paper, we focus on the case of a
narrow and horizontally elongated cavity in which a steady con-
vection flow is driven by a steady horizontal, longitudinal heat flux
(see configuration in Fig.1). This geometry is chosen to correspond to
the quasi-2D experimental benchmark for liquid metals directional
solidification proposed by Fautrelle and co-workers (Ref. [1e5]),
namely the AFRODITE experiment. The width is 10 mm, the height
and length are respectively 60 mm and 100 mm; the imposed heat
flux is along the longitudinal direction, x1. The 3D simulation of such
ton).
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a solidification problem is indeed costly, due in particular to the
presence of a moving front in the problem: the solideliquid inter-
face. For a pure metal, the solideliquid interface corresponds to an
isotherm; being able to compute precisely, but cost-effectively, the
temperature field in this configuration is thus of primary importance
in this problem. As liquid metals are very low Prandtl-number fluids
and the cavity is narrow, considering the temperature field to be 2D
is a good approximation and the solidification problem by itself can
be considered as a 2D problem. However, though the temperature is
quasi uniform in the transverse direction x3, the velocity field cannot
be uniform along x3 due to the no-slip condition at the walls. It is
thus necessary to account for the three-dimensionality of the
velocity field in order to solve the quasi-2D solidification problem.
An alternative to fully 3D simulations is given by averaging the
equations of mass, momentum and heat conservation along the x3
direction assuming a given shape for the velocity profile. Here,
we investigate the ability of such a model to correctly predict the
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Fig. 1. Configuration of the study. The dashed-dotted line represents the vertical
middle plane of the parallelepipedic cavity. The walls are adiabatic except the right and
left side walls which are at a constant temperature, respectively hot and cold.
temperature field in the convection problem of Fig. 1. This is thus a
first step towards proper solidification modelling which will be the
subject of further studies; we consider this step as useful in the
general framework of natural convection modelling.

Hele-Shaw [6] pointed out the interest of slender experimental
configurations to get rid of inertia effects; by integrating the iner-
tialess equations of motion over the transverse direction, he
theoretically showed that, in such a configuration, the flow behaves
like a potential flow. This approach is extensively described in
textbooks; in particular, Schlichting and Gersten [7] pointed out
that integrated inertia terms can be added in the approach, and
Ockendon and Ockendon [8] indicate the possibility to apply this
approach to solidification/melting problems. Since the work of
Hele-Shaw [6], this method has been widely applied, both on the
experimental and on the theoretical standpoints. It has not only
been used in the investigation of potential flows but also in various
studies related to instabilities [9,10], flows presenting interfaces
[11,12], complex fluid flows [13], coupled problems [14e16], and
modelling of industrial applications, such as continuous casting
[17]. Note that, in the present paper, we will use the denomination
“Hele-Shaw model” in the case where inertia is not accounted for
and “2D½ model” when inertia terms are included in the inte-
grated equations. Böckmann and Müller [14] used both a Hele-
Shaw and a 2D½ formulation to model the progression of an
autocatalytic front with a buoyancy driven instability. They found
that the comparison with the experiment of Huang and Edwards
[15] is far better with the 2D½ model than with the Hele-Shaw
model. They however note that the agreement is still not perfect
and that some ingredient may be missing. Katz and Worster [16]
modelled a directional solidification experiment in an aqueous
solutionwith the Hele-Shaw approach. They pointed out the ability
of the model to reproduce chimney formation observed in the
experiment. Such 2D½ models including inertia effects have also
been used to investigate instabilities, for instance in a two-fluid
parallel flow configuration [9] and in granular materials [13].
Note that Ruyer-Quil [10] includes this kind of model in the more
general frame of weighted residual methods. Note finally that
similar methods are extensively used under the denomination of
shallow-water equations in the field of free surface hydraulics [18].
In all these papers, a parabolic velocity profile is assumed when
integrating the equations of motion. This is clearly justified in the
case of pressure driven duct flows, but the assumption is less clear
in the case of buoyancy driven flows in a closed cavity, for example.
In the following, we propose an alternative velocity profile and we
show that its use leads to a better estimation of the temperature
field in our configuration.
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The boundary conditions are indicated in Fig. 1: all walls are
adiabatic except the two endwalls (x1 ¼ 0 and x1 ¼ 10 mm), which
both have a constant temperature (qmin and qmax respectively). The
cold endwall is on the left hand side of the figure, so that the flow is
expected to be directed along x1 in the lower part of the cavity and
along e x1 in the upper part.

