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Geometric Frustration of Icosahedron

in Metallic Glasses

A. Hirata, L. ]. Kang,! T. Fujita,* B. Klumov,? K. Matsue,®> M. Kotani,»3

A. R. Yavari,** M. W. Chen>*

Icosahedral order has been suggested as the prevalent atomic motif of supercooled liquids and
metallic glasses for more than half a century, because the icosahedron is highly close-packed
but is difficult to grow, owing to structure frustration and the lack of translational periodicity.
By means of angstrom-beam electron diffraction of single icosahedra, we report experimental
observation of local icosahedral order in metallic glasses. All the detected icosahedra were found
to be distorted with partially face-centered cubic symmetry, presenting compelling evidence on
geometric frustration of local icosahedral order in metallic glasses.

etermining atomic structure of amorphous
Dmateria]s has been a long-standing problem,

because the lack of long-range transla-
tional and rotational symmetry renders it experi-
mentally inaccessible by conventional diffraction
methodologies. More than half a century ago,
Frank proposed that the icosahedron is the most
favorable local order in monatomic metallic lig-
uids (/), successfully explaining the feasibility
of achieving undercooling to below the melting
points. Metallic glasses can often be formed from
liquid alloys near eutectic compositions and, in
accordance with Frank’s proposal, binary liquid
eutectic compositions can be generated by intro-
ducing icosahedral clusters (2). Icosahedral order
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is thus the most generally accepted description of
atomic structures of metallic liquids and glasses
(3—14). From a geometrical viewpoint, icosahedra
cannot fill the entire three-dimensional (3D)
space, even in disordered systems, without dis-
tortion where icosahedral rotational symmetry is
partially broken (/5—17). Therefore, the locally
preferred icosahedra may not be perfectly con-
sistent with the globally stabilized structure, lead-
ing to the theoretical predictions of geometrical
frustration of icosahedron (/6-19). Although a
number of neutron and x-ray scattering experiments
have been performed to elucidate icosahedral
order in metallic liquids and glasses (18, 20-22),
only average structural information can be ac-
quired from 1D diffraction profiles generated by
the statistical distribution of coexisting poly-
hedra with various geometrical distortions in real
materials. The direct observation of local icosa-
hedral order is still missing. Consequently, the
structure features of local icosahedral order and
their correlation with the long-range disorder in
glasses and liquids are largely unknown. To over-
come the experimental difficulty in detecting
local atomic configurations in amorphous mate-
rials, we recently developed an angstrom-beam

electron diffraction (ABED) method to probe local
atomic structure using a ~0.4-nm electron beam
(23). We use the ABED technique to character-
ize local icosahedral order in a representative
ZrgoPtyo metallic glass in which the presence
of a large fraction of icosahedra has been pre-
dicted by computational simulations (24, 25)
and this study (fig. S1).

The amorphous structure of the ZrgoPtyq me-
tallic glass was confirmed by spherical aberration—
corrected high-resolution transmission electron
microscopy (TEM), together with selected-area
electron diffraction (fig. S2). To obtain local struc-
tural information, we employed the ABED tech-
nique with a beam diameter of 0.36 nm (full width
at half maximum) to characterize a thin foil of
the glass (Fig. 1A). To guide the ABED study,
we simulated the characteristic ABED patterns
of an ideal icosahedron along five-, three-, and
twofold directions (Fig. 1B). A large number of
ABED patterns were acquired from the thin edge
of the TEM foil. When the specimen thickness
is thin enough (~3 to 5 nm), individual polyhedra
with an appropriate on-axis orientation can be
frequently detected by ABED. However, from
these measurements we cannot find any ABED
pattern that is completely consistent with the sim-
ulated icosahedron patterns shown in Fig. 1B.
Instead, the acquired ABED patterns only par-
tially match those of the five-, three-, and two-
fold orientations (Fig. 1C). This is probably
due to distorted icosahedra in which icosahedral
order is only partially preserved. We thus sim-
ulated five-, three-, and twofold ABED patterns
of a typical <0 0 12 0> icosahedron taken from
the molecular dynamics (MD) model of the me-
tallic glass (fig. S1B). All icosahedra in the MD
model are actually distorted from the ideal icosa-
hedron, in agreement with theoretical and com-
putational predictions (17—19, 24, 25). Figure 1C
shows the simulated five-, three-, and twofold
ABED npatterns of the distorted icosahedron.



