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MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS

N. FRIKHA!

Abstract. This paper studies multi-level stochastic approximation algorithms. Our aim is to extend
the scope of the multilevel Monte Carlo method recently introduced by Giles |GilO8b] to the framework
of stochastic optimization by means of stochastic approximation algorithm. We first introduce and
study a two-level method, also referred as statistical Romberg stochastic approximation algorithm.
Then, its extension to multi-level is proposed. We prove a central limit theorem for both methods and
describe the possible optimal choices of step size sequence. Numerical results confirm the theoretical
analysis and show a significant reduction in the initial computational cost.

1991 Mathematics Subject Classification. 60F05, 62K12, 65C05, 60H35.

October 8, 2013.

1. INTRODUCTION

A basic problem in numerical probability is the computation of quantities like E,[f(X7)] for a given function
f:R? = R and where X := (X;)icjo,7] is a g-dimensional diffusion process defined on a filtered probability
space (Q,F, (Fi)t>o0,P), satistying the usual conditions, and solution to the following stochastic differential
equation (SDE)

t t
Xi=z+ / b(Xs)ds + / o(Xs)dWs, (SDEy )
0 0

where (W})¢>0 is a ¢’-dimensional (F;);>o Brownian motion and the coefficients b, o are assumed to be Lipschitz-
continuous. For instance, it appears in mathematical finance and represents the price of a European option
with maturity 7" when the dynamic of the underlying assets is given by . Under suitable assumptions
on the function f and the coefficients b, o, namely smoothness or non degeneracy, it can also be related to the
Feynman-Kac representation of the heat equation associated to the generator of X. In order to do this, the
first step consists in discretizing using the continuous Euler-Maruyama scheme (X;");co,r] with time
step A = T'/n and regular points ¢t; = iA, i =0, - ,n, namely

t t
X; =z +/ b(X3, (5))ds +/ o(X§, (5))dWs, dn(s) =sup{t;: t; < s}. (1.1)
0 0

This step introduces the so-called weak-error E,[f(Xr)] — E,[f(X7)] which has been widely investigated
in the literature. Since the seminal work of [TT90], it is known that, under smoothness assumption on the
coefficients b, o, the continuous Euler scheme produces a weak error of order A. In a hypoelliptic setting for the
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2 N. FRIKHA

coefficients b and o and for a bounded measurable function f, Bally and Talay [BT96|] obtained the expected
order using Malliavin calculus. The second step consists in approximating the expectation E,[f(X})] using
a Monte Carlo estimator M1 x Z,iw:l F((X})7) where the ((X})7);eq,my are M independent copies of the
Euler-Maruyama scheme starting at the initial value x at time 0. This step gives rise to a statistical error
E.[f(XM)]— M1 x Zjle F((X2)7). Given the order of the weak error, a natural question is to find the optimal
choice of the step size M to achieve a global error. If the weak error is of order n~“ then for a total error
of order n= (« € [1/2,1]), the minimal computation necessary for the Monte Carlo algorithm is obtained for
M = n?*, see [DGY5]. So, the computational cost of the algorithm is Cpsc = C x n?*+L, for a positive constant
C > 0.

In order to reduce the complexity of the computation, Kebaier [Keb05] introduced a two-level Monte Carlo
scheme, originally referred as statistical Romberg method, which uses two Euler schemes with time step 7'/n
and T'//n?, B € (0,1) and approximates E,[f(X7)] by

n’Yl n'YZ T

LS A + —— S A — F(X3))
j=1

nm
j Jj=1

nr2T

where X™” is a second Euler-Maruyama scheme with time step 7'/n® generated with brownian paths which are
independent of the ones used to simulate X n” and X™. If the weak error is of order n~® then to achieve a global
error of order n=%, « € [1/2,1], the optimal choice, that is the one minimizing the complexity, is obtained for
71 = 2a and 5 = 2a — B and 8 = 1/2 leading to an optimal complexity of order n29t3 which is lower than the
classical complexity Csc.

Generalizing Kebaier’s approach, Giles [GilO8b| proposed a multi-level Monte Carlo algorithm which relies
on devising Euler schemes with a geometric sequence of different time steps T/m®, ¢ = 0,---, L, m € N*\{1}

s.t. ml' = n and approximates E,[f(X7)] by
LS ) £ 30 3 (o) - s )
o pa T 2N, & T T )
where all these L+ 1 empirical mean sequences are based on independent samples. For each level £ € {1,--- | L},

and each sample j € {1,---, N}, (X%"z)j and (X}"eil)j are based on the same path but with two different time
steps. Based on an analysis of the variance, Giles |Gil08b| proposed an optimal choice for the sequence (Ng)1<o<r
which minimizes the total complexity of the algorithm. More recently, Ben Alaya and Kebaier [AK12] proposed
a different analysis to obtain the optimal choice of the parameters relying on a Lindeberg Feller central limit
theorem for the multi-level Monte Carlo algorithm. To achieve a global error of order n=%, both approaches
lead to a complexity of order n?*(logn)? which is significantly lower than the computational costs of the Monte
Carlo and the statistical Romberg methods. For further developments on multi-level Monte Carlo methods, we
refer to Giles [Gil08a], Dereich [Derll], Giles, Higham and Mao [GHMO09] among others.

In the present paper, we are interested in broadening the scope of the multi-level Monte Carlo method to the
framework of stochastic approximation algorithm. Introduced by Robbins and Monro [RM51], these recursive
simulation based algorithms appear as effective and widely used procedures to solve inverse problems. To be
more specific, their aim is to find a zero of a continuous function A : R? — R¢ which is unknown to the
experimenter but can only be estimated through experiments. Successfully and widely investigated from both a
theoretical and applied point of view since this seminal work, such procedures are now commonly used in various
contexts such as convex optimization since minimizing a function amounts to finding a zero of its gradient. In
the general Robbins-Monro procedure, the function h writes h(f) := EH(6,U) where H : R x R? — R? and U
is a R?-valued random vector. To estimate the zero of h, they proposed the algorithm

Op+1="0p — 7p+1H(9pa Up+1)a p=>0 (1~2)
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where (U?),>1 is an i.i.d. sequence of random variables with the same law as U defined on a probability space
(Q, F,P), 6 is independent of the innovation of the algorithm with E|fy|? < +o00 and v = (v,),>1 is a sequence
of non-negative deterministic and decreasing steps satisfying the assumption

Z’yp = +o0, and Z’yﬁ < +o0. (1.3)

p>1 p>1

When the function h is the gradient of a convex potential, the recursive procedure is a stochastic gradient
algorithm. Indeed, replacing H(6,,UPT!) by h(6,) in leads to the usual deterministic descent gradient
procedure. When h(f) = k(0) — ¢, 6 € R, where k is a monotone function, say increasing, which writes
k(@) =EK(0,U), K : R x R? — R being a Borel function and ¢ a given desired level, then setting H = K — ¢,
the recursive procedure (1.2 aims to compute the value @ such that k(0) = .

In many applications, notably in computational finance, we are interested in the computation of the zero 6*
of h given by h(f) := E,[H (0, X1)], where H : R? xR? — R is a Borel function and X7 is the value at time 7" of
the SDE given by . For instance, the computations of the implied volatility or the implied correlation
boils down to finding the zero of an unknown function. Computing the Value-at-Risk and the Conditional Value-
at-Risk of a financial portfolio when the dynamics of the underlying assets are given by also appears
as an inverse problem for which a stochastic approximation may be devised, see e.g. [BFP09a] and [BEP09b].
Risk minimizing a financial portfolio by means of stochastic approximation has been studied in [BFP10]. For
more applications and a complete overview in the theory of stochastic approximation, the reader may refer
to [Duf96], [KYO03| and [BMP90].

The function & is generally neither known nor computable and since the random variable X7 cannot be
simulated in general, estimating 6* by devising directly the recursive scheme (|1.2)) is not possible. Therefore,
two steps are needed to compute 6*:

- the first step consists in approximating the dynamic of (X¢).c[o,7] by its Euler-Maruyama discretization scheme
(X#)teo,r) given by that can be easily simulated. Hence, the zero 8* of h is approximated by the zero
6*" of h™ defined by h™(0) := E,[H (0, X%)], 6 € R Tt induces an implicit discretization error which writes

Ep(n,T,b,o0,H) := 6% — "™,

Let us note that 8*™ appears as a proxy of 8* and one would naturally expect that %™ — 6* as the number n
of time step in the Euler-Maruyama scheme tends to infinity.

- the second step consists in approximating 6*" involving the scheme by M € N* steps of the following
stochastic approximation scheme

0;?—}-1 = 0;7; - 7p+1H(9g7 (X%)p+1)7 pec [[OvM - 1]’ (14)

where ((X7)P)peq,amq is an ii.d. sequence of random variables with the same law as X7, 6 is independent
of the innovation of the algorithm with sup,,~; E[6]]* < 400 and v = (7,)p>1 is a sequence of non-negative
deterministic and decreasing steps satisfying (|1.3). This induces a statistical error which writes

Es(n,M,~,T,H) :=0"" — 0};.

The global error between 0*, the quantity to estimate, and its implementable approximation 6%, can be
decomposed as follows:

gglob(M,’y7H) = 9* — 0*,71 + 9*771 _ anM
:=&p(n,T,b,0,H) + Es(n, M,~,T, H).

The first step of our analysis consists in investigating the behavior of the implicit discretization error
Ep(n,T,b,o, H). Under mild assumptions on the functions h and A", namely the local uniform convergence of



4 N. FRIKHA

(h™)p>1 towards h and a mean reverting assumption of h and h™, we prove that lim, Ep(n,T,b,0, H) = 0. We
next show that under stronger assumption, namely the local uniform convergence of (Dh"),>1 towards Dh and
the non-singularity of Dh(6*), the rate of convergence of the standard weak discretization h™(0) — h(6), for a
fixed @ € R, transfers to the implicit discretization error Ep(n,T,b,o, H) = 6* — §*".

Regarding the statistical error Eg(n, M,~, T, H) := 0™ — 0%, it is well-known that under standard assump-
tions, i.e. a mean reverting assumption on A" and a growth control of the L2-norm of the noise of the algorithm,
the Robbins-Monro theorem guarantees that limp; Eg(n, M,~,T, H) = 0 for each fixed n € N*, see Theorem
below. Moreover, under mild technical conditions, a central limit theorem (CLT) holds at rate v~'/2(M),
that is, for each fixed n € N*, y~V2(M)Eg(n, M,~, T, H) converges in distribution to a normally distributed
random variable with mean zero and finite covariance matrix, see Theorem [2.4] below. The reader may also
refer to [FM12] and [FF13| for some recent developments on non-asymptotic deviation bounds for the statistical
error. In particular if we set v(p) = v /p, 70 > 0, p > 1, the weak convergence rate is VM provided that
Yo > 1/(2Re(Amin)) where A denotes the eigenvalue of Dh(6*) with the smallest real part. However, this
local condition on the Jacobian matrix of h at the equilibrium is difficult to handle in practical situation.

To circumvent such a difficulty, it is fairly well-known that the key idea is to carefully smooth the trajec-
tories of a converging stochastic approximation algorithm by averaging according to the Ruppert & Polyak
averaging principle, see e.g. |Rup91| and [PJ92|. It consists in devising the original stochastic approximation
algorithm with a slow decreasing step and to simultaneously compute the empirical mean (9_;),,21 (which
a.s. converges to 0*") of the sequence (0, ),>0 by setting
g — 0y + 67 + -+ 06, _ 1
p p+1 =l oyl

(07, —0). (1.5)

The statistical error now writes Es(n, M,~, T, H) := 0*" — §%, and under mild assumptions a CLT holds at
rate v/M without any stringent condition on 7.

Given the order of the implicit discretization error and a step sequence ~ satisfying with which the
procedure to estimate 0" is devised, a natural question is to find the optimal balance between reducing
the time step T'/n in the discretization scheme and increasing the number M of steps in to achieve
a given global error. This problem was originally investigated and solved in [DG95] for the Monte Carlo
approximation of E,[f(X7)]. Their result implies that it is optimal to have M = n?® Monte Carlo simulations
when the weak discretization error is of the order n™%, a > 0. The error between 6* and the approximation
07, writes 0%, — 0* = 07, — 0" + 0*" — 0* suggesting to select M = y~1(1/n?®), where y~! is the inverse
function of 7, when the weak discretization error is of order n~®. However, due to the non-linearity of the
stochastic approximation algorithm , the methodology developed in [DG95| does not apply in our context.
The key tool to tackle this question consists in linearizing the dynamic of (6))),e[1,a] around its target 6*",
quantifying the contribution of the non linearities in the space variable ¢ and the innovations and finally
exploiting stability arguments from stochastic approximation schemes. Optimizing with respect to the usual
choice of the step sequence, the minimal computational cost to achieve an error of order n~% which is given by
Csa = C x n x y~1(1/n2*) is reached by setting v(p) = v0/p, p > 1, provided that the constant 7o satisfies
a stringent condition involving A", leading to a complexity of order n?**!. We also obtain that the optimal
complexity is reached for free without any condition on 7y when considering the empirical mean sequence
(05 )pert.nze]-

To reduce the computational cost of estimating 6* by means of stochastic approximation algorithm, we
investigate in a second part multi-level stochastic approximation algorithms. The first one is a two-level sto-
chastic approximation scheme, also referred as the statistical Romberg stochastic approximation method, that
approximates the unique zero 0* of h by ©; = }(Z + 0%y, — ’I\L/Z, B € (0,1). The couple (03,, 7»2) is com-
puted using two Euler discretization schemes with different time steps but with the same Brownian motions
and the Brownian paths used for the computation of 9}@2 are independent of those used for the computation

«

of (074, R/Z). For an implicit discretization error of order n~%, we prove a CLT for the sequence (©2"),,>1
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through which we are able to optimally fix M7, My and 8 with respect to n and the step sequence . The
intuitive idea is that when n is large, (0))),c[0,n,] and (Qgﬁ)pe[[oyMz]] are close to the SA (0,)pef0,n,] devised

with the innovation variables ((X7)?),>1 so that the correction term writes 0}, — 67, — (GTAL/Z — On,). The
key idea is then to quantify the two main contributions in this decomposition, namely the one due to the non
linearity in the space variables (QQﬁ,Hg, Op)pefo,n,] on one hand and the one due to the non linearity in the
innovation variables ((X%ﬁ )P, (XP)P, (X1)P)p>1 in the other hand. Under mild smoothness assumption on the
function H, the weak rate of convergence is ruled by the non linearity in the innovation variables for which we
use the weak convergence of the normalized error /n/T (X} — Xr) of the Euler scheme for diffusions proved
in [JP98|. The optimal choice of the step sequence is again v, = vo/p, p > 1 and induces a complexity for
the procedure given by Csa.sg = C x n?**t1/2 C > 0 provided that v, satisfies again a condition involving h”

which is difficult to handle in practice. By considering the empirical mean sequence ©35" = 0_’1(;3 + 0_"M4 - _XZ,

where (égﬁ )pelo, 5] and (67;‘, égﬁ)pe[[o’Md are respectively the empirical means of the sequences (GQB)pe[[O’MS]]

and (0}, Gz?ﬁ )pefo,n,] devised with the same slow decreasing step sequence, this optimal complexity is reached
for free by setting Ms = n?®, My = n?*~AT without any condition on .

