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Monoids of upper-triangular matrices

Jean-Eric Pin1, Howard Straubing2

Abstract

We study the variety W generated by monoids of upper-triangular

boolean matrices. First, we present W as a natural extension of the

variety J of finite J -trivial monoids and we give a description of the family

of recognizable languages whose syntactic monoids are in W. Then we

show that W can be described in terms of the generalized Schützenberger

product of finite monoids. We also show that W is generated by the power

monoids of members of J. Finally we consider the membership problem

forW and the connection with the dot-depth hierarchy in language theory.

Although the majority of our results are purely “ semigroup-theoretic” we

use recognizable languages constantly in the proofs.

Résumé

Nous étudions la variété W engendrée par les monöıdes de matri-

ces booléennes triangulaires supérieures. Nous présentons tout d’abord

W comme une extension naturelle de la variété J des monöıdes finis J -

triviaux et nous décrivons l’ensemble des langages reconnaissables dont le

monöıde syntactique est dans W. Puis nous montrons que W peut être

décrite en termes de produit de Schützenberger généralisé de monöıdes

finis. Nous montrons également que W est engendrée par les monöıdes

des parties associés aux éléments de J. Finalement, nous étudions le

problème de l’appartenance à W et les relations qui existent entre W

et les hiérarchies de concaténation en théorie des langages. Bien que la

majorité de nos résultats soient de pure théorie des semigroupes, nous util-

isons constamment les langages reconnaissables dans les démonstrations.

The subject of the present paper belongs to the theory of varieties of finite
monoids and recognizable languages. We refer the reader to the books by Eilen-
berg [2] and Lallement [3] for the elements of this theory. Here we study the
variety generated by monoids of upper-triangular boolean matrices. This is a
subvariety of the variety of finite aperiodic monoids and, as we show in this
paper, it appears in a number of different contexts.

In this first section we present the varietyW generated by monoids of upper-
triangular boolean matrices as a natural extension of the variety J of finite
J -trivial monoids (which was studied in detail by Simon [12, 13]). We give a
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description of the family of recognizable languages whose syntactic monoids are
in W.

In the second section we show that the variety W can be described in terms
of the generalized Schützenberger product of finite monoids (introduced in [16]).
More exactly, we prove that a monoid M belongs to W if and only if M di-
vides an n-fold Schützenberger product ♦n(M1, . . . ,Mn) whereM1, . . . ,Mn are
idempotent and commutative finite monoids.

In the third section we show that W can be described in terms of power sets:
if V is a variety of finite monoids, then PV denotes the variety generated by
{P(M) |M ∈ V}, where P(M) is the power set of M . The operation V → PV

has been studied by several authors [4, 5, 6, 7, 9, 14]. Here we use these earlier
results to prove that W = PJ.

In the final section we consider the membership problem for W. That is, we
would like an algorithm for determining, given the multiplication table of a finite
monoid M , whether or not M ∈ W. We are able to give an effective necessary
condition for membership in W, but we do not yet know if our condition is
sufficient. In the same section we cite an unpublished result of Straubing1

which connects the variety W to the dot-depth hierarchy of Brzozowski.
Although the majority of our results are purely “semigroup theoretic” — in

the sense that they make no reference to recognizable languages or the theory of
automata — we use recognizable languages constantly in the proofs. In essence
we are exploiting the correspondence between varieties of monoids and varieties
of languages, as described in Eilenberg [2]. This provides us with a powerful
tool for proving theorems about varieties of finite monoids.

1 The variety generated by monoids of upper-

triangular matrices

Let n > 1. We denote by Mn the set of all n × n matrices over the boolean
semiring B = {0, 1} (in which 1+1 = 1) and byKn the set of all upper triangular
matrices in Mn all of which diagonal entries equal 1. That is,

Kn = {m ∈Mn | mi,j = 0 for 1 6 j < i 6 n and mi,i = 1 for 1 6 i 6 n}.

Kn is closed under multiplication of matrices and is thus a submonoid of the
multiplicative monoid Mn. We define

U = {M |M ≺ Kn for some n.}.