Because the icosahedral symmetry can be only
partially retained, the diffraction spot intensi-
ties differ considerably from those of the ideal
icosahedron. The features of the experimental pat-
terns corresponding to five-, three-, and twofold
axes are fairly consistent with the simulated ones
in the lengths and angles of diffraction vectors,
as indicated by the arrowheads, verifying the
existence of distorted icosahedra in the metallic
glass (fig. S3).

Although the distorted icosahedra can be de-
tected by ABED, the most common ABED pat-
terns during random diffraction scanning are often
very simple and different from the five-, three-,
and twofold patterns of icosahedral order. The
patters are basically composed of six nearly sym-
metrical diffraction spots, as shown in Fig. 2A.
To understand the structural origins of the simple
ABED patterns, we searched all possible on-axis
diffraction patterns of highly frequent polyhedra
in the metallic glass predicted by the MD sim-
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ulation. The simple diffraction patterns were found
to originate from the distorted icosahedra, in ad-
dition to the well-known five-, three-, and twofold
patterns. Figure 2B is a simulated ABED pattern
calculated from a distorted <0 0 12 0> icosa-
hedron in which the positions of the 12 coordi-
nated atoms are displaced from those in an ideal
icosahedron (Fig. 2C). The incident direction is
close to a distorted fivefold orientation (see Fig.
2E). The simulated pattern reproduces well the
experimental one in the diffraction vectors (lengths
and angles) (Fig. 2, A’ and B'). Note that ABED
patterns with the equivalent diffraction vectors
cannot be obtained from nonicosahedral clusters
(fig. S4). We noticed that this kind of diffraction
is also partially similar to that of a face-centered
cubic (fce) structure that is also densely packed
with 12 coordinated atoms. Figure 2D shows a
[110] diffraction pattern of the fcc structure with
six strong spots, which is partially consistent with
that of the distorted icosahedron but without the
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Fig. 1. ABED characterization of icosahedral order in metallic glasses. (A) Experimental procedure of
ABED of a icosahedral cluster. The coherent electron beam has a diameter of 0.36 nm. (B) Simulated
ABED patterns of an ideal icosahedron. (C) Comparison between experimental and simulated ABED
patterns of icosahedral clusters in a ZrgoPt,o metallic glass. For comparison, angular information
between each diffraction vector is shown in the right side of each panel. Arrowheads indicate
characteristic diffraction spots of the icosahedral order.

golden-ratio relationship between diffraction vec-
tors. This implies that the distorted part of the
icosahedron possesses local fcc-like symmetry.

We investigated the structural similarity be-
tween the distorted icosahedron and the fcc
cluster. Figure 3A depicts three types of atomic
clusters with a coordination number of 12: ideal
icosahedron, distorted icosahedron, and fcc clus-
ter. The exact atomic sites where the distorted
icosahedron (Fig. 3A, middle) differs structural-
ly from the ideal icosahedron and fcc can be seen.
Atoms in the distorted part of the icosahedron can
be identified by shifting to fcc coordinates. The
distorted icosahedron actually includes icosahe-
dral order and a portion of fcc order (fig. S5),
accompanying with the variation of Zr-Pt atomic
bond length from 0.277 to 0.347 nm. Separate ab
initio calculations (Fig. 3B) verify that the dis-
torted icosahedron has a total energy higher than
both the perfect icosahedron and the fcc clus-
ter. This indicates that the distorted icosahedra
are in an intermediate state between two densely
packed configurations: the ideal icosahedron
and the fec cluster. To confirm that the distorted
icosahedron with partial fcc symmetry is repre-
sentative of the local structure of the Zr-Pt me-
tallic glass, we conducted a bond orientational
order analysis based on our MD model contain-
ing 12,000 atoms (6, 26). Figure 3C shows a
probability distribution function for an invariant
W, the most sensitive indicator for icosahedral
symmetry, calculated using the averages of spheri-
cal harmonics associated with the bond direc-
tions (26). The values for the ideal icosahedron
and the fcc cluster are —0.169754 and +0.013161
(26), respectively. The invariant Wy of the dom-
inant atomic clusters in the metallic glass is seen to
have values in between those of the icosahedron
and fce configurations, suggesting that most local
atomic arrangements have an intermediate struc-
ture between icosahedron and fcc, which is in
agreement with the distorted icosahedron charac-
terized by ABED.