Moreover, we generalize this first approach to the case of the multi-level stochastic approximation method. In
the spirit of [Gil08b] for Monte Carlo path simulation, the multi-level stochastic approximation scheme estimates
6* by computing the quantity ©m! = O3, + 25:1 ﬂi — ﬂl;l based on Euler schemes with the same geometric
sequence of time steps as for the estimation of E,[f(X7)]. Here again to establish a CLT for this estimator (as
in [AK12] for the Monte Carlo path simulation), our analysis follows the lines of the methodology developed so
far. The optimal computational cost to achieve an accuracy of order 1/n is reached by setting My = v~1(1/n?),
My = v~ Y(m*log(m)/(n?log(n)(m — 1)T)), £ = 1,--- , L. Once again the step sequence v(p) = vo/p, p > 1,
is optimal among the usual choices of step sequence and it induces a complexity for the procedure given by
Csa-mrL = C x n?(log(n))? which is of the same order as the one obtained in |Gil08b] and |AK12].

The paper is organized as follows. Basic results concerning the Euler-Maruyama discretization scheme and
stochastic approximation schemes are briefly presented in the next section. We also investigate the behavior
of the implicit discretization error and derive the optimal balance between reducing the time step 7'/n and
increasing the number of steps in the stochastic approximation procedure to achieve a given global error. In
Section [3] we present and study the multi-level stochastic approximation algorithms. In Section [4 numerical
results are presented to confirm the theoretical analysis. Finally, Section [f]is devoted to technical results which
are useful throughout the paper.

2. GENERAL FRAMEWORK

In this section, we present some basic results concerning the Euler-Maruyama discretization scheme and
stochastic approximation schemes. In the present paper, we make no attempt to provide an exhaustive discussion
related to convergence results. We refer readers to [Duf96], [KY03] and [BMP90] among others for developments
and a more complete overview in the theory of stochastic approximation.

2.1. On some basic results related to the Euler-Maruyama scheme

In the current work, we assume that the coefficients of (SDE} .| satisfy the mild smoothness condition:

(HS) The coefficients b, o are uniformly Lipschitz continuous.
(HD) The coefficients b, o satisfy (HS) and are continuously differentiable.

Throughout the paper, we will use these well-known properties concerning the Euler-Maruyama scheme which
are valid under (HS), namely

C
Vp>1, 3C = C(p,T,b,0) > 0 E,[ sup |X; — X}|P]'/P < —, (2.6)
0<t<T nt/
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and

Vp>1, 3K := K(p,z,T,b,0) >0 E,[ sup |X:P]"/? +E,[ sup |X]|P]*/? < K. (2.7)
0<t<T 0<t<T

Now we turn our attention to the weak convergence rate of the Euler scheme. We follow the notation of [JP98].

For a sequence of E-valued (E being a Polish space) random variables (X,,),>1 defined on a probability space

(Q, F,P), we say that (X,,),>1 converges in law stably to X defined on an extension (€, F,P) of (Q, F,P) and
stably

write X,, = X, if for all bounded random variable U defined on (Q, F7,P) and for all h : E — R bounded
continuous, one has

EUA(X,) — EUR(X), n — +oc.
Stable convergence was introduced in [Rén63] and notably investigated in [AE78].The following results will

be useful in order to derive a CLT for multi-level stochastic approximation algorithms. We first introduce some
notations, namely

b1(Xy) o11(Xy) -+ o1 (Xy)
bo(Xi) on(X)) o oag (X
Fx) = 2(: ) 21(. ) 2.( )
by(Xi) 0q1(Xy) -+ 0gq(Xi)

and dY; = (dt AW} --- thq,)T where here as below u” denotes the transpose of the vector u. Consequently,
the SDE (SDFEp | can be written in the compact form

t
vt e [0,T], X; = ac—l—/ F(X2)dY,
0
with its continuous Euler-Maruyama scheme with time step A = T'/n

t
0

The following result is due to |[JP98], Theorem 3.2 p.276 and Theorem 5.5, p.293.
Theorem 2.1. Assume that (HD) holds. Then, the process U™ := X™ — X satisfies

n tabl
,/TUnséyU, as n — 400

the process U being defined by Uy = 0 and

d+1 q 741
dv; = YN R (UFdY? = fR(X)dzy (2.8)
j=1 k=1 =1

where f,;ij is the kth partial derivative of f¥ and

VG, g) € o + 11 x 2,0/ + 11, 29 =

s

i
/ o* (X)o7 (X,)dB
0

)

V] c Hl,q/+ 1]], le =
Viel,q +1],2" =

o O

)
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where B is a standard (¢')?-dimensional Brownian motion defined on an extension (Q, F, (Fi)i>0,P) of (Q, F, (Fi)i>0, P)
and independent of W.

The following lemma is a basic result on stable convergence that will be useful throughout the paper. Here,
E and F will denote two Polish spaces. We consider a sequence (X,,),>1 of E-valued random variable defined
on (2, F).

Lemma 2.1. Let (Y,)n>1 be a sequence of F'-valued random variable defined on (2, F) satisfying
Y, Y
where Y is defined on (0, F). If X, L X where X is defined on an extension of (Q, F) then, we have

(X, Yn) 2% (X, Y).

Let us note that this result remains valid when Y, =Y, for alln > 1

To prove a CLT for the multi-level stochastic approximation method, we will also need the following result
which is due to [AK12|, Theorem 4.

Theorem 2.2. Let m € N*\{1}. Assume that (HD) holds. Then, we have

mt
(m—-1)T

1

(sz_sz_ )sgéy U, as ¢ — +o0.

2.2. On some basic results related to stochastic approximation

The stochastic approximation provides various theorems that guarantee the a.s. and/or LP convergence of
stochastic approximation algorithms. We provide below a general result in order to derive the a.s. convergence
of such procedures. It is also known as Robbins-Monro Theorem and covers most situations (see the remark
below).

Theorem 2.3 (Robbins-Monro Theorem). Let H : R? x R? — R a Borel function and U a RY-valued random
vector with law p. Define

V0 € R, h(0) = E[H(0,U)],

and denote by 0* the (unique) solution to h(6) = 0. Suppose that h is a continuous function that satisfies the
mean-reverting assumption

Vo € R4, 0 £ 6%, (60— 06", h(0)) > 0. (2.9)
Let v = (7p)p>1 be a sequence of gain parameters satisfying (1.3). Suppose that

Vo e RY E[H®O,U)> < CO+|0—6%%) (2.10)

Let (Up)p>1 be an i.3.d. sequence of random vectors with common law p and 6y a random vector independent
of (Up)p>1 satisfying E|0p|> < +oc. Then, the recursive procedure defined by

Opt1 = 0p — ’Yp+1H(9pa Up+1)7 p=>0 (2-11)

satisfies
0, =5 0%, as p — +oo.
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Let us point out that the Robbins-Monro theorem also covers the framework of stochastic gradient algorithm.
Indeed, if the function h is the gradient of a convex potential L, namely h = VL where L € C*(R% R, ), that
satisfies: VL is Lipschitz, |[VL]> < C(1 + L) and limjg_,; o L(#) = +oc then, Argmin L is non-empty and
according to the following standard lemma 6 — 3|6 — 6*|? is a Lyapunov function so that the sequence (6y,)n>1
defined by converges a.s. to 6*.

Lemma 2.2. Let L € CY(R? R y) be a convex function, then
V0,0’ ¢ RY, (VL(O) — VL(#'),0 —0') > 0.
Moreover, if Argmin L is non-empty, then one has
V6 € R\ Argmin L,V0* € Argmin L, (VL(0),0 — 6*) > 0.

Now, we provide a result on the weak rate of convergence of stochastic approximation algorithm. In standard
situations, it is well-known that a stochastic algorithm (6,),>1 converges to its target at a rate -y, /2 We also
refer to [FM12] and [FF13| for some recent developments on non-asymptotic deviation bounds. More precisely,
the sequence (v, 1/2 (0, —0%))p>1 converges in distribution to some normal distribution with a covariance matrix
based on EH (6%, U)H (6*,U)T where U is the noise of the algorithm. The following result is due to |[Pel98] (see
also [Duf96|, p.161 Theorem 4.I11.5) and has the advantage to be local, in the sense that a CLT holds on the
set of convergence of the algorithm to an equilibrium which makes possible a straightforward application to
multi-target algorithms.

Theorem 2.4. Let 0* € {h =0}. Suppose that h is twice continuously differentiable in a neighborhood of 6*
and that Dh(0*) is a stable dx d matriz, i.e. all its eigenvalues have positive real parts. Assume that the function
H satisfies the following reqularity and growth control property

0 — BH(O,U)H(0,U)T is continuous on RY, 3b >0 s.t. 0+ E|H(0,U)|** is locally bounded on RY.

Assume that the noise of the algorithm is not degenerated, that is T'(0*) := EH(6*,U)H (0*,U)T is a positive
definite deterministic matriz.
The step sequence of the procedure is given by v, = y(p), p > 1, where v is a positive function defined
on [0, 400 decreasing to zero. We assume that 7 satisfies one of the following assumptions:
e 7 varies regularly with exponent (—p), p € [0,1), that is, for any x > 0, limy_ 4 oo Y(tx)/v(t) = x~°. In
this case, set ( = 0.
o fort > 1, v(t) = 7o/t and 7o satisfies yo > 1/(2Re(Amin)), where Apin denotes the eigenvalue of
Dh(6*) with the lowest real part. In this case, set { = ﬁ

Then, on the event {8, — 6%}, one has
v(p) "2 (6, — 67) = N (0,%7)

where $* := [ exp (—s(Dh(6*) — CI) " T(0%) exp (—s(Dh(0%) — (1)) ds.

Remark 2.1. The assumption on the step sequence (Vn)n>1 1S quite general and the above theorem is often
applied to the usual gain v, = v(p) = yop~?, with 1/2 < p < 1, which notably satisfies (L.3).

Hence we clearly see that the optimal weak rate of convergence is achieved by choosing v, = 7o/p with
2Re(Amin)yo > 1. However the main drawback with this choice is that the constraint on vy is difficult to handle
in practical implementation. Moreover it is well-known that in this case the asymptotic covariance matrix is
not optimal, see e.g. [Duf96] or [BMP90] among others.
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As mentioned in the introduction, a solution consists in devising the original stochastic approximation algo-
rithm (2.11]) with a slow decreasing step v = (7;)p>1, where 7 varies regularly with exponent (—p), p € (1/2,1)
and to simultaneously compute the empirical mean (6,),>1 of the sequence (6,),>0 by setting

= Oo+O0i+---+0 ~
0, = P L =0, 41—

Y (Op—1 —0,) . (2.12)

The following result states the weak rate of convergence for the sequence (6,),>1. In particular, it shows that
the optimal weak rate of convergence and the optimal asymptotic covariance matrix can be obtained without
any condition on 7. For a proof, the reader may refer to [Duf96|, p.169.

Theorem 2.5. Let 8* € {h =0}. Suppose that h is twice continuously differentiable in a neighborhood of 0*
and that Dh(0*) is a stable d x d matriz, i.e. all its eigenvalues have positive real parts. Assume that the function
H satisfies the following reqularity and growth control property

0 EH(O,U)H(9,U)T is continuous on RY, 3b > 0 s.t. 0 = E[H(0,U)|**° is locally bounded on RY.

Assume that the noise of the algorithm is not degenerated, that is I'(0*) := EH(6*,U)H (0*,U)T is a positive
definite deterministic matriz.

The step sequence of the procedure is given by v, = v(p), p > 1, where v varies regularly with exponent
(—p), p € (1/2,1). Then, on the event {0, — 6*}, one has

VD (0, — 07) = N (0, DR(6%)'T(6*)(DR(6*)~)T).

2.3. On the implicit discretization error

As already observed the approximation of 6* solution of h(0) = E,[H (0, X1)] = 0 is affected by two errors:
the implicit discretization error and the statistical error. A first interesting problem concerns the convergence
of 8™ toward 0* as n — 400 or equivalently the behavior of the discretization error as the number of time step
n of the continuous Euler scheme goes to infinity.

Theorem 2.6. For all n € N*, assume that h and h'™ satisfy the mean reverting assumption (2.9) of Theorem
. Moreover, suppose that (h™),>1 converges locally uniformly towards h. Then, one has

0" = 0* as n — +oo.

Proof. Let € > 0. The mean-reverting assumption (2.9) and the continuity of u — (u,h(0* + eu)) on the
(compact) set Sq := {u € RY, |u| =1} yields

:= inf (u, h(6* 0.
n:= Inf (u, h(0" + ew)) >

The local uniform convergence of A™ implies
dn, € N*, Vn>mn,, 0¢€ B(0*,¢) = [h"(0)— h(0)] <n/2.
Then, using the following decomposition
(0 —0",h"(0)) =(0—0",h(8))+ (0 —6*,h" () — h(9))
one has for § = 0* £ eu, u € Sy,

e{u, K" (0 + eu)) > (eu, h(0* + eu)) —en/2 > en — en/2 = en/2
—e(u, h" (0" —eu)) > (—eu, h(0* — eu)) —en/2 > en —en/2 = en/2
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so that, (u, h"(6* + eu)) > 0 and (u, h"(6* — eu)) < 0 which combined with the intermediate value theorem
applied to the continuous function x — (u, h(0* + 2u)) on the interval [—e, €] yields:

(u, A" (0" 4+ Zu)) =0

for some Z = Z(u) €] — €, €[. Now we set u = 6* — 6" /|0* — 0*™]| as soon as it is possible (otherwise the proof
is complete). Hence, there exists x* €] — ¢, €] such that

9 — g 9 — g
(=g (7 =)
which clearly implies

x* x*
0*)77/ - 1 9*_0*71'7, _0*7” hn 9*)77/ - 1 9*_0*7” —
(ot (g r1) @ oo (00 (g +1) @ -0 ) <o

so that by the very definition of 6*", we have z* = £|8* — #*"| and finally |#* — 0*"| < € for n > n,. This
completes the proof. O

Now, we derive a convergence rate.

Theorem 2.7. Suppose the assumptions of theorem hold and that h and h™, n > 1, are continuously
differentiable and that Dh(0*) is non-singular. Assume that (Dh™),>1 converges locally uniformly to Dh. If
there exists o € [0, 1] such that

Vo € RY,  lim n*(h"(0) — h(h)) = E(h,,b),

n—-+4oo

then, one has

lim n®(0*™ —6*) = —Dh~ 1 (0*)E(h, o, 0%).

n—-+4oo

Proof. A Taylor expansion yields for all n > 1
1
R™(0%) = h™(0") + (/ Dh™"(A0*"™ + (1 — A)O*)d)\) 0" —07m).
0

Combining the local uniform convergence of (Dh™),>1 to Dh, the convergence of (*™),>1 to 6* and the

non-singularity of Dh(6*), ones clearly gets that for n large enough fol Dh™(A0*™ + (1 — X)8*)d is non singular
and that
-1

1
(/ DR™(\0*" + (1 — A)@*)dA) — Dh7Y(0%), n — +o0.
0

Consequently, recalling that h(6*) = 0 and A™(6*™) = 0, it is plain to see

-1

1
n® (0" — %) = — </O DR (A" + (1 — A)G*)dk) n®(h™(0%) — h(0%)) — —Dh™L(07)E(h, a, 0%).
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2.4. On the optimal tradeoff between the implicit discretization and the statistical errors

Given the order of the implicit discretization error, a natural question is to find the optimal balance between
the number of time steps n in the discretization of the process (X;)o<i<7 and the number M of steps in
for the computation of 8* to achieve a given global error e. We suppose that h™ and H satisfy the following
assumptions:

(HR) There exists a € (0, 1],
E|H(0,X7) — H(0', X3)|?

sup < +00.
neN~*,(6,6")e(R4)2 |0 — ¢[2

(HI) There exists b > 0 such that for all R > 0, we have supyg.jg|<g, nen-} E[H (6, X7)|2+ < +o0. The sequence
(0 — EH (0, X2)H (0, X2)T),,>1 converges locally uniformly towards 6 — EH (0, X7)H (0, X7)T. The function
0— EH(0,X7)H (0, X7)T is continuous and EH (6%, X7)H (0*, X7)T is a positive deterministic matrix.