That is, U consists of all monoids (necessarily finite) which are divisors of Kn

for a certain n. (We say that a monoid M divides a monoid M ′ if M is a
quotient of a submonoid of M ′ — see [2]).

The family U is evidently closed under division. It is also closed under direct
product: to see this observe that there is an injective morphism ϕ :Mm×Mn →

1This result has later been published in [17].
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Mm+n defined by

(p, q)ϕi,j =



















0 if i 6 m and j > m

0 if i > m and j 6 m

pi,j if i 6 m and j 6 m

qi−m,j−m if i > m and j > m,

and that ϕ embeds Km×Kn into Km+n. Since N1 ≺M1 and N2 ≺M2 implies
N1 ×N2 ≺ M1 ×M2, it follows that U contains the direct product of any two
of its members. Thus U is a variety of finite monoids in the sense used by
Eilenberg [2, Chapter V].

If V is a variety of finite monoids and A is a finite alphabet, then we denote
by A∗V the family of recognizable languages in A∗ whose syntactic monoids
belong to V. Eilenberg has shown [2, Chapter VII] that every variety of finite
monoids is generated by the syntactic monoids it contains. Thus if V1 and V2

are varieties of finite monoids, V1 ⊂ V2 if and only if A∗V1 ⊂ A∗V2 for every
alphabet A. This enables us to show that two varieties are equal by showing
that the corresponding families of recognizable languages are equal.

In the case of the variety U defined above, Straubing [15] showed that A∗U
is the boolean closure of the family of languages of the form

A∗a1A
∗ · · · akA

∗, where a1, . . . , ak ∈ A.

A deep result of Simon [13] asserts that this is precisely the family of languages
whose syntactic monoids belong to the variety J of finite J -trivial monoids. (A
monoid is J -trivial if and only if the J -relation is the identity). We thus have

Theorem 1. U = J. (That is, a finite monoid M is J -trivial if and only if it
divides Kn for some n).

We now consider the family Tn of all n × n matrices over the semiring B

which are upper triangular. Tn is a submonoid of Mn which contains Kn. We
define

W = {M |M ≺ Tn for some n}.

Once again it is evident that W is closed under division, and that the morphism:
ϕ : Mm×Mn →Mm+n maps Tm×Tn into Tm+n. Thus W is a variety of finite
monoids. This variety is the principal concern of the present paper.

We begin by describing the family of recognizable languages corresponding
to W:

Theorem 2. A∗W is the boolean closure of the family of languages of the form

A∗
0a1A

∗
1 · · ·akA

∗
k

where k > 0, a1, . . . , ak ∈ A and A0, . . . , Ak are (possibly empty) subsets of A.

Remark. If Ai = ∅ then A∗
i = {1}.

Proof. Let F denote the boolean closure of the family of languages of the form
A∗

0a1A
∗
1 · · · akA

∗
k, where k > 0, a1, . . . , ak ∈ A and A0, . . . , Ak ⊂ A. We first

show that F ⊂ A∗W .
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For this it suffices to show that the syntactic monoid of any language of the
form L = A∗

0a1A
∗
1 · · · akA

∗
k is in W, since it is known [2, Chapter VII] that A∗V

is closed under boolean operations for any variety V. We will show that L is
recognized by the monoid Tk+1: that is, there exists a morphism ψ : A∗ → Tk+1

and a set X ⊂ Tk+1 such that Xψ−1 = L. This implies [2, Chapter VII] that
M(L) ≺ Tk+1 and thus M(L) ∈ W. The morphism ψ is defined by

(aψ)i,j =











1 if i = j and a ∈ Ai−1

1 if j = i+ 1 and a = ai

0 otherwise

for all a ∈ A, i, j ∈ {1, . . . , k + 1}. It is easy to verify that if w ∈ A∗ then
(wψ)i,j = 1 if and only if there is a path labeled w from state i to state j in the
nondeterministic automaton pictured below