The simulations are performed using the StarCCMþ commercial
CFD software. A regular grid with 125� 75� 25 cells has been used
for the 3D computations. It has been checked that refinement of the
grid did not change the results significantly (see the comments at
the end of the section). Unless specified, a steady segregated solver
has been used. The convective terms were discretized using a
second order upwind scheme. Convergence is considered to be
reached when all residuals have decreased at least by a factor 103

compared to the first 5 iterations (see Fig. 7 for a typical conver-
gence curve). In addition, the maximum velocity in the vertical
middle plane is monitored in order to check it has reached a con-
stant value. In the absence of experimental velocity measurements
in this configuration, the 3D computations have been confronted
with other 3D computations performed with drastically different
methods: a spectral element method using Legendre polynomials
at the GausseLobatto discretization points, and a simulation by
Lattice-Boltzmann algorithm. We have verified that the difference
inmaximumvelocity components over the fluid domain is less than
1% between these computations. In the following, we will consider
the 3D computations using the StarCCMþ software as a reference
case since we have implemented our 2D½ model in this software:
this will allow a proper comparison, not only in terms of quanti-
tative results, but also in terms of computational time. Some purely
2D simulations are also reported in this paper;what is referred to as
a purely 2D approximation is to assume that all fields are functions
of x1 and x2 only and that the velocity component along x3 is zero.
These simulations have been made on a 125 � 75 grid, which
corresponds to themesh used in the vertical middle plane of the 3D
computations.

As the geometry is fixed and the problem is steady, the only
parameters are the Grashof number and the Prandtl number
defined as:

Gr ¼ gbðDq=LÞH4

n2
; (1)

and

Pr ¼ n

a
; (2)

where b, n and a are respectively the thermal expansion coefficient,
the kinematic viscosity and the thermal diffusivity; Dq is the
temperature difference between the hot and the cold walls:
Dq ¼ qmax � qmin.

The sensitivity of the simulation to the mesh has been tested by
progressively refining the cell dimensions from one mesh to
another by a factor 2 in the three directions. The coarser mesh has
25 � 15 � 5 cells versus 400 � 240 � 80 for the finer mesh; five
meshes where thus tested, in addition to the mesh used in the
study, which had 125 � 75 � 25 elements. The case used for this
test is a 3D stationary simulationwith Gr ¼ 4.34 � 106, Pr ¼ 0.0129.
We have chosen to compare the different solutions with regard to
their ability to predict the longitudinal temperature and velocity
profiles along the middle axis parallel to x1. The 25 points corre-
sponding to the coarser mesh also belong to the other meshes;
these points were thus used to compute an estimate of the devia-
tion with respect to the results obtained on the finer mesh, which
was considered as the reference case. The following formulas have



Table 1
Sensitivity of the 3D simulations to mesh refinement. Test based on the longitudinal
velocity and temperature profiles at mid-position. The simulation corresponds to
Gr ¼ 4.34 � 106 and Pr ¼ 0.0129.

Cells number
(length:height:width)

Velocity
deviation in %

Temperature
deviation in %

25 � 15 � 5 6.977 1.867
50 � 30 � 10 1.188 0.111
100 � 60 � 20 0.996 0.0145
200 � 120 � 40 0.304 0.0030
400 � 240 � 80 0 0
been used to assess the velocity magnitude deviation and the
temperature deviation, respectively:

Du
mesh ¼ 1

25

X25
i¼1

�����
utestedi � ureferencei

max
�
ureferencei

�
�����; (3)

Dq
mesh ¼ 1

25

X25
i¼1

�����
qtestedi � qreferencei

Dq

�����; (4)

where u and q denotes the velocity magnitude and the tempera-
ture, respectively, and the superscript tested and reference refer to
the testedmesh and the referencemesh, respectively. The results of
this test are shown in Table 1. We see a very good convergence of
the results when the mesh is refined. For the mesh used in the
present investigation (125 � 75 � 25 elements) the error is less
than 1% for the velocity and less than 0.014% for the temperature.
The convergence for the temperature is far better than for the ve-
locity; this can be attributed to the low value of the Prandtl number
and to the sharpness of the velocity profiles near their extrema. As
our main objective is to get a well estimated temperature field, we
have considered that the grid with 125 � 75 � 25 cells offers a very
good precision together with reasonable computational times. Note
that the same test conducted for the 2D1/2 simulations gives still
better results.
2. The limits of pure 2D modelling