(HMR) There exists A > 0 such that Vn > 1

VO e RY, (8 — 6% h™(0)) > A6 — 6%

We will denote A, the lowest real part of the eigenvalues of Dh(6*). We will assume that the step sequence
is given by v, = vy(p), p > 1, where ~ is a positive function defined on [0, +o0[ decreasing to zero and satisfying
one of the following assumptions:

(HS1) ~ varies regularly with exponent (—p), p € [0,1), that is, for any = > 0, lim;_, 4o y(tz)/v(t) = 2~.
(HS2) for t > 1, v(t) = vo/t and v satisfies 2X\y > 1.

Remark 2.2. Assumption (HR) is trivially satisfied when 0 — H(0,x) is Hélder-continuous with modulus
having polynomial growth in x. However, it is also satisfied when H is less regular. For instance, it holds for
H(0,2) = 11,59y under the additional assumption that X7 has a bounded density (uniformly in n).

Remark 2.3. Assumption (HMR) already appears in [Duf96] and [BMP90], see also [FM12] and [FF15] in
another context. It allows to control the L?-norm E|9£ — 0*™|? with respect to the step vy(p) uniformly in n, see
Lemma in Section @ As discussed in [KY03)], Chapter 10, Section 5, if one considers the projected version
of the algorithm on a bounded convex set H (for instance an hyperrectangle 11%_ [a;, b;]) containing 0™,
Vn > 1, as very often happens from a practical point of view, this assumption can be localized on H, that is it
holds on H instead of R%. In this case, a sufficient condition is infge g nens Amin((DR™(0) + DR™(6)T)/2) > 0,
where Apin(A) denotes the lowest eigenvalue of the matriz A.

We also want to point out that if it is satisfied then one has A, > A. Indeed, writing h"™(6) = fol Dh™(t0 +
(1 —¢)0*™)(0 — 0*™)dt, for all € R, we clearly have

1 n _ *,1 n _ ERAVA
0

2

> A‘e _ pEn

Using the local uniform convergence of (Dh™),>1 and the convergence of (0*™),>1 toward 6*, by passing to the
limit n — 400 in the above inequality, we obtain

Dh(t0 + (1 — t)0*) + Dh(t0 + (1 — t)0*)T
2

1
Vo € K, / 00, (0 — 0))dt > A9 — 02
0

where K is a compact set such that 0* + u,, € K, u,, being the eigenvector associated to the eigenvalue of
Dh(0*) with the lowest real part. Hence, selecting 0 = 0* + cu,, in the previous inequality and passing to the
limit e — 0, we get Ay, > A.
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Theorem 2.8. Suppose that the assumptions of Theorem[2.7 are satisfied and that h satisfies the assumptions

of Theorem [2.], Assume that (HR), (HI) and (HMR) hold and that h" is twice continuously differentiable
with Dh™ Lipschitz continuous uniformly in n. If (HS1) or (HS2) is satisfied then one has

e (0’7;_1(1/712“) B 0*> = 7Dh71(9*)5(h70‘7 0*) + N (0,57),

where

= /Oo exp (—s(Dh(6") = (1a))" Ea[H(6", Xr)H (6", X7)"] exp (=s(Dh(6") — (1a)) ds
with ( =0 if (HSf) holds and ¢ = 1/2vo if (HS2) holds.
Lemma 2.3. Let § > 0. Under the assumptions of Theorem (2.8, one has

n® (9;’:(1/”%) - 9*’"6) = N(0,X%), n — +oc.

Proof. With the notations of Section we define for all p > 1, AM;& = B ( I’}il) — H(" (X;Ea)p) =

p—1
E[H( gil, (X%S V)| Fp—1]—H( 1’;{1, (XT"Wo )P). Recalling that ((X%[; )P)p>1 is a sequence of i.i.d. random variables
we have that (AMga)pzl is a sequence of martingale increments w.r.t. the natural filtration F := (F, :=

5 5
0<90’ (X% )17 T (X% )p);p > 1)'
Using Taylor’s formula, we get for p > 0
n‘s * n‘s na * 7'74(S 7746 * ’ﬂ& n(s * 7’7,5 ’ﬂ(s n‘s
9p+1 00" = 0[) -0 — ’YP+1Dh (9 ’ )(ep — 0% ) +7p+1AMp+1 - 7P+1Cp
. 5 5 8 8 5 5 % 5 5 % 8 2 . [ . . . .

with ¢ == h"™ (0, ) — Dh™ (07 )(0; —0*"") = O(|0; —6*" |?) since Dh™ is Lipschitz-continuous uniformly
in n. Hence, by a simple induction, we obtain

0r =0 = T8 = 07" )+ > Wllsrn AME + S Wl (G4 + (DR(O) = DA™ (07 ))(0, — %))
k=1 k=1
(2.13)

where I, ,, := H?:k (Ig — v;Dh(6%)), with the convention that IT, 41, = I5. We now investigate the asymptotic
behavior of each term in the above decomposition.

Step 1: study of the sequence {nanl’,\/—l(l/n}a)(ogé — 0*’”6),71 > 0}
Under our general assumptions on the step sequence, one has for all € (0, A,)

/)
5
nYE|IL y-1(1/n20) 29 | < O(Sl;}iEwg‘ +n%exp | —(Am — 1) g Vi
nz k=1

Selecting 1 such that 2(A,, — 7)v > 2(A — n)v > 1 under (HS2) and any n € (0, A,,,) under (HS1), we

derive the convergence to zero of the right hand side of the last but one inequality.
-1 2a
Step 2: study of the sequence { n® 2221(1/" ) VeIl g 1,91 (1 /n2e) (C,?il + (Dh(6*) — DA™ (0*’"6))(%{1 - 9*’"6)> ,m > O}

We focus on the last term of (2.13). Using Lemma [5.2] we get

= s * n6 *’I’L(s ’I'L(s *'l'l(s
B[S wlliprn(GEy + (DA(O7) — DI (67" )) (6", — 6°7"))
k=1

g 3/2 * n® px,nl
<O Msrwll(0F + 72 2 IDR(0*) — DR (077)),
k=1
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so that by Lemma (see also remark , the local uniform convergence of (Dh™),>1 and the continuity of
Dh at 60*, we derive

v /n?)

lim sup n*IE E Viellg 1,51 (1/n20) (Ciog + (DR(O) — DR™ (6% ) (05—, — 0™ ))| = 0.
" k=1

2a
Step 3: study of the sequence { ZV S(1/n*%)

We use the following decomposition

5
’)/knk_i_l’,y—l(l/nQa)AM’? , > 0}

n nd n nd 1 and n8  ps.n® o nd wn’ no
kank-‘rl,nAMk = Z’yknk+1,n(h (ak ) —h (9 ’ ) — (H( Lk 7(XT )k+1) — H(0 ) 7(XT )kJrl)))
k=1 _

n
5 5 5 5
+ Z'}/knk—&-l,n(hn (0*’71 ) - H(e*,n 7(X% )k+1))
k=1
=R, + M,

Now, by (HR), we have

n

n
5 5
E|R,|> <Y 2iler1nl PEIGE — 6772 < 42| s )
k=1 k=1

where we used Lemma and Jensen’s inequality for the last inequality. Moreover, according to Lemma
we have
yTH(/n2)
lim sup n*® Z Vet g1 -1 (1 m2ey [|* =
" k=1

S0 that, 1 S el (B 0F) = 7" (07") = (O}, (X3 V) — (o, (x3)1)) 5 o,

To conclude we prove that the sequence {Wl%(n)Mn, n> 0}, satisfies a CLT. In order to do this we apply
standard results on CLT for martingale arrays. More precisely, we will apply Theorem 3.2 and Corollary 3.1,
p.58 in [HH&0]. By (HI), it holds for some R > 0 such that Vn > 1, %™ € B(0, R)

2+b n

5 n‘s >v<n‘s >|<n‘S n‘s n — b
Z]E‘V > () ekt (R™ (0°") = H(O™" , (X7 )’““))\ SC(Q . E[H (0, X3) )y 72 (n) 2 P g |
(0<R,neN* k=1

By Lemma we have limsup,, v~ **%/2(n) Y1 Y20 Mg y1,0]2*" < limsup, v*/2(n) = 0, so that the
conditional Lindeberg condition, see [HH80], Corollary 3.1 is satisfied. Now we focus on the conditional variance.
We set

S

S pxnd *,n’ n® n® (pe,n’ *,n’ nd
S 1= S )Z Vi1 n B [(R™(05™) = H(O™™ (X7 )M ) (R (07™) — H(O™™ (X7 )" )T
k=1
Li 211 T, ar
'Y( ) — Yidle+1,n k+1,n
with

T, = EHO , X2V HO , X2 )T and T = E[H(O, X)) (HO, Xr)7).



14 N. FRIKHA

By the local uniform convergence of (¢ — EH (6, X%é)(H(G, X%é NT)n>0, the continuity of 0 — EH (0, Xr)(H (0, X7))T
at 0 and since 07" — 0*, we have
r, —r-
so that from Lemma [5.1] it follows that

. 1 n . ' §
lim sup ) > Algr (D — DOIE || < limsup [T, — T = 0.

Hence we see that lim,, S, = lim, ﬁ Sy *y,%HkH,nF*HgHm if this latter limit exists. Let X* be the
(unique) matrix solution to the Lyapunov equation:

I* — (Dh(0*) — CI5)A — A(Dh(6*) — CI;)T = 0.

We aim at proving that S, == ¥*. In order to do this, we define

n+1

1 *
j JDRel21 RIS a1 AT
k=1

Apii= ———
1 Y(n+1) &

which can be written in the following recursive form

Apt1 = Yo I + ’y% (Ig — Y1 DR(0%) A (Ia — Yn+1DR(6%))"

n+1
= Ap + (T — Dh(0%) Ay, — AnDh(H*)T) + (Y1 — )T + 'Yn%b-i-th(e*)AnDh(a*)T
+ Tn — Tn+1 An
Yn+1

% = 2C7n+0(7n> and Tn+1—Vn =

O(42). Consequently, introducing Z,, = A,, — ¥*, simple computations from the previous equality yield

Under the assumptions made on the step sequence (7, )n>1, we have

Zni1 = Zn — v ((DWO*) = (1a) Zy + Zn(DR(07) — (10)") + Y yns1DR(0%) Z, DR(6%)

+ (W - 2C7n1d> Zn + %%+1Dh(9*)2*Dh(9*)T + (rYn-‘rl - ’VH)F* + (W - QC’YnId) xr
n+ n+

Let us note that by the very definition of { and assumptions (HS1), (HS2), the matrix Dh(6*) — (I; is stable,
so that taking the norm in the previous equality, there exists A > 0 such that

[Zniall < (1 = Ay + 0(m)) 1 Znll + 0(7n)

for n > ng, ng large enough. By a simple induction, it holds for n > N > nyg

1Znll < ClIZn | exp(=Asnn) + Cexp(—=Asnn) > exp(Asn i) lex]
k=N

where e, = o(1) and we set Sy, := Y. ,_ k- From the assumption (L.3), it follows that for N > ng

limsup || Z,|| < C sup |lex]|
n k>N
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and passing to the limit as N goes to infinity it clearly yields limsup,, ||Z,|| = 0. Hence, S,, <% ©* and the
proof is complete.
[l

Proof of Theorem [2.8 We decompose the error as follows:
O mrey =07 = O yprey — 07" 07" =07
and analyze each term of the above sum. By Lemma [2.3] we have
n® (szl(l/nza) — 9*,77.) — N(O, E*)

where % := [¥ exp (—s(Dh(0%) — CI)) Bo[H (6%, Xr)H (0%, X1)T| exp (—s(Dh(8%) — (1)) ds. Moreover, us-
ing Theorem we obtain
n®(0*" — 0*) — —Dh~ Y (6*)E(h, a, 0%).

This completes the proof.
d

The result of Theorem could be construed as follows. For a total error of order 1/n®, it is necessary to
achieve at least M = v~1(1/n?®) steps of the stochastic approximation scheme defined by (1.4)). Hence, in this
case the complexity (or computational cost) of the algorithm is given by

Csa(y) = C xnx~y H(1/n*), (2.14)

where C'is some positive constant. We now investigate the impact of the step sequence (v, )n>1 on the complexity
by considering the two following basic step sequences:

e if we choose v(p) = vo/p with 2Ayp > 1, then Cs4 = C x n?>+L,
e if we choose Y(p) = 70/p", 3 < p <1 then Cgq = C x n?*/PH1,

Hence we clearly see that the minimal complexity is achieved by choosing v, = vo/p with 2Ayy > 1. In
this latter case, we see that the computational cost is similar to the one achieved by the classical Monte Carlo
algorithm for the computation of E,[f(X7)]. However the main drawback with this choice of step sequence
comes from the constraint on vg. Next result shows that the optimal complexity can be reached for free through
the smoothing of the procedure (|1.4) according to the Ruppert & Polyak averaging principle.