1 2 . . . k + 1

A0 A1 Ak+1

a1 a2 ak

In particular, (wψ)1,k+1 = 1 if and only if w ∈ A∗
0a1A

∗
1 · · · akA

∗
k = L. Thus

L = Xψ−1, where X = {m ∈ Tk+1 | m1,k+1 = 1}. This proves that F ⊂ A∗W .
To prove the opposite inclusion, suppose that L ∈ A∗W . Then M(L) ∈ W

and consequently L is recognized by Tn for some n > 1. Thus there exists a
morphism η : A∗ → Tn and a subset X of Tn such that L = Xη−1. We need to
show that Xη−1 ∈ F . Since Xη−1 =

⋃

x∈X xη−1 and since F is closed under
boolean operations, it suffices to show that xη−1 ∈ F for each x ∈ Tn. Now

xη−1 =
⋂

16i,j6n

{w | (wη)i,j = xi,j}

⋂

{(i,j)|xi,j=1}

{w | (wη)i,j = 1} \
⋂

{(i,j)|xi,j=0}

{w | (wη)i,j = 0}

Thus it suffices to show that each set of the form {w | (wη)i,j = 1} belongs
to F . Let Ak,ℓ = {a ∈ A | (aη)k,ℓ = 1} and let Qi,j be the set of all strictly
increasing sequences (i0, . . . , it) such that i0 = i and it = j. (If i > j then Qi,j

is empty. If i = j, then Qi,j consists of the single sequence (i)). Then

{w | (wη)i,j = 1} =
⋃

(i0,...,it)∈Qi,j

A∗
i0,i0

Ai0,i1
A∗

i1,i1
· · ·Aik−1,ik

A∗
ik

Since each languageA∗
i0,i0

Ai0,i1
A∗

i1,i1
· · ·Aik−1,ik

A∗
ik
is a finite union of languages

of the form A∗
i0,i0

a1A
∗
i1,i1

· · · akA∗
ik

it follows that {w | (wη)i,j = 1} ∈ F . This
completes the proof of Theorem 2.

From Theorem 2 we can deduce that the monoids Tn are aperiodic — that is,
they contain no notrivial groups. Let Ap denote the variety of finite aperiodic
monoids, and A∗Ap the family of recognizable languages in A∗ whose syntactic
monoids are in Ap. According to a theorem of Schützenberger [10], A∗Ap is the
smallest family of languages in A∗ which contains all the languages {a}, a ∈ A,
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and which is closed under boolean operations and product. Now for each subset
B of A, B∗ ∈ A∗Ap because M(B∗) is either the two element aperiodic monoid
U1 = {0, 1} (if ∅ 6= B 6= A) or M(B) is trivial (if B = ∅ or B = A). Since A∗Ap
contains the letters and is closed under products, it follows that every language
of the form A∗

0a1A
∗
1 · · · akA

∗
k is in A∗Ap. Since A∗Ap is closed under boolean

operations, it follows from Theorem 2 that A∗W ⊂ A∗Ap. Thus W ⊂ Ap. In
particular the monoids Tn are aperiodic.

2 Connection with the Schützenberger product

In [10] Schützenberger introduced a binary product on finite monoids to study
the product operation on recognizable languages. This was generalized to an
n-fold product by Straubing [16]. Here we recall the definition of this product
and some of its basic properties.

Let M1, . . . ,Mn be finite monoids and consider the set P(M1 × · · ·Mn) of
all subsets of M1 × · · ·Mn. Multiplication in the direct product M1 × · · ·Mn

is extended to P(M1 × · · ·Mn) by the formula XY = {xy | x ∈ X, y ∈ Y }
for all X,Y ∈ P(M1 × · · ·Mn). Addition in P(M1 × · · ·Mn) is defined by
X + Y = X ∪ Y . With these operations P(M1 × · · ·Mn) is a semiring (with
{(1, . . . , 1)} as the multiplicative identity and ∅ as the additive identity) and we
can thus consider the monoid M of all n × n matrices over P(M1 × · · ·Mn).
The Schützenberger product ♦n(M1, . . . ,Mn) is the submonoid of M consisting
of all matrices P such that:

(1) Pi,j = 0 if i > j,

(2) Pi,i = {(1, . . . , 1, si, 1, . . . , 1)} for some si ∈Mi,

(3) Pi,j ⊆ {(s1, . . . , sn) ∈M1 × · · · ×Mn | sk = 1 if k < i or if k > j} if i < j,

The following property of the Schützenberger product was proved by Reutenauer
[9] in the case n = 2 and by Pin [8] in general:

If L ⊂ A∗ is recognized by ♦n(M1, . . . ,Mn) then L belongs to the boolean
closure of the family of languages of the form L0a1L1 · · · akLk where k > 0,
a1, . . . , ak ∈ A and M(Lj) ≺Mij for some sequence 1 6 i0 < i1 < · · · < ik 6 n.