Traditionally, the distortion of icosahedra has
been suggested from atomic size disparity of
constituent elements and/or kinetic fluctuation
during glass formation, giving rise to atomic bond-
ing length variation, as well as atomic scale stress
and strain in metallic glasses (27, 28). Nevertheless,
different from the indiscriminate geometry varia-
tion caused by the chemical and kinetic effects,
the distorted icosahedra reported here always
possess partial fcc symmetry, indicating that the
distortion of icosahedra in the metallic glasses is
associated with geometric frustration that derives
from the competition between two low-energy
states (fcc and icosahedron) with dense atomic
packing. The chemical variation and kinetic
fluctuation may just provide structural pertur-
bations during the development of the inter-
mediate atomic configuration by preventing the
formation of ideal icosahedron and fcc clusters.
If each icosahedral cluster is isolated, it would
naturally tend to minimize the local energy den-
sity by forming the densest and most symmetrical
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Fig. 2. ABED patterns of a distorted icosahedron taken from the fcc-like orientation. (A) Experi-
mental ABED pattern with six distinguishable diffraction spots obtained from ZrgPt,. (A) Characteristic
diffraction angles in the experimental ABED pattern shown in (A). (B) Simulated ABED pattern calculated
from the distorted <0 0 12 0> icosahedron taken from the MD model. (B) Characteristic diffraction angles
in the simulated ABED pattern shown in (B). (C) Illustration of the distorted icosahedron giving the ABED
pattern of (B). (D) Calculated [110] diffraction pattern of a fcc cluster. (E) Correlation between a local fcc
symmetry and a distorted pentagon of icosahedral order.

icosahedron. However, in real metallic glasses,
the constituent atoms shared by neighboring
clusters may not always sit at the minima of
all pairwise interactions with all of their nearest
neighbors, owing to chemical variation and ki-
netic fluctuation. The fcc symmetry is the ener-
getically and geometrically favorable arrangement
of the distorted parts of the icosahedron, because
an fce structure has dense atomic packing with
12 coordinated atoms (same as an icosahedron)
and a low energy. Importantly, the local transla-
tional symmetry of the fcc configuration makes
the distorted icosahedra easy to geometrically
match with neighboring clusters for long-range
dense packing. Thus, the geometric frustration,
evidenced by ABED, reflects the intrinsic struc-
tural feature of metallic glasses and correlates with
their forming ability and mechanical properties.

It is worth noting that other prevailing clusters
in the metallic glass—such as <03 6 1>, <02 8 0>,
<028 1> <0110 2>—were also detected by
ABED (fig. S6). These clusters also contain
both icosahedral- and fcc-like structural features
associated with the geometric frustration, similar
to the distorted <0 0 12 0> icosahedron. The ge-

ometric frustration of the atomic clusters can be
quantified by topological analysis. Although
each distorted icosahedron or icosahedron-like
cluster has distinct geometric distortions de-
pending on the surrounding atomic environment,
the preliminary computational homology calcu-
lations (29), for the first time being applied to
the analysis of metallic glasses, show that the
geometric distortions of the atomic clusters can
be depicted in a simple manner in terms of the
topological connectivity. The topological analy-
sis of individual atomic clusters can also be
scaled up to long-range disorder (figs. S7 and
S8), which may be a promising approach to de-
scribe the intricate structure of disordered me-
tallic glasses.