Theorem 2.9. Suppose that the assumptions of Theorem[2.7 are satisfied and that h satisfies the assumptions
of Theorem[2.4. Assume that (HR), (HI) and (HMR) hold and that h™ is twice continuously differentiable
with Dh™ Lipschitz continuous uniformly in n. Define the empirical mean sequence (Gg)pzl of the sequence
(05 )p>1 by setting

gn:90+0?+---+9;}: 1

p P Op1 = o7 G = 67).

where the step sequence v = (Vp)p>1 satisfies (HS1) with p € (1/2,1). Then, one has
n® (0)2a —0%) = —Dh ' (0")E(h, o, %) + N (0, DR(0*) "B, [H(0*, X7)H (0%, X7)"](DR(6*)~ ")),
Lemma 2.4. Let § > 0. Under the assumptions of Theorem[2.9, one has

ne (égia - 9") — N (0, Dh(0") " EL[H (0", X7)H(0", X7)"|(Dh(6") 1)), n — +oc.
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Proof. We freely use the notations and the intermediate results of the proof of Lemma Using (2.13) in its
recursive form, for any p > 0 and for n large enough, it holds

n® %,n° 1 n® (pr,nd\\— n® n® n® (px,n® n nd px,nd\\—1 n’
bp —07" = (DR™ (0" )71 (051 = 05) = (DA™ (0% ) T AMy, — (D™ (6%7") ¢y
p

Hence, using an Abel’s transform we derive

n s s n2e
1 5 5 (Dhn (9*’" )>_1 1
xn® _ n *n’ n®
n2“ 9 - n2a + 1 Z ek: - 9 - nQQ 4 1 kz_o k+1 9 )
(Dhn (9*n Dhné(a* né))fl n2e
; 5
o n2a +1 Z AMk'i'l n2a +1 ; Ck
S n #,n® s s S rpxmd\y—1 n>®
e o il Tl W (U il ( T ) o — g
n2® +1 Vn2a 41 o] n2* +1 o \Vk o k41 b
- n2a+1 ZA k+1 n2a+1 ZC
We now study each term of the above decomposition.
8
e 0"2(1 L _g*n 971579*’”6
Step 1: study of the sequence {n2a+1 ’Y:20‘+1 — % - ,n>0
For the first term, by Lemma [5.2] Proposition [5.1] and (HS1) it follows
5 ) §
n® Oy — 07 oy — 6% 1 1
E 5 n2a 41 Y% <C 77 2(¥+1E\0n2a+1 — 0"+ —(supEWO\ +1)
n=* +1 Yn2e41 71
n ’Y 2cx+1
1 1
< C T + = — 0,
nYpaiy
since ny, — 0, n — 4o00.
. n® n?e 1 1 n® *,n®
Step 2: study of the sequence {nT—i-l D ket (77 — %H) Gy —0"),n> O}
Similarly for the second term, we have
n® o 1 1 5 / 1 / s 5
E|—— —— op — o) <0 12( —) PR — g
n?e +1 ,; (% ’7k+1) (6 ZV Ve+1 Tk T 9 |

2a

1 1 1
<C— 7;/2< —)—)O, n — +oo0.

ne Yet+1 Yk

where we used Lemma [5.2] for the last inequality
Step 3: study of the sequence { 2Q+1 Zk oA kH,n > O}
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As in the proof of Lemma we decompose this sequence as follows

n = n® n = n® on? n® px.n® n nO\k+1 *,n® nO\k+1
T DL AM = o D (O = (0T — (H(OF (X)) — H(0T, (X))
k=0 k=1
2a
n® < nd nsmd wmd n?
o O — HE (X))

k=1
=R, + M,

For the sequence (R, ),>1 we use (HR) to write
C n2a C n?(x
s s * n5 n5 a
BIRA 2 < oo STEIHEE O ) — HOV X )P = S a0,
k=0 k=1

owing to Cesaro’s Lemma. We now prove a CLT for the sequence (M, ),>1 by applying Theorem 3.2 and
Corollary 3.1, p.58 in [HH80|. Since 6*n° — 6% it holds for some R > 0

2

Y E

k=0

na

2+b C
7L20‘ —+ 1 «a

<—( sup E|H (6, X2)|?) = 0, n— +o0,
=" 9:10|<R, neN*

(A" (6°7°) — H(0™"", (X4 )F+1))

so that the conditional Lindeberg condition is satisfisfied, see |[HH80] Corollary 3.1. Now, we focus on the
conditional variance. For convenience, we set

2

nQ(X \ n® px.n® #,n’ n®\k+1 n® px.n® #,n’ n®\k+1\\T
n = o L 12 k - y (AT - » A
S = G gy 2 B0 = HEO (X))@ (0 — H o, (X))
k=1
nQOt - *,nl n’ *,n’ n’
= G Ty 2 BUH O X e X )T
k=1
7’L4a «n’ n’ .0 nONT
= (TL2°‘ 4 I)QE[H(e ’ 7XT )(H(9 ’ aXT )) ]7

so that we clearly have S,, — E[H (0*, X7)(H (0%, X7))T] by the local uniform convergence of (6 — E[H (6, X2)(H (0, X*))T])n>1,
the continuity of @ — E[H (0, X7)(H (0, X7))*] at #* and the convergence of (0*7”5)721 towards 6*. Therefore,
since (Dh”é(Q*’"é))’1 — (Dh(0*))~, we conclude that

2a

e Y AN = N0, DR(O) L H(O", Xe) (0%, Xr)J(Dh(0") 7)),
k=0

[e3%

(DR (67")) ™!

o 2a
Step 4: study of the sequence § i Yoo C£67n > 0}

Now, observe that by Lemma the last term is bounded in L'-norm by

2a

n o 5 C <

since v varies regularly with exponent —p, p € (1/2,1). O
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Proof of Theorem[2.9 Similarly to the proof of Theorem we decompose the error as follows:
0o — O0F = 00 — 0" + 0" — 0%,
Applying successively Theorem and Lemma we obtain
n® (Onoe — 0°) = —Dh™H(0")E(h, a, 0%) + N (0,5%).

O

The result of Theorem shows that for a total error of order 1/n®, it is necessary to achieve at least
M = n?* steps of the stochastic approximation scheme defined by (1.4) with step sequence satisfying (HS1)
and to simultaneously compute its empirical mean, which represents a negligible part of the total cost. As a
consequence, we see that in this case the complexity of the algorithm is given by

CSA-RP('Y) =Cx n2a+1.

Therefore, the optimal complexity is reached for free without any condition on vy thanks to the Ruppert &
Polyak averaging principle.

3. MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS

3.1. The statistical Romberg stochastic approximation method

In this section we present a two-level stochastic approximation scheme that will be also referred as the statisti-
cal Romberg stochastic approximation method which allows to minimize the complexity of the stochastic approx-
imation algorithm (6} ),c[0,4~1(1/n2)] for the numerical computation of 6* solution to h(f) = E.[H (8, X7)] = 0.
It is clearly apparent that

g*n — 9*,715 49— ‘9*,7157 Be(0,1).

The statistical Romberg stochastic approximation scheme independently estimates each of the solutions
appearing on the right-hand side in a way that minimizes the computational complexity. Let H"Mﬁl be an
estimator of §*"” using M samples and 0, — OJ’}/Z be an estimator of *m — §*n” using My paths. Using the
above decomposition, we estimate 6* by the quantity

B B
sr __ on n n
O; =0, + 08, — O,

It is important to point out here that the couple (07, }@Z) is computed using two Euler approximation

schemes with different time steps but with the same Brownian path. Moreover, the quantity 9}\’;1 comes from
Brownian paths which are independent to those used for the computation of (67, , }L/Z).

We also establish a central limit theorem for the statistical Romberg based empirical sequence according to
the Ruppert & Polyak averaging principle. It consists in estimating 6* by

5 =03y, + 0%, — O,
where (égﬁ )pefo,M5] and (ég, égﬁ)peﬂoj ] are respectively the empirical means of the sequences (Ggﬁ)peﬂ(), Ma]
and (9;,0;6)1)6[[0, m,] devised with the same slow decreasing step, that is a step sequence (y(p))p>1 where y
varies regularly with exponent (—p), p € (1/2,1).
To establish the rate of convergence of the two-level stochastic approximation scheme, we require smoothness
assumptions on H:

(HDH) For all § € R?, P(X7 ¢ D) = 0 with Dy g := {z € RY : x> H(0,z) is differentiable at z}.
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(HLH) For all (,0',2) € (RY)? x RY, |H(0,2) — H(#',x)| < C(1+ |2|")|§ — ¢'|, for some C,7 > 0.

Theorem 3.1. Suppose that h and h™ satisfy the assumptions of Theorem with « € (1/2V B,1] and that
h satisfies the assumptions of Theorem[2.]} Assume that (HD), (HMR), (HDH) and (HLH) hold and that
h™ are twice continuously differentiable in a neighborhood of 6%, with Dh™ Lipschitz-continuous uniformly in n
satisfying:

v € R, n/?||Dh™(0) — Dh(0)|| — 0, asn — +oo.
Suppose that B(D,H(0*, X7)Up) (D, H(0*, X7)Ur)T is a positive definite matriz. Assume that the step

sequence is given by v, = v(p), p > 1, where v is a positive function defined on [0,+oo[ decreasing to zero,
satisfying one of the following assumptions:

e 7 varies regularly with exponent (—p), p € (1/2,1), that is, for any x > 0, lim— 4 oo y(tx)/7(t) = z~°.
o fort>1, v(t) = v/t and yo satisfies Ayo > 1.

Then, for My = v~1(1/n?*) and My = v~1(1/(n?*=AT)), one has
n* (O — 0*) = Dh~ 1 (0*)E(h, o, 0%) + N(0,5%), n — +oo
with

o0 * T ~ *
ok ::/0 (e—swh(@ >—<Id>) (B, [H (0%, X7)H (0", X7)T|+E (D, H(0*, X7)Ur) (Do H(6*, X7)Up) T )e=2(PhO")=¢la) g

and Uy is the value at time T of the process [2.8) defined on (Q, F, (ﬁt)tzo,l[b).

Lemma 3.1. Let (8,)p>0 be the procedure defined for p > 0 by
Ops1 = 0y — Yps1 H(Op, (X)), 6y =67, (3.15)

where ((X7)P, (X1)P)p>1 is an i.i.d sequence of random variables with the same law as (X7, Xr) and (yp)p>1
is the step sequence of the procedure (Hgﬂ )p>0 and (0))),>0. Under the assumptions of Theorem one has

[e% nﬁ * nl3 * *
n (97*1(1/(712&*3T)) — av—l(l/(nm—ﬁT)) — (0" -0 )) = N(0,0%), n— +oo,

with ©* := [ exp (—s(Dh(0%) — (14))" E (D, H (6%, X1)Ur) (D H(0%, X7)Ur)" exp (—s(Dh(07) — (14)) ds, and

* * P
n< <9:*1(1/(n2“*5T)) — 9771(1/(”‘2(}4—57‘)) — (9 m—0 )) — 0, n— +o0.

Proof. We will just prove the first assertion of the Lemma. The second one will readily follow. When the exact
value of a constant is not important we may repeat the same symbol for constants that may change from one
line to next. We come back to the decomposition used in the proof of Lemma [2:3] We consequently use the
same notations. Let us note that the procedure (8,)p>0 a.s. converges to 6* and satisfies a CLT according to
Theorem 2.4

A Taylor’s expansion yields for p > 0

b1 — 07" =0, — 07" — 3 DR (00" )(0, — 00" )+ AMp Ly — Ypa(p

Opr1 — 0" =0, — 0" — 1 DR(07)(0p — 07) + Vpr1 AMpi1 — Vp41Gp,
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with AM,+; = h(8,) — H(0,, (X7)P™1), p > 0. Therefore, defining 22" = 62" — 6, — (6" — %), p > 0, with

B B . . .
zy =6*—0%" by asimple induction argument one has

n n
B B B B
=Mzl + > wlhinANY + Y %llip1n ARy
k=1 k=1

+ 3 W1 (Gr = Ger + (DR(O") = DR (0" ) (037, — 077")) (3.16)
k=1

where IIj, ,, 1= H?:k (Ig — v;Dh(6%)), with the convention that Il, 41 , = Ig, and AN,?ﬁ — pn’ (0%) — h(6*) —
(H(0", (Xg" )1 — HO", (X)P ), AR = h77 (6p") — 1" (07) — (H (6" (XF7)MT) — H(6", (X3 ) +
H(Oy, (X7)*Y) — H(O*, (X)) — (h(0;) — h(6%)) for k > 1.

Step 1: study of the sequence naH17¢1(1/(n2a7ﬁT))zgﬁ7n > 0}

Under the assumptions on the step sequence ~, one has for all n € (0, \;;,)

11/ (22T
|y 1 (1 n2e—sr 26 | < 0Ty 11y za-sry 1077 =607 < O =% exp(—(Am—n) > k) = 0,
k=1

by selecting 7 s.t. (A —1)70 > (A —n)70 > 1if v(p) =0/p, p > 1.
Step 2: study of the sequence

—1 n2cxfﬁ n * n *, M n *,M
{ne SIS g ey (Gt = Gt + (DR(E7) = DR (07" )) (037, — 6°"")) ;> 0}
By Lemma [5.2] one has

- * nﬁ *nB
< O Mg nll(F + 7 2 I1DRO*) = DR (0%)])),
k=1

- nP * n? /px.nf n? *,nP
> Wk 1.0(Gioy + (DR(6%) — DR™ (6°") (6, — 0°™))
k=1

E

so that by Lemma we easily derive that (if y(p) = 70/p recall that Ayo > 1) ZZ:1 71%||Hk+1,n|| — O(v(n))
and o) 72/2||Hk+1,n|\ = O(y'/2(n)) so that

N1/ (P T)

lim sup n® Z '7]%||Hk+1,fy*1(1/(n2a—/3T))|| =0.
n k=1

Moreover, since D is a Lipschitz function uniformly in n we clearly have

§ 3/2 * n? [ px,nP - 3/2 * n? px *nP *
> 3P w1 DR — DR (07") ] < 37 4 M1 ||| DAO7) — DR (07)]] + 10" — 67))
k=1 k=1

which combined with n/2||Dh(6*) — D’ (0*)]] = 0 and nf/2|grn” — 0*| — 0 (recall that @ > 1/2) imply that
. -1 n2e—8 % B px.nb
timsup, n® 37, R Mg sy [[DRO7) = DR (0] = 0.

Using the notations of Proposition [5.1| and the inequality |0x — 0*|? < |ur|? + 2|0k — 0*||71|, we get

n n
<O WMk nllve s e -1+ C D Mg alllOk — 070y k-
k=1 k=1

n
> k1 Cr

k=1
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Now since o > 3, we clearly derive

N1/ (n**PT)

limsup n® Z Vel 1 71 (1) n2e-57) 176 L1 Bk 2
" k=1
020 T))
< (igﬁ;ﬁlﬂfmw)ﬁmsnp n® > Vel i1 -1 (1 (n2a-s7y)ll = 0.
= " k=1

For the second term, we first write

n n
> a0k — 07170 rk-a] < Xl(igli 106 = 0" D i P ITks1m
k=1 = k=1

|Yi—1,

with Xy < +o00, sup>; EYy < +00. Now observe that from Lemma it follows lim sup,, v~°(n) Y p_, 711%“1_[’““’"” <
1 under our assumptions on the step sequence (if v(p) = o /p it is valid for any b € (0,1) since A,y > 1 and
we select b such that (2a — )b > « otherwise b = 1). Therefore, we clearly have

A/ (2 70T)
lim sup n”‘(igElYk_uD Z 7}1+b”Hk—i-l,'y—l(l/(n%—BT))H =0,
" Z k=1

which in turn implies

7N/ 2 )
@

P
n Z Vil 1,4-1(1/(n2e-57))Ck—1 —> 0.
k=1
Hence, we finally conclude that
Y1/ (R 7PTY)) 5 5 5 5 5 P
Rt Y e ory (G = Geot + (DR(ET) = DR (@), —07")) S 0.
k=1

Step 3: study of the sequence {no‘ Zz:l(l/("MiBT)) 'Ykl_.[k+17,y—1(1/(n2a—BT))ARZﬁ,n > 0}

Regarding the third term of (3.16]), namely > ;'_, fkakH,nARZﬁ, we decompose it as follows
- n? - n?  gn? n? /px n? n? k+1 * n? k+1
Z’)’knk+1,nARk = Z%Hkrﬂ,n(h (0 ) —h" (07) — (H(O , (X7 )") — H(O", (X7 )")))
k=1 k=1
+ > k1 (H (0, (X)) — H(O", (X7)*H) = (h(6)) — h(67)))
k=1

:An+Bn

Now, by (HLH) it follows that

- n? s,nP *,nP *
E|Au* < C Y i Mesrnl®BIGE — 6772 + 167" —67%)

k=1
n n s
<CO AT nl® + Y AT 2677 = 67)
=1 k=1

k
= A}L—i—Ai
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Similar computations to those of Lemma show that there are two cases to distinguish:

- If ~ varies regularly with exponent (—p), p € [0,1), then >_}_; 72| k+1.,]* = O(v*(n)).
- if v(p) = v0/p then a comparison between series and integrals show that:

- if Ao < 1 then Y7 73| kt1,0 )% = O(n=2Am0)

- if Amyo = 1 then Y7 73 [ Tet1,.? = O(log(n)n™2),

- > Yl eg1,0* = O(n™2) otherwise.