Fig. 2a shows a typical solution obtained through a purely 2D
simulation of the problem with Gr ¼ 1.296 � 106 and Pr ¼ 0.0129.
The colours (or grey levels) are isovalues of the velocity magnitude
and the lines are isotherms. This picture can be compared to Fig. 2b
showing the vertical middle plane solution extracted from a 3D
simulation performed in the same conditions. As can be seen, there
is a drastic difference in the velocity field and temperature field
Fig. 2. Qualitative view of the velocity field (vectors and colours/grey levels) and temperatur
2D unsteady solution; on the right (2.b): 3D stationary solution in the vertical middle plane. (
to the web version of this article.)
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shape. The velocity field computed from a 2D model indeed ex-
hibits a so-called “flying wheel” structure, while a more elongated
Hadley circulation, which occupies the whole fluid domain, is ob-
tained from the 3D computations. In addition, the flow turns out to
be steady in the case of the 3D simulationwhile it is unsteady in the
2D simulation. It is thus clear that the 2D model does not catch the
physics of this configuration that is confined in the transverse x3
direction.

For a ten times higher Grashof number, Gr ¼ 1.296 � 107, Fig. 3a
and b show that the same difference, though less obvious, is still
present between the two structures obtained through the 2D and
the 3D simulations. The difference is attenuated by the fact that the
“flying wheel” is less circular and occupies more space in this
elongated domain, but we still obtain an unsteady solution in the
2D simulation and a steady solution in the 3D simulation.

As a conclusion, it is clearly not possible to rely on a purely 2D
approximation of the problem to save computation time since the
effects of the no-slip condition at the lateral walls is of primary
importance in this problem. It is all the more a shame as the
temperature profiles in the transverse direction are indeed almost
uniform, as can be seen in the upper view of Fig. 4 showing iso-
therms in a plane of constant x2. Fig. 4 also gives a qualitative view
of the velocity variations along the x3 direction in this plane.
3. Theoretical basis of our 2D½ model

Away of saving computational time without renouncing to take
into account the no-slip condition at the lateral walls is to average
the equations of the problem along the transverse x3 direction. The
averaging is made analytically, assuming an arbitrary shape for the
transverse velocity, pressure and temperature profiles. This leads to
formulations often referred to as Hele-Shaw models, Saint-Venant/
shallow-water models in the framework of free surface hydraulics,
or more generally 2D½models. We recall hereunder the derivation
of these models and the assumptions made in the present work
concerning the transverse variation of velocity, pressure and
temperature.

Let us start from the local mass, momentum and heat conser-
vation equations for a Newtonian incompressible fluid under the
Boussinesq approximation:

8>>>>>><
>>>>>>:

vui
vt

þ u!:grad
��!

ui ¼ � vp
vxi

þ ALGrTdi;2 þDui for i ¼ 1; 2 and 3;

div u! ¼ 0;

vT
vt

þ u!:grad
��!

T ¼ PrDT;

(5)
e field (isolines) for Gr ¼ 1.296 � 106 and Pr ¼ 0.0129. On the left (2.a): snapshot of the
For interpretation of the references to colour in this figure legend, the reader is referred



Fig. 3. Qualitative view of the velocity field (vectors and colours/grey levels) and temperature field (isolines) for Gr ¼ 1.296 � 107 and Pr ¼ 0.0129. On the left (3.a): snapshot of the
2D unsteady solution; on the right (3.b): 3D stationary solution in the vertical middle plane. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
where di,j is the Kronecker symbol, AL is the longitudinal aspect
ratio, AL ¼ L/H, which is fixed to AL ¼ 5/3 in the present work. The
non-dimensional form of the equation has been obtained by using
n/H as a characteristic velocity,H as a characteristic lengthwhatever
the considered direction, H2/n as a characteristic time and r (n/H)2

as a characteristic pressure. The dimensionless temperature is
calculated as:

T ¼ q� 1 =

2 ðqmax þ qminÞ
ðqmax � qminÞ

; (6)

where q, qmin and qmax denote the dimensional temperature at any
location in the fluid domain, on the left boundary and on the right
boundary, respectively. In addition to the no-slip condition for the
velocity at the walls, the thermal boundary conditions are then:

T ¼ � 1 =
2 at the left wall; (7)

T ¼ 1 =

2 at the right wall; (8)

dT=dn ¼ 0 at the other walls; (9)

d./dn denoting derivation along the direction normal to the wall.
In the following, we rely on the boundary condition (9) and on

the small values of both the cavity width and the Prandtl number to
assume that the transverse temperature profiles are uniform (see the
Fig. 4. Qualitative views of the velocity and temperature fields obtained from a 3D
computation (Gr ¼ 4.34 � 106 and Pr ¼ 0.0129) in the vertical middle plane (lower
view) and in a horizontal plane (upper view). The vectors represent the velocity field.
The lines are isotherms, except the horizontal straight line in the lower view, which
gives the location of the horizontal cross section represented in the upper view.
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upper plot in Fig. 4). We also assume that both the pressure and the
velocity fields can be described as the product of a function of x3 only,
which gives the shape of the transverse profile, and a function of x1
and x2, which accounts for the variations of these fields in longitu-
dinal vertical planes. This separation of variables is written as:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Tðx1; x2; x3; tÞ ¼ Tðx1; x2; tÞ;
uiðx1; x2; x3; tÞ ¼ uiðx1; x2; tÞf ðx3Þ for i ¼ 1 and 2;

u3 ¼ 0;

pðx1; x2; x3; tÞ ¼ pðx1; x2; tÞgðx3Þ;

1
Aw

ZAw

0

f ðx3Þdx3 ¼ 1 and
1
Aw

ZAw

0

gðx3Þdx3 ¼ 1;

(10)

where Aw is the transverse aspect ratio, Aw ¼W/H. Substitution into
the 3D conservation equations system (5) and integration along x3
yield:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

vui
vt

þ u
!
:grad
��!

ui ¼ � vp
vxi

þALGrTdi;2 þDui þ Si for i ¼ 1 and 2;

div u
! ¼ 0;

vT
vt

þ u
!
:grad
��!

T ¼ PrDT ;

Si ¼

2
641� 1

Aw

ZAw

0

f 2ðx3Þdx3

3
75 u
!
:grad
��!

ui þ
1
Aw

�
vf
vx3

�Aw

0
ui;

(11)

where every variable is a function of x1, x2 and t only. The gradient
and Laplacian operators can thus be replaced by their 2D coun-
terparts. The obtained system then takes the form of the usual
plane 2D formulation featuring an additional source term S in
the momentum equation. This source term can be expressed
analytically after choosing an adequate velocity profile shape.
The most often used profile is the Poiseuille parabolic profile
(f(x3) ¼ 6/Aw2 (Aw � x3)x3), for this corresponds to the established
flow driven by a uniform volumetric force. In this case, the source
term takes the following form:

SP;i ¼ �1
5
u
!
:grad
��!

ui �
12
A2
w
ui: (12)

However, as can be seen in the upper view of Fig. 4 featuring 3D
computation results, the transverse velocity profiles in the real 3D
situations are very different from parabolic profiles. These profiles



Fig. 5. Different types of profiles used to model the transverse variation of the velocity
in our transversally confined cavity: Poiseuille profile (parabolic) and Hartmann-type
profiles (13) for different values of d.
rather exhibit marked boundary layers along the walls and a nearly
uniform bulk velocity. Such profiles can be better described by the
following relation:

f ðx3Þ ¼ F

2
6641�

cosh
�
x3�Aw=2

d

	

cosh
�
Aw

2d

	
3
775 with F ¼ 1

1� 2d
Aw

tanh
�
Aw

2d

	 ;

(13)

where d is an arbitrary length. As shown in Fig. 5, for small values of
d, typically d < Aw/10, these profiles, which feature a quite uniform
bulk velocity surrounded by two boundary layers of typical size d,
mimic quite well the 3D profiles. In the following, we will denote
these profiles as “Hartmann-type profiles” in reference to the well-
known solution of MHD duct flows [19].