If V is a variety of finite monoids we denote by ♦V the smallest variety which
contains all the Schützenberger products of the form ♦n(M1, . . . ,Mn), where
M1, . . . ,Mn ∈ V.

In Section 1 we showed that Tm × Tn is a submonoid of Tm+n. An identical
argument shows that ♦m(M1, . . . ,Mm) × ♦n(M

′
1, . . . ,M

′
n) is a submonoid of

♦m+n(M1, . . . ,Mn,M
′
1, . . . ,M

′
n). It follows that M ∈ ♦V if and only if M

divides a Schützenberger product ♦k(M1, . . . ,Mk) whereM1, . . . ,Mk all belong
to V.

As above, we denote by J the variety of J -trivial monoids. J1 denotes the
variety of idempotent and commmutative monoids, R the variety of R-trivial
monoids and Rr the variety of L-trivial monoids. Finally, DA denotes the
variety of aperiodic monoids with the property that every regular J -class is
closed under multiplication. We have the inclusions J1 ⊂ J ⊂ R ⊂ DA and
J1 ⊂ J ⊂ Rr ⊂ DA.

Theorem 3. W = ♦J1 = ♦J = ♦R = ♦Rr = ♦DA

5



Proof. In light of the inclusions cited above it suffices to prove that W ⊂ ♦J1

and that ♦DA ⊂ W. We prove the first of these inclusions by showing that Tn
is a submonoid of ♦n(U1, . . . , U1), where U1 is the two-element monoid {0, 1}.
(Since U1 ∈ J1, this implies that W ⊂ ♦J1.) Indeed, if m ∈ Tn, let mϕ be the
element of ♦n(U1, . . . , U1) defined by

(mϕ)i,j =

{

∅ if mi,j = 0

{(1, . . . , 1)} if mi,j = 1

For example, if n = 3 and m =





1 1 0
0 0 1
0 0 1



 then

mϕ =





{(1, 1, 1)} {(1, 1, 1)} ∅
∅ ∅ {(1, 1, 1)}
∅ ∅ {(1, 1, 1)}





It is now easy to verify that ϕ : Tn → ♦n(U1, . . . , U1) is an injective morphism.
To prove the inclusion ♦DA ⊂ W we make use of the following result of

Schützenberger [11]. If L ⊂ A∗ is a recognizable language such that M(L) ∈
DA, then L is a finite disjoint union of languages of the form

A∗
0a1A

∗
1 · · ·akA

∗
k

where A0, . . . , Ak ⊂ A, a1, . . . , ak ∈ A, and where the product A∗
0a1A

∗
1 · · ·akA

∗
k

is unambiguous. From this result and the property of the Schützenberger
product cited above, we conclude that every language whose syntactic monoid
is in ♦DA is in the boolean closure of the family of languages of the form
B∗

0b1B
∗
1 · · · bmB

∗
m where B0, . . . , Bm ⊂ A and b1, . . . , bm ∈ A. (We have used

neither the unambiguity of the product A∗
0a1A

∗
1 · · ·akA

∗
k or the fact that the

union is disjoint — only the fact that the product of languages distributes over
union). It follows from Theorem 2 that M(L) ∈ W. Thus ♦DA ⊂ W. This
completes the proof of Theorem 3.

Corollary 4. Let M be a finite monoid. The following conditions are equiva-
lent:

(1) M ≺ Tn for some n > 1.

(2) M ≺ ♦m(U1, . . . , U1) for some m > 1

Proof. We showed in the proof of Theorem 3 that Tn is a submonoid of
♦n(U1, . . . , U1) and thus (1) implies (2). Conversely, if M ≺ ♦m(U1, . . . , U1),
then M ∈ ♦J1 and, by Theorem 3, M ∈ W. Thus M ≺ Tn for some n > 1 and
consequently (2) implies (1).