To retain dense atomic packing and a low-
energy state, the icosahedral order revealed by
ABED is geometrically distorted and inclined to
form a mixed configuration, composed of a par-
tial icosahedral symmetry and a partial fcc sym-
metry. This atomic packing scheme of low structure
symmetry but dense atomic arrangement has not
been found in any crystal or quasicrystal and
represents a distinct atomic structural feature
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Fig. 3. Energy calculation and bond orientational
order analysis. (A) Structural relationship among
the ideal icosahedron, distorted icosahedron, and
fcc cluster. (B) Total energy calculations of the three
atomic clusters. (C) Bond orientational order analysis
from a 12,000-atom MD model created at a cooling
of 10™ K/s. A histogram of the probability distribu-
tion function (PDF) of the W invariant is shown,
together with the characteristic values for an ideal
icosahedron and fcc cluster.

of metallic glasses. Although dominant clusters
in metallic glasses are diverse and not limited to
icosahedra, dense packing with geometrical frus-
tration appears to be the universal structural char-
acteristic of metallic glass formers.

Metallic glasses are essentially a frozen super-
cooled liquid. In principle, the local structure re-
vealed by ABED corresponds to the inherent
structure of the supercooled liquid immediately
before its transition to a glassy state. In addi-
tion to shedding light on the structural origins of
metallic glass formation, this study also provides
evidence that dynamic heterogeneity and arrest
in supercooled liquids at the glass transition, as
determined from computational simulations and
theoretical modeling (30-33), are essentially as-
sociated with local atomic ordering and conse-
quent geometric fiustration. Therefore, the ABED
experiment may have important implications in



solving the puzzles of glass transition (34) and
may provide a method to explore the atomic struc-
ture and atomic-scale properties of disordered
materials.
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1. Materials and Methods

1-1. Sample preparation and TEM experiment

ZrgoPtyy metallic glass ribbons were made by a single-roll rapid quenching
technique with the roll speed of 60 m/sec. The TEM samples were prepared by
ion-milling (Fischione, Model 1010) with a liquid nitrogen cooled stage. ABED patterns
were taken by using a JEM-2100F TEM/STEM with double spherical aberration (Cs)
correctors (operated at 200kV) and recorded by a TV-rate CCD camera (Gatan,
ES500W Erlangshen). A nearly parallel coherent electron beam produced by a
specially-designed small condenser aperture with a diameter of 5 um is utilized as an
Angstrom-sized electron probe. By using the Cs corrected STEM, the coherent electron
beam can be accurately aligned and focused to a diameter as small as 0.3 ~ 0.4 nm and
the instrumental parameters (spherical aberration coefficient, defocus, astigmatism etc.)

can be precisely measured using a Ronchigram method. (35)

1-2. Molecular dynamics calculations and ABED simulations

Ab-initio molecular dynamics (MD) simulation was carried out using the Vienna
ab-initio simulation package (VASP) (36). The projector augmented wave method (37)
and the generalized gradient approximation were used to describe electron-ion
interactions (38). A cubic super-cell with a periodic boundary condition and containing
160 Zr atoms and 40 Pt atoms was initially constructed according to the experimental
density. The ensemble was melted and equilibrated at a high temperature of 2500 K for
2000 timesteps with the each timestep of 5 fs. Subsequently, the systems were quenched

to 300 K with a cooling rate of 4 x 10" K / sec at 1000 time steps per 200 K. All the



calculations were carried out within a canonical ensemble NVT (constant number,
volume, temperature) by using a Nosé thermostat for temperature control.

Since a cooling rate of ab-initio MD simulation is too high, we also conducted
classical MD simulations using embedded atom method (EAM) potentials that were
created on the basis of the ab-initio calculations. A 12000 atomensemble with the
composition of ZrgoPtyy) was melted at 2500 K for 0.1 ns (with a time step of 5 fs) and
then cooled to 300 K at a cooling rate of 1.7 X 10'° K/sec.

ABED simulations of the simulated atomic structure were carried out using a
conventional multislice method (39). To understand the local atomic environments, we
applied Voronoi polyhedral analysis to elucidate possible polyhedra, generally

recognized as short range order (SRO), in the metallic glass (Fig. STA).