For suchHartmann-typeprofiles, the source term in (11)becomes:

SH;i ¼


1� F2

�
3
2
� 1
2
tanh2

�
Aw

2d

	
� 3d
Aw

tanh
�
Aw

2d

	��

� u
!
:grad
��!

ui � F
�

2
dAw

tanh
�
Aw

2d

	�
ui:

(14)

Note that if d is greater than Aw/2, the Hartmann-type profiles
approach the Poiseuille profile very closely, and the Poiseuille
profile is reached asymptotically for d / N.
Fig. 6. Qualitative view of the velocity field (vectors) and isotherms for Gr ¼ 1.296 � 107 and
right hand-side: 2D-½ Hartmann model with d ¼ 0.15 Aw (steady solution).
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4. Comparison between 3D and 2D½ computations

In this section, we want to show that the 2D½ computations,
with the Hartmann-type model presented in the previous section,
can accurately reproduce 3D results. The boundary layer thickness
value d is an adjustable parameter within a reasonable range. This
value can be optimized with respect to 3D numerical, theoretical or
experimental results. In the following the optimization will be
madewith respect to 3D computations. Our objective is to show the
interest of such 2D½ models to perform parametric studies at a
reasonable cost: one or a few 3D simulations are necessary to adjust
the value of d for the given range of parameters (Gr and Pr) after
what an extensive parametric study with the 2D½ model can then
be performed.

A qualitative illustration of the ability of this model to give a
better prediction than a 2D computation is given in Fig. 6. Velocity
vectors and isotherms plotted in this figure are computed using the
Poiseuille profile (left) and the Hartmann-type profile (right). These
results can be compared to the purely 2D and 3D results of Fig. 3
since Gr and Pr have the same values. The physics of the flow is
obviously better captured by these two models than by the purely
2D model, while the computation time is typically the same: 8 min
on a standard PC, instead of 3 h in the case of a 3D computation.
Note that no steady solution is found with the 2D½-Poiseuille
model and that a recirculation in the upper-left and lower-right
corner is present as in the 2D simulations. This recirculation is
present neither in the 3D nor in the 2D½-Hartmann models, which
both exhibit a steady solution; this denotes the better ability of this
last model to account for inertia effects.

Typical convergence curves for the residuals obtained in the
computation of a steady solution with the 2D½-Hartmann model
are plotted in Fig. 7; reasonable convergence is reached after 2500
iterations. In the present results, 5000 iterations have arbitrarily
been used. The monitoring of the velocity value in 3 points of the
domain shows that typical variations after 1000 iterations concern
the fifth decimal only.

Our quantitative approach to compare the quality of different
solutions with respect to the 3D solution is based on the ability
to predict the temperature field. We thus define the following
estimators of the difference between a 2D½ solution and the 3D
solution in the vertical middle plane:

Dmean ¼ 1
n

Xn
i¼1

���T2D1 =

2

i � T3Di
���; (15)

and

Dmax ¼ max
i

���T2D1 =

2

i � T3D
i

���; (16)
Pr ¼ 0.0129. Left hand-side: 2D-½ Poiseuille model (snapshot of the unsteady solution);
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where n is the number of cells in the 2D mesh (note that the mesh
used in the 2D½ simulations coincides with that of the 3D case in
the vertical middle plane). Let us recall that, in this non dimen-
sional description of the problem, the temperature variation be-
tween the hot and the cold walls is 1 so that the estimators will be
expressed in percent of the overall temperature difference, Dq.

The value of the thickness d is a free parameter in the
2D½-Hartmann model. However for each couple of parameter
(Gr, Pr), the mean and maximum deviations with respect to the 3D
computation can be expected to feature a minimum for some value
of d. This is illustrated in Fig. 8 showingDmax andDmean as a function
of d/Aw for two arbitrary couples (Gr, Pr) ¼ (4.34 � 106, 0.0129) and
(Gr, Pr) ¼ (1.296 � 107, 0.0047). It appears that the 2D½ versus 3D
deviation can be drastically reduced by choosing an appropriate
value of the boundary layer thickness. The minimum mean devia-
tion is indeed less than 1%. The “best-value” for d is found to be a
function of Pr and Gr; in the case where a value of d has to be
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selected to investigate a given range of parameters, the chosen
value is thus necessarily a compromise. In the present parameters
range, a value of d ¼ 0.15 Aw seems appropriate and will be sys-
tematically used in the following.