3 Connection with power sets

If M is a finite monoid then P(M), the set of subsets of M , is a finite monoid
with respect to the operation

XY = {xy | x ∈ X, y ∈ Y } for all X,Y ∈ P(M)
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If V is a variety of finite monoids then we denote by PV the smallest variety
which contains {P(M) | M ∈ V}. Thus M ∈ PV if and only if there exist
M1, . . . ,Mk ∈ V such thatM ≺ P(M1)×· · ·×P(Mk). The operation V → PV

has been studied by several authors [4, 5, 6, 7, 9, 14]. We cite the following result,
which appeared in [14]:

Let A be a finite alphabet and let A∗PV be the family of recognizable lan-
guages whose syntactic monoids belong to PV. A∗PV is the boolean closure of
the family of languages of the form Lϕ, where L ⊂ B∗V for some finite alphabet
B, and where ϕ : B∗ → A∗ is a length-preserving morphism (that is, Bϕ ⊂ A).

Theorem 5. W = PJ = PR = PRr = PDA

Proof. As in the proof of Theorem 3, it suffices to show that W ⊂ PJ and
that PDA ⊂ W.

We begin by showing that PDA is contained in W: let A and B be finite
alphabets and let ϕ : B∗ → A∗ be a length-preserving morphism. If L ⊂ B∗ is
a recognizable language such thatM(L) ∈ DA, then, by the result of Schützen-
berger cited in Section 2, L is a union of languages of the form

B∗
0b1B

∗
1 · · · bkB

∗
k

where B0, . . . , Bk ⊂ B and b1, . . . , bk ∈ B. It follows that L is a union of
languages of the form

A∗
0a1A

∗
1 · · ·akA

∗
k (∗)

where A0, . . . , Ak ⊂ A and a1, . . . , ak ∈ A. The result cited above on the
variety PV implies that if L ⊂ A∗ is a language such that M(L) ∈ PDA, then
L belongs to the boolean closure of the family of languages of the form (∗). It
follows from Theorem 2 that M(L) ∈ W. Thus PDA ⊂ W.

To prove that W ⊂ PJ it suffices (by Theorem 2 and the fact that A∗PJ
is closed under boolean operations) to show that each language of the form
L = A∗

0a1A
∗
1 · · · akA

∗
k belongs to A∗PJ . For each i = 0, . . . , k we consider a

copy A′
i of Ai, and for each j = 1 . . . , k a copy a′j of aj such that the sets

A′
0, . . . , A

′
k, {a

′
1}, . . . , {a

′
k} are pairwise disjoint. Let B be the union of these

sets. Let ϕ : B → A be the map which sends each b ∈ A′
i to the corresponding

letter in Ai and each a′j to aj . The map ϕ extends to a length-preserving
ϕ : B∗ → A∗, and we have

L = (A′
0)

∗a′1(A
′
1)

∗ · · · a′k(A
′
k)

∗.

In light of the result on the operation V → PV cited above, it remains to show
that L′ = (A′

0)
∗a′1(A

′
1)

∗ · · · a′k(A
′
k)

∗ belongs to B∗J .
L′ is recognized by the automaton

1 2 . . . k + 1

A′
0 A′

1 A′
k+1

a′1 a′2 a′k

Since a′i /∈ A′
i−1 for i = 1, . . . , k, this automaton is deterministic (though not

complete) and reduced, and consequently M(L′), the syntactic monoid of L′, is
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the monoid of partial transformations on the states induced by the words of B∗.
Now if i is a state of the automaton and x, y, z ∈ B∗ are such that ixyz = ix = j,
then (yz) ∈ (A′

j)
∗, consequently y ∈ (A′

j)
∗, and thus ixy = ix. It follows that

in M(L′), m1m2m3 = m1 implies m1m2 = m1 and thus M(L′) is R-trivial.
The identical argument shows that the syntactic monoid of (A′

k)
∗ak · · · a1(A′

1)
∗,

which is the reversal of M(L′), is R-trivial. Thus M(L′) is L-trivial as well,
and thus J -trivial. Hence L′ ∈ B∗J . This completes the proof.