2. Supplementary Text

2-1. Voronoi analysis for the MD model

In order to interpret the experimental ABED patterns, we investigated the structural
model of the glassy ZrgPtyy produced by the ab-initio MD simulations and classical
MD simulations and applied Voronoi polyhedral analysis to elucidate prevailing
polyhedra in the metallic glass. Icosahedron-like polyhedra (<0 1 10 2>) centered by Zr
atoms are the dominant SRO and <0 0 12 0> icosahedra are frequently formed around
Pt atoms. Figure S1B shows the overall structural model of the ab-initio MD
simulations, where the central atoms of <0 2 8 1>, <0 0 12 0>, and <0 1 10 2>
polyhedra are shown in color. The connections between the colored central atoms

indicate the presence of networks consisting of icosahedra and icosahedron-like



polyhedra. Since 167 atoms (total 200 atoms) belong to these three polyhedra,
icosahedra and icosahedron-like clusters are apparently the main building blocks of the
structural model.

To avoid possible confusion, in this study we define the ideal (or perfect)
icosahedron as a <0 0 12 0> cluster with perfect icosahedral symmetry. If the positions
of 12-coordinated atoms in a <0 0 12 0> cluster are displaced from those in an ideal
icosahedron, we call the clusters as a “distorted” icosahedron. Atomic clusters similar to
<0 0 12 0> icosahedra, such as <0 2 8 1> or <0 1 10 2>, which partially contain

icosahedral symmetry, are called “icosahedron-like” clusters.

2-2. Total energy calculation of individual atomic clusters

We noticed that the distorted icosahedron observed experimentally is partially
analogous to both of the icosahedral and fcc clusters as shown in Fig. 3. To confirm this
from the energetic viewpoint, ab-initio calculations were performed to estimate the total
energies of three types of 11Zr-2Pt and 12Zr-1Pt clusters: ideal icosahedron, distorted
icosahedron, and fcc cluster. All the calculations were carried out by using VASP with
the projector augmented wave (PAW) method. The generalized gradient approximation
(GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-correlation parameterizations
was applied. Only the I point in Brillouin zone and a supercell with edge length of 16A
were used in the calculations and the energy cutoff is 300eV. The total energies were
converged within 10™ eV and both structures of the ideal icosahedron and the fcc cluster
were relaxed prior to the total energy calculations. The total energy of
distorted-icosahedral was directly calculated from the structure obtained by the MD

simulations.



2-3. Features of atomic clusters other than the <0 0 12 0> icosahedron

In addition to the <0 0 12 0> icosahedron, we also investigated the prevailing
atomic clusters with indices of <03 6 1>,<02 8 0>, <02 8 1>, and <0 1 10 2> in the
metallic glasses using ABED. Fig. S6A shows atomic models of the four clusters from
two different directions. All the icosahedron-like clusters can be detected in the glass
and the corresponding ABED patterns are shown in Fig. S6B and S6C. The
experimental diffraction patterns are well consistent with the ones derived from the MD
models. As shown in Fig. S6B, the icosahedron-like clusters (<0 2 8 1>and <0 1 10 2>)
have very similar ABED patterns to that of the <0 0 12 0> distorted icosahedron. But,
the structural difference can be well identified from the ABED patterns. Interestingly all
the patterns partially keep the fivefold symmetry whereas only a pair of spots is
deviated from fivefold position. Note that the deviated spots consequently make the fcc
[110]-like pattern together with the other two pairs of spots. Therefore, both
icosahedron- and fcc-like structural features can be identified from the prevailing
clusters with indices of <03 6 1>, <02 8 0>, <02 8 1>, and <0 1 10 2>. The concept of
geometric frustration can thus be applied to these atomic clusters too, analogous to the

<0 0 12 0> distorted icosahedron.