Consequently, under our assumptions on the step sequence (if v(p) = ~o/p recall that A\pyo > 1) we
s

have limsup,, NQQA}Y—l(l/(nza—ﬂT)) = 0. Moreover since n?/2|6*"" — #*| — 0 as n — +o0, we also derive

lim sup,, nQO‘Ai,l(l/(nza,BT» = 0. We now focus on the sequence (By)n,>1. We freely use the notations of
Proposition 5.1} Let € > 0. We write

]P)(naB,y—l(l/(nZ(x—BT)) > E) S P(naBi/*l(l/(nQ‘l*BT)) > 6/2) + P(naB,z}/,l(l/(nQC)(ng)) > 6/2)

with BY = S, 3Tkt {H (00, (XM = B0, (X)) = (h00) = 0D} Lo 0o pircrcos)
and B2 := B,, — B! for all K > 0. Using the Chebyshev inequality with the trivial inequality |0 — 0*|? <
| |? + 2|0 — 0%||ri| and (HLH) we deduce from the previous computations that

20 711/ (n**7PT))

o n
P Byr1ygeepry > S Y RlIean1aymea-sryll®
k=1

X E|H (0, (X7)"") — H(07, (XT)k+1)|21{'yk_b(supk21 161, —67|)|ri| <K Yz}

COn2o N1/ (2 0T)
<

b
=T Yo e e sry P
k=1

—b 2 *
X ’}/k (E[|/“Lk| + (igl; |0k - 0 |)|Tk|1{'yk_b(supk21 |9k70*|)|7‘k|<KYk}])

C(K)n2°‘ Y71/ (R 7P TY)
<—a Z ’YZ-H)||Hk+1,'y*1(1/(n20*ﬁT))||2i‘;l;('Y;g_bEmkF + E[Yz])
k=1 Z

where C'(K) is a constant depending on K only. Therefore using Lemma we derive (if v(p) = 70/p take b
such that 1 > b > 8/(2a — ) otherwise take b = 1) that

li”l;np(naBifl(l/(ngafﬁT)) > 6) = 0.

Moreover, since for all k € [1,n], ’yk_b|rk| < XY, it follows
P(?’LQB,%,_1(1/(”2@_/£T)) > 6/2) = IP)(TL(XB%/_1(1/(”2@—/3T)) > 6/2,X(i1i}fl) ‘ak — G*D > K)
+ ]P)(naB,?/fl(l/(ngang)) > 6/2, X(i]i}; |9k - 9*|) < K)

<P(X(supl|bx — 0%]) > K)
k>1

which in turn implies
lim]P’(naBi_l(l/(nga_BT)) >¢€) < P(X(supl|br — 07]) > K).
n E>1
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Letting K goes to infinity in the previous inequality we conclude that n“Bf{,l(l/(nza,ﬁT)) S 0asn— +00

so that
71/ (P TY)

n Z 'Yka—i-l,'y—l(1/(n2“—3T))ARk — 0, n— +o0.
k=1
-1 2a—
Step 4: study of the sequence {n"‘ 2221(1/(71 e ’)%Hk+1’,y—1(1/(n2afﬁT))ANI?5,n > O}

—1 20—
We now prove a CLT for the sequence {n”‘ ZZ:1<1/<” ) '}/knk+17,y—l(1/(n2a—/iT))AN]?ﬁ, n> 0}. Let € > 0.

It holds

¥ 711/ (022 PT)) oy 24e

€
<sup sup E’nﬂ/QAN,?B

el n’
E ‘TL "Yk]:[k_;'_l’.yfl(1/(n2a7ﬁT))ANk ‘
n>1ke[l,n]

k=1
A/ (n?7PT))

x p(Ha(e=5/2) > VoMMt -1 (1 (m2a-s ) 177
k=1

By Lemma we have the following bound: >7_; v T I11..]|27¢ = O(v1F¢(n)) so that we have

A/ (n?7PT))

lim sup n(* <) (@=A/2) > Vi M1 91 (1 (n2e-s 27 = 0
" k=1

Moreover simple computations lead

2te nP /% * € * n? * €
< C(In"2 (" (67) = h(O") T + E(”?|H (6", X3 ) — H(6", X7)])*).

E ‘nﬁmAN,?B

For the first term in the above inequality we have sup,,>; InB/2(hn" (0%) — h(6%))>F € < 400 & a > 1/2.
For the second term, using assumption (HLH), properties (2.6) and (2.7) we have sup,,~; E(nf/2|H (0", X%B) -
H(0*, X71)])*T¢ < +00. Hence we conclude that

2+

€
sup sup E‘nﬁ/zAN,?ﬁ < 400,

n>1ke[l,n]

so that the conditional Lindeberg condition. Now, we focus on the conditional variance. We set

Y1/ (7P T))
Sn =1’ Y iy remar) Bk [AN (ANE )T a1y raamsry)s and Uf = X7 —Xr.
k=1
(3.17)
A Taylor’s expansion yields

B B B
= (HO", X3") = H0", X)) = DoH (O, X0)\| 5= UF + (0", X, U | 208

with (6%, Xr, Uj’lﬂ) %4 0. From the tightness of (4/ %U%ﬁ)nzl, we get (6%, Xr, U%ﬁ) %U{iﬁ -2, 050 that
using Theorem and Lemma yield

n# . onb . X
o (o7, X3") — H(O7, X1)) = DLH(©", X1)Ur.
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Moreover, from assumption (HLH), properties (2.6) and (2.7) it follows that

Wp >0, supE|\| T (H(O", X3) — H(E", X)) < 40,
n>1

which combined with (HDH) imply
E (ﬁ (H(e*, X2’y — H(p*, XT))> — ED,H (0", X7)Up = 0
T
E (ﬁ (H(G*,X;EB) - H(e*,XT))> (ﬁ (H(@*,X;B) — H(G*,Xﬂ)) — E(D,H (0", X7)Uz) (D H(0", X7)Ur)"

where we used ED,H(6*, Xr)Ur = E[D,H(6*, X7)E[Ur|Fr]] and E[Up|Fr] = 0 (see e.g. Proposition 2.1,
p.2685 in [Keb05|). Hence, we have

T, — I :=E(D,H(6*, X7)Ur) (D, H(0*, X7)Ur)"

where for n > 1
’n’B n? nP\T
T, = T E[AN] (AN ).

Consequently, using the following decomposition

R R . 1 & .
) > M1 Tallfy, = o) D741 PRI A | GRS poes) > ¥iggr (T =TI,
k=1 k=1 k=1

with

lim bup Z’Yknk—i-l n n - F*)H£+1,n

< Climsup [T, = T™|| =0,

which is a consequence of by Lemma we clearly see that lim, S, = lim, ﬁ 22:1 7%Hk+17nF*H£+17n if
this latter limit exists. We denote by ©* the (unique) matrix A solution to the Lyapunov equation:

— (Dh(8%) = C1a)A — A(Dh(6*) = (1a)" = 0.

Following the lines of the proof of Lemma step 3, we have S,, =% ©*. We leave the computational details
to the reader. O

Proof of Theorem[3.1 We first write the following decomposition
O — 0" = 0301 1 ey = 07" 4031 iy = O3 1 pramsy — (677 = 07 677 — "
For the last term of the above sum, we use Theorem to directly deduce
n (0" —0*) = —Dh~ 1 (0*)E(h, a, 0%), as n — +oo.

For the first term, from Lemma 2.3 it follows

B

a/pgn *,nP *
n (97*1(1/71205) —0" ) ﬁj\/’(()?F )a
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with I == [ exp (—s(Dh(6") — CIg) By [H (6%, Xp)H (0%, X1)T) exp (—s(Dh(0*) — (14)) ds. We decompose
the last remaining term, namely Hz,l(l/nm,g) — 9;’61(1/%%5) — (0" — 9*’”ﬂ) as follows

n nb *.n x.nB n . .
0’)/—1(1/1120—['3) - 67—1(1/1'7?0—[5) - (9 T — 9 ’ ) = 97—1(1/,”2(,_[3) — 9,‘/71(1/,”20(,5) — (9 — 9 )
° %,nP *
B I )
and use Lemma [3.1] to conclude the proof. 0

Theorem 3.2. Suppose that h and h™ satisfy the assumptions of Theorem[2.7 (with o € (1/2V 3,1]) and that
h satisfies the assumptions of Theorem[2.]} Assume that (HD), (HMR), (HDH) and (HLH) hold and that
h™ is twice continuously differentiable in a neighborhood of 6*, with Dh™ Lipschitz-continuous uniformly in n
satisfying:
Vo € RY, no=(@=B/22| Dh(0) — Dh™ ()| = 0, as n — +o0. (3.18)
Assume that the step sequence v = (Vp)p>1 satisfies (HS1) with p € (1/2,1) and p > 525 V o(1-5)

" 20—F " (a=B/2)"
Suppose that E(D,H(0*, X7)Ur)(D,H (0%, X7)Ur)T is a positive definite matriz.
Then, for M3 = n** and M, = n**=PT, one has

n®* (O — 0*) = Dh™ Y (6*)E(h, o, 0°) + N(0,%), n — +oo,
where
S* = Dh(0*) " (BH(0*, X7)H (6", X1)T + K (D H (0", X7)Ur) (D H(0*, X7)Ur) ) (Dh(0*) )T

Lemma 3.2. Let (6,),>1 be the empirical mean sequence associated to (0,),>1 defined by (3.15)). Under the
assumptions of Theorem[3.2, one has

0 (020 sg = By = (07 = 0%)) = N0, DR(6") ™ B (Do H(8", Xr)Ur) (Do H(0", X1)Ur)" (Dh(6*)™)7),

and B B .
na (02204,571 — 0n2a—ﬁT — (9*,77, — 0*)) — 0

Proof. We will just prove the first assertion. The second one will readily follow. The notation C' denotes
a constant that may change from one line to the next. Using the notations of Lemma the sequence
(Zgﬁ)peﬂ07n2a—[3’1"ﬂ can be decomposed as follows:

n2e—B87

nP 1 nb
Zp2a-pT = n2e=BT 41 ;0 2k
1 P n” I
_ Dh 0* —1 n2a—=BT41 o 207 + Dh 9* -1r_ - ( _ >Z7’7/j
(Dh(O") ™ a1 (’Yn20<5T+1 o) PR e ,; Yo 1) "
1 n2e-fr
— (Dh(07)) lm Z (AN} + AR, )
k=0
1 T 8 8 8 B8 B
(DRI s 3 (G Gt (DR — DI )0 0)),

k=0

Our aim is to study the contribution of each term in this decomposition.
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nf B
Step 1: study of the sequence {nm"ﬁﬂ_l (i"zaZT“ — 2701) ,n > 0}:
n2a—B741
Using Proposition clearly yields

n? nb
n2e-BT+1  ZQ

Tn2e—-B8T+1 71

[e%

8 C

C _ B - 5
( M22“*5T| + |r’ﬁn2a7ﬁT| -+ |r27n2a—BT‘) + o P |9* —gm |

N (nafﬁT)’YnhfﬁT-H

n z

n20=8T 4+ 1

We evaluate each term appearing in the right hand side of the last but one inequality. First we clearly have

C
20=BT ) Yp2a—p741

1
(n®=BT)vp20-s741

— 0, asn — +o0,

B
Elfip2a-sp| <
V(n

and
1

(na_’BT)’YnZ‘**BTJrl

We write 7y 2087 = €15 + €2, Where for K > 0 the sequence (c1,n)n>0 is given by

~ o~ ﬁ ]P)
XY ooy — 0, as n — +o0.

~nB
|T1,n2“*ﬁT| < Ona—ﬁ

n2e—8p
Clinp = Z rYka+1,n2“_/3T(H(9k7 (XT)k+1) - H(0*7 (XT)kJrl) - (h(ek) - h(a*)))]‘{'yk_l(supk>l |9k*9*|)\Tk|§KYk}
k=1 B

satisfying

n2a7/3T
Eleyn* < C Z Vel g g1 2057 *El0), — 9*|21{7;1(Supk>1 10k —0* ) e | <KV }
k=1 B
n2a—ﬁT
<C > WlMs pzasr|®Elul® + E(ﬁg}; 1Ok = O DITkL ot (qupys y 10507 Dlri | < i Vi)
k=1 = a
n2e=8T
<C Y Rl eesrl* = O(2an-s7)
k=1
*|2 2 * 1 Ll(P)
where we used |0, — 0*|? < |ug|* + 2|0r — 0*||rk|. Hence, we deduce that ey gl 0. Now observe
nex—pT
that from Proposition [5.1| for all k € [1,n], we have ~; 'ry < K}, so that for all € > 0

1 C
P (CQ,n > 6) <P (CQ,n > ¢, (sup |0 — 7)) X < K) +P ((SUp |6 — ") X > K)
ne=Pyp20-priq ne=Pyp20-priq k>1 E>1

—P ((sup 10 — 0% X > K) .

E>1

Therefore passing to the limit n — +o0o in the previous inequality we get lim,, P(WCQ,W >€) <
nex—PT4+1

1

P
Co . —
NPy aa_griq 2

P ((supj>; |6k — 0*)X > K) for all K > 0. Passing to the limit K — 400, we conclude that

0 as n — 400 which in turn implies

1

- P
—a—ﬁ 7’2’71204—/3']1‘ — 0.
n= P Yp2a-BT41
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Finally since « > 8 and |6* — 9*’"5| — 0, we clearly have —L5|0* — 9*>”B| — 0 so that
B ]

o Al - n

i ( n? ﬂTH—ZO> LO, as n — +oo.

n2e=BT 4+ 1 \ vp2a-sry1 M

204 ﬁT 1 B .
Step 2: study of the sequence {W Zk (w %H) zp ,n > O}.

Note that we also have
n20¢75

ne T 5 ne T/ 5 5
Y (=- Al e S ) A T (P
n2a=6T + 1 Pt <% ’Yk+1> k n2a=B8T 41 P (%H 'Yk) (i T+ 1l + 72

We take the expectation of the first term appearing in the right hand side of the above inequality and since

p < 1 we deduce

2&—/3T n2e—Bm
ne " 1 1 s C ( 1 1 )
} : ~ I\ E < — E — 0.
n?=AT + 1 (’7k+1 ’Yk) V< Samsr =\ W e

For the second term, we have

n?*=8 n?*=f
n® 1 1Y, .0 1 .
- >~ k‘Y )
> Vil < 2o > (-2 ) i

2P+ 1 = \ Y1 W

which combined with
208 n2e—Bp
1" ( 1 1 ) - - 1 1 1
_— — — | mEY <( sup EY;? —— )wm—=0
ne=AT ; Vel Vk F (nZLkZl ¥ )no"ﬁT ; Vel Ve

since o > (8 allow to deduce that

o 2B 1 1
n B P
Y ) o
n2e=BfT 41 = (’Yk+1 ’)’k> 7

For the third term, we use the decomposition 3 , = ¢1,, + c2,, as previously done. We clearly have

ne T 1 c T 1
— — | Elc1 g ( - ) r — 0,
Z ( ) levi] < ne=8T Z Ve+1 Tk 7

n2e=FT +1 Ve+1 Yk k=1

and for all K >0
n2a—B8m n2e—B8m
n% 1 1 ne 1 1
—_— — — ) |ea k| > <P| —Fr— — — ) |car| > € (suplr — 0 NX < K
n2e=PT +1 Z <7k+1 ’Yk) lezul > € ) < n2e=BT +1 kZ:l (’Yk—i—l “Yk)' 2k > € (k2€| ¥ DX <
+P ((sup |0 — 60" DX > K)
E>1

=P ((sup |0 — 0" )X > K)
k>1
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a—p
so that passing to the limit n — +o0 we get lim,, P (W Z}: T (%1+1 — ’Yik) lea k| > e) <P ((supkzl |0 — 0" )X > K).