Corollary 6. M ∈ W if and only if M ≺ P(Kn) for some n > 1.

Proof. By Theorem 1, P(Kn) ∈ PJ and by Theorem 5, PJ = W. Thus
M ≺ P(Kn) implies M ∈ W.

In [11] it is proved that if V is a nontrivial variety of finite monoids, then
PV is generated by the monoids {P ′(M) | M ∈ V}, where P ′(M) denotes the
monoid of nonempty subsets of M . Thus if M ∈ PJ there exists M1, . . . ,Mr ∈
J such that M ≺ P ′(M1) × · · · × P ′(Mr). Now it is easy to see that the
map (X1, . . . , Xr) → X1 × . . . × Xr is an injective morphism embedding from
P ′(M1)× · · · × P ′(Mr) into P(M1 × · · · ×Mr). Thus M ≺ P(M1 × · · · ×Mr).
Now M1 × · · · ×Mr ∈ J, and, by Theorem 1, M1 × · · · ×Mr ≺ Kn for some
n > 1. Since M ′ ≺M ′′ implies P(M ′) ≺ P(M ′′), we obtainM ≺ P(Kn).

4 Further results and open problems

The varieties J andW = PJ play a role in the dot-depth hierarchy of Brzozowski
(see [1] and [2, Chap. 9] for the definitions). Let Vk be the variety generated
by the syntactic semigroups of languages of dot-depth less than or equal to k.
In [12] it is whown that

V1 = J ∗D

that is, the variety generated by semidirect products of the form M ∗ S, where
M ∈ J and S is a definite semigroup (see [2, Chap. 5]). More generally, it is
shown in [17] that for all k > 1 the variety Vk is of the form V′

k ∗D where V′
k

is a variety of finite monoids. Furthermore V′
2 = PJ, hence

V2 = PJ ∗D

Thus J and PJ are the first two levels in an infinite hierarchy of varieties of
finite monoids, whose union is the variety of all aperiodic monoids.

The most important open problem concerning the variety W = PJ is the
decision problem: is there an algorithm to determine whether or not a finite
monoidM , given by its multiplication table, belongs to W? (Such an algorithm
exists for the variety J, because we can write down the J -classes of M once
we possess the multiplication table). We have not found such an algorithm —
however, we do have an effective necessary condition for membership in W: if
M is a finite monoid and e ∈ M is an idempotent, then we denote by Me the
subsemigroup of M generated by the elements of M which are greater than or
equal to e in the J -ordering on M . We can then form the subsemigroup eMee,
which is a monoid whose identity element is e. Our necessary condition is:

Theorem 7. If M ∈ W, then eMee ∈ J for every idempotent e in M .
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Proof. It is easy to show that for any variety V of finite monoids, the family
{M | eMee ∈ V} is also a variety (see [8]). Thus, by the corollary to Theorem
3, it suffices to show that if M = ♦n(U1, . . . , U1) then eMee ∈ J. In [16] it
is shown that the Schützenberger product ♦n(M1, . . . ,Mn) has the following
property:

There exists a surjective morphism π : ♦n(M1, . . . ,Mn) → M1 × · · · ×Mn

such that for each idempotent f ∈ M1 × · · · ×Mn, the semigroup S = fπ−1 is
locally J -trivial — that is, eSe ∈ J for each idempotent e ∈ S.

Now let us consider an idempotent e ∈M = ♦n(U1, . . . , U1) and an element
a of Me. Then a = a1 · · ·ak where e 6J ai for i = 1, . . . , k. Since U1 × · · · ×U1

is idempotent and commmutative, (eae)π = (eπ)(a1π)(eπ) · · · (eπ)(akπ)(eπ).
In an idempotent and commmutative semigroup, s 6J t implies st = s, thus
(eπ)(aiπ) = eπ for i = 1, . . . , k, and consequently eae ∈ (eπ)π−1. Thus eMee =
e[eMe]e ⊂ e[(eπ)π−1]e ∈ J. Thus eMee ∈ J.

We do not know if the converse of Theorem 7 is true — if it were, it would
provide an effective method for testing membership in W.
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