2-4. ABED patterns of non-icosahedral clusters in the metallic glass

The ABED patterns from non-icosahedral clusters such as <0 4 6 3> and <0 3 6
3> were also checked as shown in Fig. S4. The zone-axis patterns obtained from the
fivefold-like axes (normal to pentagonal atomic arrangements) are clearly different from

the pattern of icosahedra or icosahedron-like clusters. Even by rotating these clusters to



all the possible zone-axis directions, it was impossible to find symmetric patterns

similar to the ones obtained from icosahedra.

2-5. Topology analysis of atomic clusters in the metallic glass

In order to survey the manner of distortion of each atomic cluster determined by
ABED, we employed a mathematical tool to abstract essence of geometric relations,
called “homology group”. Homology groups are defined for geometrical objects called
“simplicial complexes” or “cubical complexes”, which are consist of a finite number of
simple geometrical objects called n-dimensional simplices (points, segments, triangles,
etc.) or cubes (points, segments, squares, etc.), respectively. For given such a complex X
and each integer n, the homology group H,(X) provides the topological feature of X in
terms of “n-dimensional holes”. n-dimensional holes may be heuristically thought of as
connected components, tunnels and cavities for n=0,1,2, respectively. The homology
group H,(X) can be identified with a b,-dimensional vector space (or a finitely
generated module with b,-dimensional free component in algebra). The integer b,
expresses a count of n-dimensional holes in X and is called the n-th Betti number of X,
which can be often applied to characterizing the topology of X. For details of the
mathematical theory, one can find in the references (29 and 40).

Here we analyze the homology for each atomic cluster in the metallic glass,
determined by ABED and MD simulations. The MD model we used in this study
consists of 200 atoms, indicating the presence of 200 atomic clusters. For computing
homological quantities, we need first to construct three-dimensional objects with voxels
(three-dimensional pixels) for the 200 atomic clusters. The voxel dimension is 0.005 x

0.005 x 0.005 nm’. In the case of atoms in metallic glasses, hard sphere model is



basically acceptable. The corresponding cubical complex can be constructed for
computing homological quantities. For each atom position in a targeted cluster, we
prepared spherical objects with given atomic radii which can be a variable in this
analysis. For the computation, we utilized a CHomP (Computational Homology Project)
software package available at http://chomp.rutgers.edu/. The CHomP software can
provide information of homology, in particular, the Betti numbers, of cubical complexes
made by input data such as voxel objects. We here focus especially on the 0-th Betti
number by which represents the number of connected components in the objects. In the
Homology analysis, we always keep the constant inter-atomic distances in the clusters
determined by ABED and/or MD simulations while changing the virtual sizes of
constituent atoms simultaneously according to their real atomic size ratio, as shown in
Fig. S7. For the Zr-Pt binary system, we first determine standard values of atomic sizes
which are exactly same as metallic bond radii (Ra: 0.16025 nm for Zr; Rg: 0.13870 nm
for Pt) and always keep the atomic size ratio (Ra/Rp) during changing R, and Rg. In
this analysis, we use normalized atomic radii that are the virtual atomic radii divided by
Ra or Rp. The normalized atomic radii of real (or original) atoms are always 1 and the
virtual atom size can be larger or smaller than 1. With this simple treatment, we do not
need to consider the true atomic sizes during the Homology analysis. Then we can
topologically characterize three-dimensional atomic arrangement in the clusters only by
one Betti number by. By changing normalized atomic radii, i.e. monitoring the territory
of each atomic coordinate, this method enables us to understand distortion manner for
each atomic cluster.

The geometric frustration discussed in this study can also be quantified in terms of

its Homology group. The O-th Betti number b, can provide the number of



non-connected features in the atomic clusters being analyzed. As shown in Fig. S8, by
increasing the atomic radii, the connectivity of the ideal <0 0 12 0> icosahedron
changes dramatically from the Betti number 13 (total atom number in the cluster) to 1.
Apparently, the distortion caused merely by the atomic size disparity of constituent
elements (Pt and Zr) is trivial (Fig. S8). In contrast, the distorted <0 0 12 0> icosahedra
determined by ABED show continuous decrease of Betti number from 13 to 1,
indicating large variation of inter-atomic distances in the clusters. All the <0 0 12 0>
icosahedra in the glass are distorted in the same topological manner and clearly different
from the ideal icosahedron. We can scale up the homology analysis from individual
atomic clusters to the global structure of the glass to investigate the inherent correlation
between local atomic configurations and long-range disordered packing. When we
plotted the Betti number variation of the entire MD dataset by counting all the
component atoms as centers of polyhedra, we found that the Betti number distribution is
consistent with that of the distorted icosahedron and icosahedron-like clusters revealed
by ABED. This demonstrates that the connectivity of the distorted icosahedra or
icosahedron-like clusters is compatible with the long-range disorder of the metallic
glass. Therefore, the homology analysis may provide a simple way to understand the