20— BT 1

Passing to the limit K — 400 leads to lim,, P (WTH > h—1 - ,%k) lea x| > e) = 0 which in turn

Ve+1
implies
20-Bp
n® " 1 1 W P
—_— — - zp — 0.
n2e=BT 4+ 1 ; (’Yk ’Yk+1) g

20—Bp

(G = G+ (DR(O%) = DI (0" )07 = 077")),n = 0}:
Now we focus on the last term. We firstly note that thanks to Lemma we clearly have

Step 3: study of the sequence {WT—H Dkt

n2a—B8p n2a—BT

i AT = 2, w0

since p > a/(2ac — ). Moreover, from Proposition [5.1|it follows

ne n2e=8T n2e=8T n2e=8T n2e=8T

C ) C , C
—_ < — 3 0,,—0* < — 3 0,—0" )X ——— Y.
e AT 11 kZ:O G| < BT kz:o 2y +(21£\ k=0 )|re| < T kz:o |11 | +(21£| k—0"|) o BT kZ:O Vi Y

2a—p3 2a—p8
The first term converges to zero in L*(P) since (1/(n=(«=AT) 377, TE |2 §ﬁ(supk21 Vo "Bl =2 Yo e —
0 and similarly the second term converges to zero in probability. Now since Dh™ is Lipschitz-continuous uni-
formly in n we easily get

n2e=B87 n2e=B8m
n< 8 8 C 8 8 1
—F Dh(6* Dhn 0" m oy — 0" < ———(||Dh(6*)—DR™ (6* g*—0*" 2
e AT 1 ;0 (Dh(6") — (""")) (01 )| < g (IDR(E7) @)+l ) 2 Vi »

and recalling that no‘*(a’ﬁm)p||Dh(0*)th”ﬁ (0)|] — 0 and p > a(1—3)/(a—B/2) which implies n®~(*=5/2)r|g* —
9*’"6| — 0 we deduce

n2e=8T
n® * n? (px,nf n? wnfy L'(®)
k=0

208

Step 4: study of the sequence {#T—H > =0 (ANk—H + AR,H_l) n > O}:

Similarly to the proof of Lemma we decompose the sequence {W ka B ARZﬁ,n > 1} as
follows
"QHMZBTAR"‘* = "QHETW (OF) = 1" (07) = (H(OF", (XE7)™) = H (07, (X37)1)
n2e=B8T 41 Pt ko n2a=BT 1+ 1 ~ k k > T s T
n2e-8r
n k41 * k+1 *
t o1 kZ—O (H (O, (X)) = H(0%, (X)) — (h(bk) — h(67)))

= A, + Bp.
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From the Cauchy-Schwarz inequality and Lemma it easily follows

1
nZQ—BT 2

1
E|4,| < =BT kz_o Vi —0

since p > a/(2a — B) > B/(2a — ). Now we write B,, = By, + Ba,, with for all K >0

ne n2e—81

_ k+1 * k+1 *
Bin = n2a—BT 11 ];) (H (O, (X)™77) = H(07, (X7)™7) = (h(Ok) = h(0"))L 13 (qupps 104 —0% )i | <KV}

and simple computations similar to that of the sequence (¢1,)n>1 lead to

1/2
n2o—Bmp /

C
E|Bin| < ——5= kz_o w| —o.

Moreover, similarly to the computations done for the sequence (c2r,)n>1, we have lim, P(Ba, > €) <
P ((supy>y |0k — 0*])X > K) and passing to the limit K — +o0o we obtain lim, P(Bs, > €) = 0 which in turn
implies
. n2e=8T

" Z ARZ/j N 0, n— +oo.
k=0

n2e=BT +1

20-fp

We now prove a CLT for the sequence {nmfigﬂ_l > oheo AN]?ﬂ, n> 0}. Let € > 0.

n2a—B8r ne 5 2+€ 5 24e 1
— n2*=FT + 1 n>1 ke[0,n] neeTphe

: : : s|2te
where we used assumption (HLH), properties (2.6] and (2.7) to derive that sup,, >, supgep, o E ‘nﬁﬂAN,? ’ <

+o0. Therefore the conditional Lindeberg condition is satisfied. Now, we focus on the conditional variance.
Recall that (see the the proof of Lemma [3.3]) we have

TL’@ B B TLB B B
B AN (ANE)T) = TR [(H(07, X3) — HO", X) — (07 (0%) — h(0°))

X (H (0", X57) — H(O", X7) — (b (0%) — h(67)))"
— E(D,H(6*, X7)Ur) (D, H(0*, X7)Ur)",

so that if we set

n2 w T b nBNT
Sn ::W—T—i—l)Q Z Ex[ANE (AN )]
k=0
n2e=BT pp

= e B [(H O XE) — HE Xr) = (07 (0) — h(@))(H(O7, X3") = HO" Xr) = (0" (07) = (")) .
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we clearly get 3
S, — E (D H(6*, X7)Ur) (D, H(6*, X7)Ur)" .
This completes the proof. O

Proof of Theorem[3.2 We decompose the error as follows

OF — 0" = 020 — 0" 40y — Oy — (07" — 05" ) £ 05" — 0"

For the first term, from Lemma [2.4]it follows that
n® (B — 0°"") = N (0. Dh(6") " Ea[H(6", Xr)H (6", X1)")(Dh(6")1)").
For the last term using Theorem we have n®(0*™ — 6*) — —Dh™1(6*)E(h, o, 6*). We now focus on the
last remaining term, namely 6", , — égfa,ﬁ — (6" — 9*’"6). We decompose it as follows

~nB B

O s — O s — (0" — 05" ) = 0% s — Bpoas — (05" — 0%) — (070 s — Bpoas — (057 — 67))
where (6,),>1 is the empirical mean sequence associated to (6,,),>1 and use Lemmato conclude the proof. O

3.2. The multi-level stochastic approximation method

As mentioned in the introduction the multi-level stochastic approximation scheme uses L Euler approximation
schemes with different time steps given by T/m¢, ¢ € {1,---, L} for a fixed integer m > 2 such that m* =n
and estimates 8* by computing the quantity

L
ml __ pl m?t mt-1
ont =0y, + > 0% —ox .
(=1

It is important to point out here that each couple (0%2, 0?}[/;1) is computed using two Euler approximation
schemes with different time steps but with the same Brownian path. Moreover, for two different levels, the
stochastic approximation schemes are based on independent Brownian paths.

Theorem 3.3. Suppose that h and hml, {=0,---,L, satisfy the assumptions of Theorem (with « = 1) and
that h satisfies the assumptions of Theorem[2.4} Assume that (HD), (HMR), (HDH) and (HLH) hold and
that h™ is twice continuously differentiable in a neighborhood of 0*, with Dh™ Lipschitz-continuous uniformly
mn n satisfying:

38 >1/2, V0 R, nP||Dh"(0) — DR(H)|| — 0, asn — +oo.

Suppose that E(D,H(0*, X7)Up)(D.H(0*, X7)Ur)T is a positive definite matriz. Assume that the step
sequence is given by v, = y(p), p > 1, where v is a positive function defined on [0,+oo[ decreasing to zero,
satisfying one of the following assumptions:

e v varies regularly with exponent (—p), p € (1/2,1), that is, for any x > 0, limy_ oo y(tx)/y(t) = x7°.
o fort>1, ~v(t) =/t and vy satisfies Ayo > 1.
Then, for My =~v~1(1/n?) and M; = v~ (mlog(m)/(n?log(n)(m — 1)T)), £ =1,--- , L, one has

n(O7! = ) = —Dh™(6°)E(h, 1,6%) + N'(0,2*), n — +oc
with

o0 * T ~ *
x* ;:/0 (e PHON=CI0) " (B, [H(0", XF)H (0", X3)T|4E (Do H (8%, Xr)Ur) (D H(0", Xg)Ur) e *(PHO =<l g

and Uy is the value at time T of the process [2.8) defined on (Q, F, (Fi)i>0,P).
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Proof. We first write the following decomposition
L
Ol — 0% =011y ey — 07 YO — 00— (05— ) 0
=1
For the last term of the above sum, we use Theorem [2.7] to directly deduce
n(0*" —0*) — —Dh 1 (0*)E(h,1,0%), as n — +oo.
For the first term, the standard CLT (theorem for stochastic approximation leads to
(01 (1 2y — 0°1) = N(0,T%),
with I'* := [ exp (—s(Dh(6*) — CI) B [H(0%, XL H (0, X1)T] exp (—s(Dh(6*) — ¢14)) ds.To deal with the
last remaining term, namely n® 25:1 Gﬁz — 017@271 — (9*’”‘2 — 9*””[71) we will need the following lemma. O

Lemma 3.3. Under the assumptions of Theorem|3.1], one has
L 4 £—1 ‘ —1
n > 0 =00, — (07" =) = N(0,0), n— +oo,
r=1

with ©* := [7° exp (—s(Dh(0*) — (14))" E(D,H(0*, X7)Ur) (Dy H(0*, X7)Ur)" exp (—s(Dh(0*) — (I4)) ds.

Proof. We come back to the decomposition used in the proof of Lemma We consequently use the same
notations. We will not go into all computational details.
A Taylor’s expansion yields for p > 0

egfl - 0*’m£ = azrang - 9*,me - 'Yp+1Dhme(9*’m£)(91T[ - 9*’m£) + 'Yp+1AM;zT|-£1 - ’)/10—~-1C1Tz

1

with AMgfl =nm (9;"8) — H(G;”z, (Xm)P+1) p > 0. Therefore, defining zt = 9;”4 - 9;”“1 — (grm" —grm

p > 0, with zé — g’ 9*’"‘271, by a simple induction argument one has

),

M, M,

2, = Man 26 + > W ki1 ANE + > yllky1 0, ARY,
k=1 k=1
M,

- * m£ * mz m/‘ * m/‘
Y el ar, (G = G2L + (DRO7) = D™ (67 )67y — 6°™)
k=1

—(Dh(e") = DR (@ ) o - o) (3.19)

where TI, , := [}_;, (I — v; Dh(67)), with the convention that IT,, 11, = I4, and AN := B (0%)—hm' T (0%) —
(H(O", (XP ) ) —H (0, (X)), ARL = W (07) —hm (67) = (H (0", (XF )M ) —H (0", (XF)1)+
HOp (X)) — H(O", (X )M — (hm (05 ) — ™ (07)) for k > 0.
Step 1: study of {n S g 28, n > 0}

Under the assumptions on the step sequence =, for all n € (0,\;,) we have |II; | < exp(—(Am —
) Zgﬁl Y1) < C/~v(My) for a positive constant C independent of ¢ (select 1 s.t. 2(A\y—1)70 > 1if v(p) = 70/p,
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p > 1). Therefore, one has

L
<0y Mg llo™ 6= < Cn

L

I 'l

n 1,M, %0
=1

=1

Step 2: study of {n Zle 224:21 Yilles1,n, (Choq — ﬁj) ,m=>0
By Lemma one has

——

L M, L M,
E{nd Y wllieing (Goy = G2 [ < Cn Y0 Y ATl
(=1 k=1 =1 k=1

However, by Lemma (if v(p) = 70/p recall that \,,,yo > 1) we easily derive lim sup,, ﬁ Sore 1 Vil g0 <
1, so that

L M,

1
n;;%HHl@H M|l £ CTLZV M) < C“Z nzlog log( ) —0, n— +oo.

Step 3: study of {nzle M e, ((Dh(e*) D™ (0m")) (", — e*me)) > 0}

and {n (X212, A% llisnar, (DR(O7) = DI (@m0 = 0mm ")) on >0}
By Lemma and since Dh™" is a Lipschitz function uniformly in m we clearly have

L M,

E|n >3 A i, (DR(E7) — D™ (077 ) (07, — =™
=1 k=1

L M,
)| <n ZZ gl P

/=1
* m?(px x,m’ *
x ([[Dr(07) — DR™ (0%)[| + 6™ —67)])
L

< Cn > 4" (My)(|DR(6%) — D™ (6%)] + |0"™
/=1

which combined with sup,,, n”||Dh(*) — Dh™(6*)|| < +oo with 8 > 1/2 and sup,,», n|6*" — 6*| < 400 imply
that

L M,

E 0SS yellian, (DR(67) — DR (9 ) (03, — o)) <
=1 k=1

C
4/2 —¢ —08
< g o e <

so that nZeL:1 Z]szfl YeIlky1,0,(Dh(6%) — Dh™ (9*’"“2))(9,2"_21 -0 mIZ) L—(>) 0. By similar arguments, we easily

1 — ¢ L (P
deduce n S~ | S 3 Ty an, (DR(6Y) — DR (00m" )0y — oo 28 g
Step 4: study of {n Zle 224:"1 'kak+17MeARf;,n > O}

£—1

—60)))
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We take the square of the L?(P)-norm of this term to deduce

L M, 2 L M,

me m[ *

EnY N mlliran ARE <2023 S 2 M [PEIHOF, (X)) — H(0™, (X2 )F)2
=1 k=1 =1 k=1
L M,

£—1 -1 £—1

+207 Y N M an PEIH @O (XE M) — HO", (X )M

=1 k=1
L M,

<Cn® > > Mk |12

(=1 k=1

where we used (HLH) and Lemma Now from Lemma [5.1] and simple computations it follows

Qi%VHH II? <Cn2z (M) ¢ XL:m2Z< ¢ —0, n— 400
(=1 k=1 HR T ) ”2 log? (n )2:1 B IOgQ(”) 7 .
Therefore, we conclude that
L M,
n Z Z ’kak_H M, ARk 0 n — —+00.
=1 k=1

Step 5: study of {n 25:1 224:"1 'kak+17MeAN,f,n > O}
We now prove a CLT for the sequence {n 25:1 Zi\/ﬁl Yiellg41, 0, AN,f, n > 0}. Let € > 0. By Burkholder’s

inequality and elementary computations, it holds

L M, 2+e M, 1+e/2
SEIS Tl AN < o0 SR (Z 200, 2 AN )
=1 |k=1 =1 k=1

L M,
< On0 Y3 AR M P2 S A2 My [ EIANE
(=1 k=1 k=1

Using (HLH), properties (2.6) and (2.7) we have sup,~, E(m*/?|H (6", X%E) — H(0*, X7)|)*"¢ < 400 so that