Fig. 9 shows the mean deviation, Dmean, and maximum devia-
tion, Dmax, of the 2D½ simulations with respect to the 3D case,
plotted as a function of the Prandtl number for Gr ¼ 4.34 � 106.
Solid and open symbols are for Dmean and Dmax respectively. Circles
represent results obtained assuming a Poiseuille profile while di-
amonds correspond to results obtained assuming a Hartmann-type
profile with a boundary layer thickness d ¼ 0.15 Aw. It is clear from
this picture that assuming a Hartmann-type profile rather than a
Poiseuille profile significantly improves the model since the devi-
ation is generally divided by more than 2. For this value of the
Grashof number, the mean deviation is smaller than 1%, while the
maximum deviation over the domain is generally less than 3%. In
addition to these values, Fig. 10 gives a typical map of the deviation,
obtained for Pr ¼ 0.0129. We see that the region of high deviation
corresponds to the regions where the flow exhibits a separation
from the wall and a recirculation. This illustrates that the efficiency
of this type of model is linked to its ability to predict the convection
heat transfer in the corners of the cavity.

The variations of the 2D½ versus 3D deviations as a function of
the Grashof number are plotted in Fig. 11 for Pr ¼ 0.0129. A mini-
mum is found around Gr¼ 4.34�106 and a nearly linear increase is
observed for higher values of Gr. Above Gr ¼ 107, the maximum
deviation in the domain exceeds 5%, and approaches 10% for
Gr ¼ 1.626 � 107; we thus consider our model to be valid in this
range of parameters since this deviation is of the same order of
magnitude as experimental measurements uncertainty. Note that
these values are local maxima and the mean deviation remains
small, with values below 1.5%. As theminimumGr number tested in
the present study is 1.296 � 106, we can consider the model to be
valid over more than one decade in terms of Grashof number.

5. 2D½ numerical results compared to experiment

Experimental results have been obtained with the experimental
setup described in Refs. [3e5]. In these references, tinelead alloys
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Fig. 10. Normalized deviation between the temperature field in the middle plane of a
3D simulation and the temperature field obtained from a 2D½-Hartmann simulation
with d ¼ 0.15 Aw for Gr ¼ 4.34 � 106 and Pr ¼ 0.0129.

Table 2
Thermophysical parameters of pure liquid tin (Sn) [20].

Density kg m�3 7000
Specific heat J kg�1 C�1 243
Dynamic viscosity kg m�1 s�1 0.002
Thermal conductivity W m�1 C�1 32
Thermal expansion coefficient K�1 9.5 � 10�5
solidification experiments are reported. In contrast, our experi-
ments will concern pure tin samples in liquid state and no solidi-
fication will be considered. The experimental cavity (defined in
Fig. 1) is heated via two heat exchangers placed along the end-
walls. Once the metal is liquid, a temperature difference is
applied between these end-walls (cold temperature at x1 ¼ 0 and
hot temperature at x1 ¼ 10 cm), and a convective steady state is
obtained. The temperature distribution over the front side wall
((x1,x2)-plane at x3 ¼ 10 mm) can be obtained with an array of
50 copper constantan (type K) thermocouples, and comparisons
with the numerical results on these temperature values are then
possible.

In the experiment, only the temperature difference between the
two heat exchangers is monitored, and the temperature difference
in the liquid Dq, which is needed for the comparisons with the
numerical simulations, is unknown, though it is expected to be
Fig. 11. Normalized maximum (Dmax) and mean (Dmean) temperature deviations (in %)
of the 2D½-Hartmann model, with d ¼ 0.15 Aw, with respect to the 3D simulations as a
function of the Grashof number for Pr ¼ 0.0129. Solid symbols are for Dmean and open
symbols for Dmax.
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significantly smaller because of thermal resistances. To have an
estimation of Dq, the temperature of the melt near the two end-
walls will be determined. For that, the heat conservation law is
applied, along the longitudinal direction x1 at mid-height, to a
control volume containing two thermocouples in the heat
exchanger (measuring the temperatures qH1 and qH2) and one in the
melt (measuring qM1). If qendwall is the unknown temperature along
the endwall, following what is proposed in Refs. [3e5], we can
write:

f ¼ lCuðqH1 � qH2Þ
e1

¼ lSnðqendwall � qM1Þ
e2

: (17)

Where lCu and lSn are the thermal conductivities of solid copper
and liquid tin, equal to 380 and 32 W m�1 K�1 respectively,
e1 ¼ 15 mm is the horizontal distance between the exchanger
thermocouples, and e2 ¼ 5 mm is the horizontal distance between
the thermocouple M1 and the end-wall. This calculation is per-
formed for both end-walls and a temperature difference Dq ¼ 6 K is
thus obtained. Using this value and the thermophysical parameters
of Table 2 [20], we evaluate the following dimensionless parameter
values: Gr ¼ 8.9 � 106 and Pr ¼ 0.0152, which belong to the ranges
studied in the previous sections.