atomic structure of disordered metallic glasses from the topological view.

2-6. Detection capability of ABED technique

Since most TEM specimens are essentially three-dimensional with certain
thickness, the volume interrogated by a small electron probe may contain too many
atoms to identify the local structure because the sample is too thick. Therefore, for

ABED samples, the thinner is better. However, for the TEM samples prepared by ion



milling or electrochemical polishing, the thinnest edge is usually thicker than ~2 - 3 nm.
For example, the metallic glass sample used in this ABED study has a thickness of ~3 -
5 nm determined by electron energy loss spectroscopy (EELS). However, even 3 - 5 nm,
it is still much thicker compared with the size of individual coordination polyhedra
(atomic clusters). We therefore estimated atom numbers inside the column in which
electron beam passes thorough by assuming average atomic radii of 0.30 nm and
packing density of 0.7. Fig. S9 shows the plots of atom numbers in the column for three
different thicknesses (3 and 5 nm). When the beam diameter is focused down to 0.3 ~
0.4 nm, the atom number is reduced to about 15 ~ 30 atoms, corresponding to 2 ~ 3
atomic clusters. Since the beam diameter is the FWHM value of Gaussian distribution,
the actual area that contributes to total ABED intensity is expected to be ~0.5 nm.
Nevertheless the atom number is still less than 25 ~ 60 (= 2 ~ 5 atomic clusters) even
for the 0.5 nm probe size. Because the ABED intensity strongly depends on the
orientation of atomic clusters, it becomes much more realistic to detect a single atomic
cluster experimentally using the present ABED technique. We actually checked an effect
of the cluster overlapping for the total ABED intensity using the structural models
shown in Fig. S10. The simulated ABED pattern is almost unchanged by increasing the
number of off-axis cluster. This means only on-axis cluster shows the strong diffraction
intensity and gives the main contribution to the total ABED intensity.

We also examined the sensitivity of ABED to the cluster distortion. Fig. S11
shows simulated ABED patterns for both the ideal and distorted icosahedra. The beam
incidence direction is slightly tilted from the exact fivefold axis of the clusters. From the
exact fivefold axis, the ideal icosahedron only shows a very broad ring (see Fig. 1).

Even if the cluster is slightly tilted, the pattern still keeps the broadness, clearly different



from the distorted cluster. Moreover, the degree of distortion of icosahedron and
icosahedron-like clusters can be determined by ABED. As shown in Fig. S6B, two pairs
of diffraction vectors keep at the fivefold positions, but a pair of spots is heavily
deviated. The deviation is directly related to the distortion of the clusters. Therefore,
using the ABED technique, we can roughly estimate a degree of distortion from the

feature of the diffraction patterns.

2-7. Atomic structure simulated by a classical MD method (slow cooling)

Figure S12 shows the results of Voronoi polyhedral analysis from the slowly
cooled MD model. The indices of <02 8 1>,<00 12 0>,<02 8 0>, <0 1 10 2>, and <0
2 8 2> are frequently found in the lists. This result is consistent well with the model
obtained by our ab-initio MD simulation (Fig. S1A). Additionally both of our results are
also consistent with the analysis by a reverse Monte Carlo simulation of the identical
ZrgoPty glass (25). We also conducted bond orientational order analysis for the classical
MD model as shown in Fig. 3C. Although the statistics of the plot looks much better
than that of the ab-initio MD model, most of the atomic clusters are situated between

ideal icosahedron and fcc.
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3. Figures
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Fig. S1 (A) Voronoi polyhedral analysis of the ZrgyPt,g MD structural model.
Icosahedra (<0 0 12 0>) and icosahedron-like clusters (<0 1 10 2>, <0 2 8 1>) are
frequently observed in the model. The cut-oftf value for Voronoi analysis is 0.38 nm.
(B) Structural model of glassy ZrgoPtyy produced by ab-initio MD simulation.