K

02+€
EIANIT < rwmy

Moreover, by Lemma we have

limsup(l/’Y(He) Z%%JFE”HkH nl[?*€ <1 and thUP 1/7(n zn:V ||1_1Ac+1,n||2 <1
" k=1 k=1
so that
- & ‘ o 2 - L+3e/2( £(14¢/2 ¢
;E ;WMHHLM[AN;C < On(t9 ;’Y 3¢/ ~e2) < Wzm < m
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which in turn implies

L M, 2+4e€
ZE E na’ykﬂk+17]V12AN]f —0, n— +o0
/=1 k=1

and the conditional Lindeberg condition is satisfied. Now, we focus on the conditional variance. We set
MI{ 14 14
-1
Se=n"> W Ter1an Er[ANS(ANO)TII  aype and Up = X2 — X500 (3.20)
k=1

Observe that by the very definition of M, one has

M,
1 log(m) m* o y T T
Sy = E II EiL[AN (AN 11
14 ’Y(MZ) log(n) (m — 1)T — Vi llk+1,M, k[ k( k) ] k—+1,M,

A Taylor’s expansion yields
HO", X7) — HO", X3 ) = D, H(0", Xp)Uk + (6%, X, X2 — X)) (X7 = Xp) + (0%, X, X7 = X)) (X3 = Xp)

with (1/}(9*7XT7X7T"2 - XT),w(9*7XT7X¥l“1 - X7)) L4 0 as £ = +oo. From the tightness of the sequences

(v =2 (X — X7))esq and (/=25 (X7 = X 7)) s, we get

(m—-1)T (m—-1)T

mt

oy (00" X X = X (K X) 400, X X5 = Xn) (g - X)) T 0, £ 4o

Therefore using Theorem and Lemma [2.1] yield

me ¢ 2—1
™ (Her, XY = H(*, X ) D,H(6*, X7)Ur.
Gy (O X — H X)) = DuH (O, Xr)Ur
Moreover, from assumption (HLH), properties (2.6) and (2.7) it follows that

2+p

< +00,

mt

oy HO X HE X))

Vp >0, supE
1

which combined with (HDH) imply

mt

£ /—1 ~
—=EHO", X7 ) - HO", XT ED, H(6", X =
Ty BUH " X3 ) — H(", Xg ) > EDLH (" X0)Ur =0
mZ

(m-1)T

1 1

E(H (0", X2 ) — H(0*, X2 )(HO", X2 ) — HO*, X7 )" — B (D,H(0*, Xr)Ur) (D, H(O*, Xr)Ur)"

as £ — 400, where we used ED, H(0*, X7)Ur = E[D,H (0*, X7)E[Ur|Fr]] and E[Ur|Fr] = 0. Hence, we have
¢

7(1””_1 i T E (D, H(0, X7)Ur) (Do H (0%, X7)Ur)"
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where for ¢ > 1

T, == Ex[ANS(AN)T]
=E(H(O", X2) — HO", X3 )(HEXP) — HO, X2 )T — (0 (0%) — v (07) (™ (67) — ™

Consequently, using the following decomposition

1 mt L 5 T 1 &L 9 T

— E Vielk+1,02, el = —=0 E YViellgy 1,0, T gy g
v(My) (m —1)T &= "* ‘ LM (M) — oM

1 &L 9 mt T

—_ II — I, —T")1I
+ SO0 k§_17k k+1,M, ((m 0T ¢ ) k+1,M,
with
Z 4

* . m *

hmsup ka+1 n <_1)1_‘Fg -T ) H£+17M€ S Chmsgp H(Tn_l)TF[ -T = 0,

which is a consequence of Lemma we clearly see that log((:l)) limg Sp = im0 ﬁ et Velley 1 o DFILE

if this latter limit exists. We denote by ©* the (unique) matrix A solution to the Lyapunov equation:
— (Dh(0") = CIa) A = A(DR(0") = C1a)" = 0.

log(n)

Following the lines of the proof of Lemma step 3, we have Tog ()
details to the reader. Finally, from Cesaro’s Lemma it follows that

S 2% ©*. We leave the computational

1
ZSZ 8(n) ., o
log(m) n—+oo

HMN

O

Remark 3.1. The previous result shows that a CLT for the multi-level stochastic approrimation estimator
of 0* holds if the weak discretization, and thus the implicit discretization errors, is of order 1/n. Due to the
non-linearity of the procedure, this result seems not to extend to a weak discretization error of order 1/n® with
a < 1. Moreover, for the same reason this result does not seem to extend to the empirical sequence associated
to the multi-level estimator according to the Ruppert & Polyak averaging principle.

3.3. Complexity Analysis

The result of Theorem 3.1 ! can be interpreted as follows. For a total error of order 1/n®, it is necessary to
set My = y~1(1/n?) steps of a stochastic algorithm with time step n® and My = v~1(1/(n?*=5T)) steps of
two stochastic algorithms with time step n and n” using the same Brownian motion, the samples used for the
first M, steps being independent of those used for the second scheme. Hence, the complexity of the statistical
Romberg stochastic approximation method is given by

Csresa(y) = O x (ny7H(1/n*®) + (n+n7)y 7 (1/(n?*7PT))) (3.21)

under the constraint: « > §V 1/2. Consequently, concerning the impact of the step sequence (7y,)n>1 on the
complexity of the procedure we have the two following cases:

5
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e If we choose y(p) = 70/p then simple computations show that 8* = 1/2 is the optimal choice leading
to a complexity
Csr.sa(y) = C'n2o+1/2,
under the constraint Ayp > 1 and and « > 1/2. This computational cost is similar to the one achieved
by the statistical Romberg Monte Carlo method for the computation of E,[f(Xr1)].
e If we choose v(p) = vo/p”, % < p < 1 then the computational cost is given by

2a0 _ B

Csrsa(y) = Cl(n%”rﬂ + TLTi%Jrl)
which is minimized for 8* = p/(1 4 p) leading to an optimal complexity
Csrsa(y) = C'ns 7747,

under the constraint o > 1/2. Observe that this complexity decreases with respect to p and that it
is minimal for p — 1 leading to the optimal computational cost obtained in the previous case. Let us
also point out that contrary to the case v(p) = 70/p, p > 1 there is no constraint on the choice of ~y.
Moreover, such condition is difficult to handle and to check in practical implementation so that a blind
choice has often to be made.

The CLT proved in Theorem shows that for a total error of order 1/n?, it is necessary to set M; = n>®
steps of the stochastic approximation scheme defined by with time step T/n®, My = n?*=PT steps of
stochastic approximation scheme defined by with time step 7'/n and T'/n® and to simultaneously compute
its empirical mean, which represents a negligible part of the total cost. Both stochastic approximation algorithm
are devised with a step 7 satisfying (HS1) with p € (1/2,1) and p > 5ap V ‘ij;/@ It is plain to see that
B* = 1/2 is the optimal choice leading to a complexity given by

Csr.rp(7y) = C x n?ot1/2)

provided that p > 5725 and V0 € R?, pe—(e=2)e| Dh(6) — Dh”? @) = 0 as n — 400 (note that when
p — 1 this condition is the same as in Theorem [3.1]). For instance, if o = 1, then this condition writes p > 2/3
and n'=37||Dh(0) — Dh”1/2(0)|| — 0 and p should be selected sufficiently close to 1 according to the weak
discretization error of the Jacobian matrix of h. Therefore, the optimal complexity is reached for free without
any condition on 7y thanks to the Ruppert & Polyak averaging principle. Let us also note that ought we do
not intend to develop this point, it is possible to prove that averaging allows to achieve the optimal asymptotic
covariance matrix as for standard stochastic approximation algorithms.

Finally, the CLT proved in Theorem [3.3[shows that if the weak discretization error is of order 1/n, that is o =
1, then for a total error of order 1/n, if we set My = v~'(1/n?) and M; = v~ (m’log(m)/(n?log(n)(m —1)T)),

{=1,---,L, the complexity of the multi-level stochastic approximation method is given by
L
Cursa(y) = C x (’y_l(l/n2) + ZMZ(me + m€_1)> : (3.22)
=1

As for the statistical Romberg stochastic approximation method, we distinguish the two following cases:
e If v(p) = vo/p then the optimal complexity is given by

m2 —1

Cuvrsa(y) =C (n2 + n?(logn)? > = O(n?*(log(n))?),

m(logm)?

under the constraint Ay > 1. This computational cost is similar to the one achieved by the multi-
level Monte Carlo method for the computation of E,[f(X7T)], see |Gil0O8b] and [AK12]. As discussed
in |GilO8b], this complexity attains a minimum near m = 7.
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e If we choose v(p) = v /p", % < p < 1 then simple computations show that the computational cost is
given by

1 L
(m—1r(m+1) ¢~ —2-1)

1
m(logm)e i

Cumr-sa(y) = C x (ni —|—n%(logn)% ) = O(n%(log n)%)

Observe that once again this complexity decreases with respect to p and that it is minimal for p — 1
leading to the optimal computational cost obtained in the previous case. In this last case, the optimal
choice for the parameter m depends on the value of p.

4. NUMERICAL RESULTS

In this section we illustrate the results obtained in sections 2.3] and 2.4l on one hand and those obtained in
section [B

4.1. Computation of quantiles of a one dimensional diffusion process

We first consider the problem of the computation of a quantile at level I € (0, 1) of a one dimensional diffusion
process. This quantity, also referred as the Value-at-Risk at level [ in the practice of risk management, is the
lowest amount not exceeded by X with probability I, namely

ql(XT) ;= inf {0 : P(XT < 9) > l}

To illustrate the results of sections 2.3 and [2:4] we consider a simple geometric Brownian motion
t t
X =z —|—/ rX.ds +/ oXsdWs, t€]0,T) (4.23)
0 0

for which the quantile is explicitly known at any level [. The distribution function of X7 being increasing,
q(X7) is the unique solution of the equation h(0) = E,[H (0, X7)] = 0 with H(0,2) = 1{;<¢y —[. A simple
computation shows that

q@(X7) = o exp((r — 0?/2)T + U\/Tcﬁ_l(l))

where ¢ is the distribution function of the standard normal distribution A(0,1). We associate to the SDE (4.23)
its Euler like scheme X™ = (X{")¢c(o,7] With time step A = T'/n. We use the following values for the parameters:
xo =100, r =0.05, 0 = 0.4, T =1, [ =0.7. The reference Black-Scholes quantile is go.7(X7) = 119.69.

Remark 4.1. Let us note that whenl is close to 0 or 1 (usually less than 0.05 or more than 0.95) the convergence
of the considered stochastic approximation algorithm is slow and chaotic. This is mainly due to the fact that
the procedure obtains few significant samples to update the estimate in this rare event situation. One solution is
to combine it with a variance reduction algorithm such as an adaptive importance sampling procedure that will
generate more samples in the area of interest, see e.g. (BFP09d] and [BF'P09b|.

In order to illustrate the result of Theorem 2.7 we plot in Figure[I]the behaviors of nh™(6*) and n(6*" —6*)
for n = 100, ---,500. Actually, h™(6*) is approximated by its Monte Carlo estimator and 6*™ is estimated by
0%, both estimators being computed with M = 10® samples. The variance of the Monte Carlo estimator ranges
from 2102.4 for n = 100 to 53012.5 for n = 500. We set 7y, = o/p with 79 = 200. We clearly see that nh™(8*)
and n(6*™ — 0*) are stable with respect to n. The histogram of Fig 2| illustrates Theorem The distribution
of ”(0271(1/#) — 0*), obtained with n = 100 and N = 1000 samples, is close to a normal distribution.
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FIGURE 1. On the left: Weak discretization error n — nh™(6*). On the right: Implicit dis-
cretization error n — n(0*™ — 6*), n = 100, - - - , 500.

probability

FIGURE 2. Histogram of n(@fyll(l/ng) — 60*), n =100, with N = 1000 samples.

4.2. Computation of the level of an unknown function

We turn our attention to the computation of the level of the function § — e "TE(Xr — ), (European call
option) for which the closed-form formula under the dynamic (4.23)) is given by

e TTTE(Xy — 0)y = e "Tagp(dy(x0,0,0)) — e "TOH(d_(x0,0,0)), (4.24)

where d(z,y,2) = log(z/y)/(2V/T) £ 2v/T/2. Therefore, we first fix a value §* (the target of our procedure)
and compute the corresponding level | = E(X7p —6*), by . The values of the parameters xg, r, o, T remain
unchanged. We plot in Figure [3| the behaviors of nh™(6*) and n(6*™ — 6*) for n = 100,--- ,500. As in the
previous example, h™(6*) is approximated by its Monte Carlo estimator and #*" is estimated by 67,, both
estimators being computed with M = 10® samples. The variance of the Monte Carlo estimator ranges from
9.73 x 10° for n = 100 to 9.39 x 107 for n = 500.

To compare the three methods to approximate the solution to h(f) = E, [H (0, X7)] = 0 with H(0,x) =
Il — (z — 0)4+ in terms of computational costs, we compute the different estimators, namely 9;‘,1(1 /n2) where
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(07)p>1 is given by (L4), O3 and O for a set of N = 200 values of the target 6* equidistributed on the
interval [90, 110] and for different values of n. For each value n and for each method we compute the complexity
given by (2.14)), (3.21) and (3.22)) respectively and the root-mean-squared error which is given by

) N 1/2
RMSE = (N > (eF - 9;;)2>

k=1

(RMSE, Complexity) which is plotted on Figure Let us note that the multi-level SA estimator has been
computed for different values of m (ranging from m = 2 to m = 7) and different values of L. We set v(p) = 70/p,
with 70 = 2, p > 1, so that g* = 1/2.

where O} = 0:—1(1/712)7 O3 or O™ is the considered estimator. For each given n, we provide a couple

Convergence of n.h"(J) Convergence of n.(J""-[])
5 T T T 8 T T T

n.h"(@)
n.(@""-0)

-5 -4
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
discretization size n discretization size n

FIGURE 3. On the left: Weak discretization error n +— nh™(68*). On the right: Implicit dis-
cretization error n +— n(6*™ — 6*), n = 100, - -- ,500.

From a practical point of view, it is of interest to use the information provided at level 1 by the statistical
romberg SA estimator and at each level by the multi-level SA estimator. More precisely, the initialization point
7023 Jap (for the statistical Romberg SA)
and 9%2 —9”1\}[271 (for the Multi-level SA) at level £ are fixed to 9;/0712 and to 9%()”2 +Zf;11 }\’Z —9%271 respectively.
We set 931/2 =0} = z¢forallk € {1,---, M} to initialize the procedures. Moreover, by Lemma the L'-norm
of an increment of a SA algorithm is of order /7o /p since E| 1= 05 | < E[l0)11 79*’"|2}1/2+EH0;}79*’” 212 <
C(H, 7)@ . Hence, to ensure that the different procedures do not jump too far ahead in one step, we freeze

of the SA procedures devised to compute the correction terms 6" ., .—0
Yon3/2T

the value of 91‘)@1 (respectively 93121) and reset it to the value of the previous step as soon as |9ﬁ1 —91}/5 | < K/\p

(respectively |9;’f1 - 9;’”/\ < K/,/p), for a pre-specified value of K. It notably prevents the algorithm from
blowing up during the first iterates. We select K = 5 in the different procedures. Note anyway that this
projection-reinitialization step slightly increases the complexity of each procedures. In our numerical examples,
we observe that it only represents around 1-2% of the total complexity.