These parameters have been used in 2D, 2D½ and 3D simula-
tions. The Hartmann model with d/Aw ¼ 0.15 was chosen for the
2D½ simulation. The comparison between the experimental and
numerical results is shown in Fig. 12, where the longitudinal tem-
perature profile along x1 at mid-height is plotted. We see that the
3D and 2D½ numerical profiles are very close to the experimental
values of the temperature. In contrast, the profile obtained in the
2D simulation is too much deformed by the flow. This causes an
inversion of the thermal gradient in the centre of the cavity, which
is neither observed in the experiment nor obtained in the 2D½ and
3D simulations results.
Fig. 12. Temperature profiles along x1 at mid-height of the cavity (x2 ¼ 30 mm) for the
numerical and experimental results (Gr ¼ 8.88 � 106 and Pr ¼ 0.0152). The Hartmann
model with d/Aw ¼ 0.15 is used for the 2D½ simulations.



Using the temperature at the 50 positions of the thermocouples,
we can also define the relative deviation, Dnum/exp, between the
numerical and experimental results:

Dnum=exp ¼ 1
50

X50
i¼1

�����
qnumi � qexpi

Dq

�����: (18)

The relative deviationwith respect to the experimental results is
5.26%, 5.39% and 8.32% for the 3D, 2D½ and 2D results, respectively.
We see that the best approximation is still obtained by the 3D and
2D½models which give similar deviations. It can be concluded that
the 2D½ simulations (as well as the 3D simulations) are able to
describe the physics of the experiment with a good approximation.

6. Conclusion

We have presented a 2D½ model for thermal convection in a
rectangular differentially heated cavity. The geometry has been
chosen to correspond to a solidification benchmark experiment by
Fautrelle and co-workers [1e5]. The dimension of the cavity in the
horizontal transverse direction, x3, is one order of magnitude
smaller than the dimensions in the other directions (direction of
the horizontal heat-flux, x1, and vertical direction, x2). As the
considered liquid is metallic, the temperature field can be expected
to be uniform in this transverse direction, x3, but this is not the case
for the velocity field which fulfils no-slip conditions at the walls.
Fully 2Dmodels thus poorly catch the physics of the flow since they
are far less dissipative than the real case. We give an illustrative
case inwhich the structure of the flow is poorly recovered by the 2D
model and in which no steady solution is found with the 2D model
while a steady solution is reached in the 3D simulation. On the
other hand, fully 3D computations are highly time consuming and
so, not easy to perform. These 3D computations also confirm that
the temperature field is almost uniform in the transverse direction
over a major part of the cavity.

The model we propose is based on the averaging of the mo-
mentum, mass and heat conservation equations along the trans-
verse dimension of the cavity, x3. To analytically compute the
average, the temperature is assumed uniform along x3 and a well-
defined shapemust be chosen for the velocity profile.We show that
choosing a profile featuring two boundary layers of thickness d and
a uniform bulk is more appropriate than choosing a parabolic
Poiseuille profile. The thickness d is a tunable parameter.We choose
it uniform on the 2D domain. For a given fluid, which is to say at
fixed Prandtl number value, the value of d is optimized so as to
minimize the mean deviation between the 3D and the 2D½ tem-
perature fields at an intermediate Grashof number value. We show
that the 2D½ model featuring this value of boundary layer thick-
ness d is efficient over more than one decade in terms of Grashof
number. The mean deviation over the 2D domain between the 2D½
8

and the 3D temperature fields is typically less than 2% of the lon-
gitudinal temperature difference, Dq. The maximum local deviation
stays below 10% in the considered range of parameters. The simu-
lations madewith this 2D½model are observed to be more than 20
times less time-consuming than the 3D calculations (with the same
grid in constant-x3 planes).

Finally, original experimental results are reported and used as a
test case for the numerical calculations. It is shown that both the
2D½ and 3D calculations correctly reproduce the experimental
temperature measurements.

As a perspective, this type of models could be used to simulate
solidification experiments, both for pure liquid metals and for
metallic alloys. This would offer the opportunity of doing extensive
parametric studies, possibly with a very fine meshing of the 2D
domain, at a reasonable cost in terms of computational time.
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