Colored atoms denote central atoms of icosahedron or icosahedron-like polyhedra.

The corresponding Voronoi indices are shown in the inset.
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Fig. S2 TEM micrographs of the ZrgoPty) metallic glass. (A) A typical SAED
pattern and low-magnification bright-field TEM image; and (B) Spherical

aberration-corrected HRTEM image showing the amorphous nature of the sample.
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Fig. S3 Angular values between two diffraction vectors expected from the ideal and
distorted icosahedral clusters. The ranges of the distorted icosahedron are estimated
by measuring the angles in several 5-, 3-, and 2-fold patterns obtained from the
distorted <0 0 12 0> icosahedral clusters in the MD model. The experimental values

shown in Fig. 1C are within the ranges determined from MD models.
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Fig. S4 Simulated ABED patterns from <0 3 6 3> and <0 4 6 3> clusters
(non-icosahedral clusters). Although it is difficult to define the fivefold axis in the
non-icosahedral clusters, pentagon-like atomic arrangements are roughly normal to
the beam incidence in this analysis. The fcc-like pattern seen in the icosahedron

cannot be observed in these non-icosahedral clusters.
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Fig. S5 Structure difference between ideal icosahedrons and the distorted
icosahedron detected by the ABED and MD simulations. It can be seen that a
pentagon in the ideal icosahedron can turn to be a fcc-like configuration by slight

atom shift.
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Fig. S6 (A) Atomic models of four icosahedron-like clusters that are frequently
observed in the metallic glass. Both icosahedron-like fivefold and fcc-like cubic
configurations can be recognized from the clusters. (B) Simulated and experimental
ABED patterns taken from the distorted icosahedron and icosahedron-like clusters.
The beam incidence directions are slightly tilted from the exact fivefold axis. All the
patterns partially keep the fivefold symmetry. The diffraction from the distorted
portions exhibits a two-fold symmetry, similar to that of the <110> pattern of the fcc
cluster. (C) Experimental ABED patterns showing a nearly threefold symmetry,
together with the simulated ABED patterns from low-coordination number clusters
(<0 2 8 0> and <0 3 6 1>). The simulated patterns are consistent well with the

experimental ones.
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Fig. S7 Schematic diagram of the homology analysis. The atom size ratio (Rx/Rp)
keeps a constant in the analysis (in (A)), while the atom positions are always fixed
(in (B)). By changing the virtual atomic radii, we can monitor the change of the
Betti number by (number of connected components) to characterize the distortion
manner of the clusters. If coordinates of each atom center are exactly identical for
some atomic configurations, the size of constituent atoms affects the Betti numbers

as shown in (C).
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Fig. S8 Topology analysis for the distorted icosahedra (<0 0 12 0>) determined by
ABED. Both ideal and distorted icosahedra are Pt centered polyhedra with 12 Zr
surrounding atoms (12Zr-Pt). Error bars indicate the variation ranges of the Betti
number of the distorted icosahedra. The histogram of all atomic clusters (200
clusters) in the Zr-Pt MD model is also shown. The color bar indicates the

frequency of Betti number b, for each normalized atomic radii.
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Fig. S9 Relationship between the electron beam size and the number of atoms in
the columns where an electron beam passes through. The sample thicknesses are set
to 3 and 5 nm, respectively. The average bond distance and packing density used in

calculation are 0.30 nm and 0.7.
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Fig. S11 Simulated ABED patterns from ideal and distorted icosahedra. The beam
incidence direction is slightly tilted from the exact fivefold axes. The ideal
icosahedron gives quite broad intensity, whereas the distorted one has a symmetric

pattern with well-defined spots.
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