Now let us interpret Figure [o} The curves of the statical romberg SA and the multi-level SA methods are
displaced below the curve of the SA method. Therefore, for a given error, the complexity of both methods are
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much lower than the SA procedure one. The difference in terms of computational cost becomes more significant
as the RMSE is small, which corresponds to large values of n. The difference between the statistical romberg
and the multi-level SA method is not significant for small values of n, i.e. for a RMSE between 1 and 0.1. For
a RMSE lower than 5.1072, which corresponds to a number of steps n greater than about 600-700, we observe
that the multi-level SA procedure becomes much more effective than both methods. For a RMSE fixed around
1 (which corresponds to n = 100 for the SA algorithm and statical romberg SA), one divides the complexity by
a factor of approximately 5 by using the statistical romberg SA. For a RMSE fixed at 10!, the computational
cost gain is approximately equal to 10 by using either the statistical romberg SA algorithm or the multi-level SA
one. Finally, for a RMSE fixed at 5.5.10~2, the complexity gain achieved by using the multi-level SA procedure
instead of the statistical romberg one is approximately equal to 5.

The histograms of Fig |4 illustrates Theorems and The distributions of n(&z_l(l/ng) —0%),

n(©3" — 0*) and n(O™ — §*), obtained with n = 4* = 256 and N = 1000 samples, are close to a normal
distribution.

histogram of n.(0 — #*), n = 256

probability
probability

5 E B EEY BT =0 o E)
-0 n(oy —6°)

histogram of .(O" — 0%), n = 25

FIGURE 4. Histograms of n(6,-1(1/n2) — 0*), n(©5" — 6*) and n(©" — 6*) (from left to right),
n = 256, with N = 1000 samples.

5. TECHNICAL RESULTS

We provide here some useful technical results that are used repeatedly throughout the paper. When the
exact value of a constant is not important we may repeat the same symbol for constants that may change from
one line to next.

Lemma 5.1. Let H be a stable d x d matrix and denote by Apmin its eigenvalue with the lowest real part. Let
(Yn)n>1 be a sequence defined by v, = y(n), n > 1, where v is a positive function defined on [0, 4+o00[ decreasing
to zero and such that ) -, v(n) = +oo. Let a,b > 0. We assume that v satisfies one of the following
assumptions:

e v varies regularly with exponent (—p), p € [0,1), that is for any x > 0, limy_, oo Y(tx)/y(t) = 2P
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Complexity w.r.t RMSE
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FiGUrE 5. Complexity with respect to RMSE.

o fort>1, v(t) = v/t with bRe(Amin)Yo > a.
Let (vn)n>1 be a non-negative sequence. Then, for some positive constant C, one has

n
lim sup ,, * g 'y,i+“vk||l_[k+17n||b < Climsup vy,
n n

k=1

where Iy, ,, 1= H?:k(ld —v;H), with the convention I, 41 5 = I4.

Proof. First, from the stability of H, for all 0 < A < Re(Amin), there exists a positive constant C' such that for
| < CTI[—1(1—X\v;). Hence, we have Y7, Y M1 |b < C S p v T vpe Aolsn=s8)

any k < n, ||Hk+l,n
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n>1, with s, =S 7 7. Weset z, :=5 o 1+“vke_’\b(5"_sk). It can written in the recursive form
) k=17 k=1 Tk
_ —Xb +1
Zpn41 = € 'Ynzn + ’YZ+1UTL+17 n Z 0.

Hence, a simple induction shows that for any N € N*

Znt1 < zy exp(—Ab(s, — Sn—1)) + exp(—Absy,,) Z exp()\bsk)'yZHUkH
k=N

< 2y exp(—Ab(sp, — sy_1)) + (sup vk) exp(—Absy,) Z exp(Absg)ve .
k>N =

We study now the impact of the step sequence (y,),>1 on the above estimate. We first assume that v, = vo/p
with bRe(Amin)v0 > a. We select A > 0 such that bRe(Amin)Y0 > bA\yo > a. Then, one has s, = vy log(p) +
c1+1p, c1 > 0 and 7, — 0 so that a comparison between the series and the integral yields

exp(—Absy,) Z exp(Absg)yit! < Ol
k=N

for some positive constant C' (independent of N) so that we clearly have

limsup~y,, “zn4+1 < C sup vg.
n k>N

and we conclude by passing to the limit N — 4-o0.
We now assume that ~y varies regularly with exponent —p, p € [0,1). Let s(t) = fot ~(s)ds. We have

exp(~Nbsu) Y- exp(MsinEt ~ exp(-Nbs() [ expOrs(o)*H ()
k=N 0

s(n)
~ exp(—)\bs(n))/o exp(Abt)y* (s~ (t))dt,

so that for any = such that 0 < x < 1, since t — v*(s~1(t)) is decreasing, we deduce

s(n) zs(n) s(n)
/ exp(Abt)y* (s (t))dt < 7“(5_1(0))/ exp(Abt)dt + 'y“(s_l(xs(n)))/ exp(Abt)dt
0 0 T

s(n)
7 (s1(0)) v (s (zs(n)))

<
- Ab Ab

exp(Abxs(n)) + exp(Abs(n)).

Hence it follows that

exp(—A\bs(n s(n) st (s~ Has(n
P [ e i < XD s - g+ L)

74(n) (n) Aby?(n)
and since t — y%(s71(t)) varies regular with exponent —ap/(1—p), and lim,, s A/%(n) exp(—A(1—z)s(n)) =0,
. exp(—Abs(n)) /S<n> o p—ap/(1=p)
limsup —————= exp(Abt)y* T (t)dt < ———
insup “PE [T e e < T

An argument similar to the previous case concludes the proof.
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Lemma 5.2. Let (0)),>0 be the procedure defined by (1.4) where 0f is independent of the innovation of the
algorithm with sup,,~, E|0f |* < +-00. Suppose that the mean-field function h™ satisfies

IA>0, Vn e N*, VO € RY (9 — 0%, h"()) > A6 — 6%, (5.25)

where %™ is the unique zero of h™ satisfying sup,,>, [6*"| < 4-oc.
Moreover, we assume that 7y satisfies one of the following assumptions:

e v varies regularly with exponent (—p), p € [0,1), that is for any x > 0, limy_, oo Y(tz)/y(t) = 2P
o fort>1, v(t) = o/t with 2Myo > 1.

Then, one has:
Vp>1, supE[|) — 6" *] < Cy(p)
n>1

for some positive constant C' independent of p and n.

Proof. From the dynamic of (6}),>1, we have

107y — %" = 07 — 0572 — 2y, (01 — 057 BT(O) + 230 (O — 057, AMD, )

+ Yo [H (O, (X2)PTH,
so that taking expectation in the previous equality and using assumptions (2.10)) and ([5.25)), we easily derive

E[6r,, —6°"

2 < (1= 2041 + Cyp B0 — 0572 + Oy

Now a simple induction argument yields

p
2<E0) - 0PIy, + ) g 7k
k=1

El67 — %"

where we set Il , := H;’:k(l —2Av; + Cq/]z) for sake of simplicity. Computations similar to the proof of Lemma
imply

Vp>1, El6y — 0" < Cy(p).

O

Proposition 5.1. Assume that the assumptions of Theorem [2.4) are satisfied and that 6y is independent of
the innovation of the algorithm with E|6y|*> < +o0.Then, there exists two sequences (ip)p>0 and (1p)p>0, with
o = 0p — 0% and ro = 0 such that
Vp>0, 0,—60"=p,+r,
and satisfying
igll)%_lE"up'Q < +oo and Vp_b|rp| < XY,

with b = 1 under (HS1) or b € (1/2,1 A Amyo) under (HS2) and where X, is a finite random variable and
(Yp)p>1 is a sequence of random variables bounded in L' (P), that is sup,, E[Y,| < 4oc.

Proof. We first write
Opt1 — 0" = (Ia — Vp+1DR(07))(0p — 07) + Vpr1 AMpi1 — Y1 (h(6) — DR(67)(0, — 67)).
We define the two sequences (up)p>0 and (rp)p>0 by

tip+1 = (Ia = Vp+1DR(67)) tp + Vp+1AMp11 (5.26)
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with g = 6o — 0" and r, =6, — 0" — p,, p > 1, with ro = 0. By iterating (5.26)), we clearly get

n
pn = 1y o + Z Villgn AM),
=1

Since 6 is independent of the innovation of the algorithm with E|fy|? < 400, for all € € (0, \,,), we have

Eln? < Cl|Tn *El6o]* +C Y 22 1 an | PEIAM 2

k=1
n n
< Cexp(—2(Am — €) Y 7)Elfo]* + CsupEfy, - 01> > R
k=1 = k=1

where we used (2.10) to derive E|AM;[* < Csupys, E|6x — 6*]> < +oo for the last inequality. Consequently,
similar computations as those used in Lemma [5.1] (select € s.t. (A, — €)y9 > 1/2 under (HS1)) allow to derive

sup’yp_11[§|,up|2 < +o0.
p=1

We now prove that p, —> 0. The convergence to zero of (Zzzl VeIl n AMy)p>1 will follow from the
convergence of the series

Nn = Z'VkAMk; n 2 1.
k=1
The sequence (N,),>1 is a martingale. By (2.10) and the a.s. convergence of (0))r>1, one has

(N)oo =Y WE[(AM)?| Fio1] < 00
E>1

which yields the a.s. convergence of (N,,),>1 towards a finite r.v. N. Then, using an abel’s transform, we get

n n—1
Z Vka,nAMk = Hn,nNn - Z(Hk+1,n - Hk,n)Nk
k=1 k=1

=T (Nn = Noo) + 1 nNoo = Y eIls1,n DR(07)(Ny — Noo).
k=1

The a.s. convergence of (IV,) towards N yields the a.s. convergence to zero of the first term. Since
|11 ,]] = O, the second term a.s. converges to zero. The a.s. convergence to zero of the last term follows from

1> Ik DR(O") (Vi = Noo)| <> Al Ty | [ DR(O7) || Nk — No|
k=1 k=1

and Lemma [5.11
Now, we focus on the estimates concerning (rp)p,>1. Since h is twice differentiable in a neighborhood of
6%, the line 4 of the column vector h(f,) — Dh(6*)(6, — 6*) is equal to (6, — 6*)THP (0, — 0*) with (H?), =
Sl t)2£iggl (t0* + (1 —t)8,)dt, (k,1) € [1,d]*. Hence, we define HP such that h(6,) — Dh(6*)(0, — 6*) =
(6, —0*)T HP (6, — 0*) and the line i of the column vector (6, —0*)T H?(6,, — 0*) is (6, — 6*)T H? (0, — 6*). With
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these notations, we have

Tpr1 = (Ia — Yo 1 DR(O*))p + Ypy1 (0, — 0*)T HP (6, — 0%)
= (Ia — yp+1DR(07) + 2’7p+1:“;{Hp + 'V;D+1T11;Hp)rp + '7p+1/‘;1;HpMp- (5.27)

By iterating the above equality we obtain

p
Tp = Z VA1 ppth— H* ey
k=1
with App == [T5_ (1o =75 (Dh(67) — 2u] HI™' — 7T H771)). Let us note that since 6, L% 0% and p, £ 0,

we have 7, %3 0 so that the sequence (Dh(6*) — 2u§71Hp_1 — rgle”_l)pzl of random matrices converges a.s.
to the stable matrix Dh(6*). Hence (see e.g. [Duf96]) for all § € (0, A,,,) there exists a finite random variable X
such that for all k& € [1,p],

P

[Akpll < X exp(—(Am —0) Z’Yj)
Jj=k
so that we derive
p p
Irpl < X sup [ 3 i exp(=(m = ) 3 7)lw-a
2 k=1 =k

where we used the fact that supys, |[H k|| < 400 since h is twice continuously differentiable. Hence, there exists
a finite random variable that we still denote X such that

P P
Il < X9 AR exp(—(Am — 6) Y i)ty e[
k=1 =k

We select § such that (\,, — d)y9 > b and an analysis along the lines of the proof of Lemma shows that
the sequence of random variables appearing in the second term in the right hand side of the above inequality is
bounded in L!(P).

O

Proposition 5.2. Assume that the assumptions of Theorem[3.9 are satisfied. Then, for all n € N there exists
two sequences (fiyy ) pefon] and (7} )pefo,n] with fig = 0* — 0" such that

Wpe[0,n], 2 =0 — 0" — (0, —0%) = i + 77+ o
and satisfying for alln € N, for all p € [1,n]
sup, Bl < O~y | < XY
p>
and
p
Fop = Wllks1p(H(Ok, (X7)* ) — H(0*, (X7)¥) = (h(0k) — 1(6%)))
k=1

for some positive constant C independent of p and n and where Xisa finite random variable (being independent
of n) and (Y)")p>1 is a sequence of random variables bounded in L'(P), that is sup, >, ,>1 E|Y}'] < +oc.
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Proof. Using (3 , we define the two sequences (fi3))pefo,n] and (7 )pefo,n] bY

p p
A =02+ el pANE + " llgr p(DR(67) — DR"(6°™) (6, — 6°")
k=1 k=1

+ Z’ykﬂk+17n(hn(9*,n) — h™(6*) — (H ("™, (X%)k+1) — H(6", (X%)kJrl)))
k=1

and

p P
o= D el (Gloy = Gon) + ) llira (B (67) — A" (677) — (H(67, (X)) — H(6™", (XP)*))).
k=1 k=1

We first focus on the sequence (ﬂg)pe[[o,n]]' Under the assumption on the step sequence we have

T pzg | < My

107 = 077 = O/~ 1/2)

Moreover, by the definition of the sequence (AN} )req1,n] and the Cauchy-Schwarz inequality we derive

p
E | il pANE
k=1

P

< C(EIH(0", X7) = H (0", X)) 2 Al p1*)2 = O/ 207 1/2).
k=1

Taking the expectation for the third term and following the lines of the proof of Lemma we obtain

p p
E | llir1p(DR(67) = DR (0°")(0F_y = 0°")| < C D 3 *II s | (1077 = 67| + | DA(67) — DA™ (67)]))
k=1 k=1
= O(yy/*n172).

Finally we take the square of the L?-norm of the last term and use Lemma to derive

2

p D
E D wllesrp(h™(07") = B (67) = (H(0™", (X2)*F) — HE", (X)) <107 = 07" D kg1 )
k=1 k=1

= O('ypn’l).

We now prove the bound concerning the sequence (f{b’p)pe[[o’n]]. Observe first that the inequality |05, —6*|? <

lpi—1]? + 2|0k —1 — 0*||rx—1| combined with Proposition lead to

P p

Z%Hlﬁl,p(cg—l—@ )| <C Z k”Hk-i-L:D

k=1 k=1

I e e e A [/ R A e [t )

p
Sc(l‘*‘igloﬂek—@ DY IMer1 pll (v 1671 = 0% + 35y a1 | + Yio),
= k=1

so that since sup, >, EY 7 _, VeI r1pll (v 21165y = 0772 + 7ty e—11? + Yio1) = O(p) we conclude that
the first term appearing in the decomposition of 77, satisfies the desired bound. Concerning the second term,
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following the lines of the proof of Lemma we simply take the square of its L?-norm to derive

p 2

p
supE |y llira (A" (6;) — h™(677) — (H(0F, (X)) = H(O™" (XP)* )| <O iesrpll?

n>1
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