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MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS

N. Frikha1

Abstract. This paper studies multi-level stochastic approximation algorithms. Our aim is to extend
the scope of the multilevel Monte Carlo method recently introduced by Giles [Gil08b] to the framework
of stochastic optimization by means of stochastic approximation algorithm. We first introduce and
study a two-level method, also referred as statistical Romberg stochastic approximation algorithm.
Then, its extension to multi-level is proposed. We prove a central limit theorem for both methods and
describe the possible optimal choices of step size sequence. Numerical results confirm the theoretical
analysis and show a significant reduction in the initial computational cost.
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1. Introduction

A basic problem in numerical probability is the computation of quantities like Ex[f(XT )] for a given function
f : Rq → R and where X := (Xt)t∈[0,T ] is a q-dimensional diffusion process defined on a filtered probability
space (Ω,F , (Ft)t≥0,P), satisfying the usual conditions, and solution to the following stochastic differential
equation (SDE)

Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs, (SDEb,σ)

where (Wt)t≥0 is a q′-dimensional (Ft)t≥0 Brownian motion and the coefficients b, σ are assumed to be Lipschitz-
continuous. For instance, it appears in mathematical finance and represents the price of a European option
with maturity T when the dynamic of the underlying assets is given by (SDEb,σ). Under suitable assumptions
on the function f and the coefficients b, σ, namely smoothness or non degeneracy, it can also be related to the
Feynman-Kac representation of the heat equation associated to the generator of X. In order to do this, the
first step consists in discretizing (SDEb,σ) using the continuous Euler-Maruyama scheme (Xn

t )t∈[0,T ] with time
step ∆ = T/n and regular points ti = i∆, i = 0, · · · , n, namely

Xn
t = x+

∫ t

0

b(Xn
φn(s)

)ds+

∫ t

0

σ(Xn
φn(s)

)dWs, φn(s) = sup {ti : ti ≤ s} . (1.1)

This step introduces the so-called weak-error Ex[f(XT )] − Ex[f(Xn
T )] which has been widely investigated

in the literature. Since the seminal work of [TT90], it is known that, under smoothness assumption on the
coefficients b, σ, the continuous Euler scheme produces a weak error of order ∆. In a hypoelliptic setting for the
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2 N. FRIKHA

coefficients b and σ and for a bounded measurable function f , Bally and Talay [BT96] obtained the expected
order using Malliavin calculus. The second step consists in approximating the expectation Ex[f(Xn

T )] using

a Monte Carlo estimator M−1 ×∑M
k=1 f((Xn

T )j) where the ((Xn
T )j)j∈[[1,M ]] are M independent copies of the

Euler-Maruyama scheme starting at the initial value x at time 0. This step gives rise to a statistical error

Ex[f(Xn
T )]−M−1×∑M

j=1 f((Xn
T )j). Given the order of the weak error, a natural question is to find the optimal

choice of the step size M to achieve a global error. If the weak error is of order n−α then for a total error
of order n−α (α ∈ [1/2, 1]), the minimal computation necessary for the Monte Carlo algorithm is obtained for
M = n2α, see [DG95]. So, the computational cost of the algorithm is CMC = C×n2α+1, for a positive constant
C > 0.

In order to reduce the complexity of the computation, Kebaier [Keb05] introduced a two-level Monte Carlo
scheme, originally referred as statistical Romberg method, which uses two Euler schemes with time step T/n
and T/nβ , β ∈ (0, 1) and approximates Ex[f(XT )] by

1

nγ1

nγ1∑
j=1

f((X̂nβ

T )j) +
1

nγ2T

nγ2T∑
j=1

f((Xn
T )j)− f((Xnβ

T )j)

where X̂nβ is a second Euler-Maruyama scheme with time step T/nβ generated with brownian paths which are

independent of the ones used to simulate Xnβ and Xn. If the weak error is of order n−α then to achieve a global
error of order n−α, α ∈ [1/2, 1], the optimal choice, that is the one minimizing the complexity, is obtained for

γ1 = 2α and γ2 = 2α−β and β = 1/2 leading to an optimal complexity of order n2α+
1
2 which is lower than the

classical complexity CMC .
Generalizing Kebaier’s approach, Giles [Gil08b] proposed a multi-level Monte Carlo algorithm which relies

on devising Euler schemes with a geometric sequence of different time steps T/m`, ` = 0, · · · , L, m ∈ N∗\{1}
s.t. mL = n and approximates Ex[f(XT )] by

1

nγ0

nγ0∑
j=1

f((X1
T )j) +

L∑
`=1

1

N`

N∑̀
j=1

(
f((Xm`

T )j)− f((Xm`−1

T )j)
)
,

where all these L+1 empirical mean sequences are based on independent samples. For each level ` ∈ {1, · · · , L},
and each sample j ∈ {1, · · · , N`}, (Xm`

T )j and (Xm`−1

T )j are based on the same path but with two different time
steps. Based on an analysis of the variance, Giles [Gil08b] proposed an optimal choice for the sequence (N`)1≤`≤L
which minimizes the total complexity of the algorithm. More recently, Ben Alaya and Kebaier [AK12] proposed
a different analysis to obtain the optimal choice of the parameters relying on a Lindeberg Feller central limit
theorem for the multi-level Monte Carlo algorithm. To achieve a global error of order n−α, both approaches
lead to a complexity of order n2α(log n)2 which is significantly lower than the computational costs of the Monte
Carlo and the statistical Romberg methods. For further developments on multi-level Monte Carlo methods, we
refer to Giles [Gil08a], Dereich [Der11], Giles, Higham and Mao [GHM09] among others.

In the present paper, we are interested in broadening the scope of the multi-level Monte Carlo method to the
framework of stochastic approximation algorithm. Introduced by Robbins and Monro [RM51], these recursive
simulation based algorithms appear as effective and widely used procedures to solve inverse problems. To be
more specific, their aim is to find a zero of a continuous function h : Rd → Rd which is unknown to the
experimenter but can only be estimated through experiments. Successfully and widely investigated from both a
theoretical and applied point of view since this seminal work, such procedures are now commonly used in various
contexts such as convex optimization since minimizing a function amounts to finding a zero of its gradient. In
the general Robbins-Monro procedure, the function h writes h(θ) := EH(θ, U) where H : Rd ×Rq → Rd and U
is a Rq-valued random vector. To estimate the zero of h, they proposed the algorithm

θp+1 = θp − γp+1H(θp, U
p+1), p ≥ 0 (1.2)



MULTI-LEVEL STOCHASTIC APPROXIMATION ALGORITHMS 3

where (Up)p≥1 is an i.i.d. sequence of random variables with the same law as U defined on a probability space
(Ω,F ,P), θ0 is independent of the innovation of the algorithm with E|θ0|2 < +∞ and γ = (γp)p≥1 is a sequence
of non-negative deterministic and decreasing steps satisfying the assumption∑

p≥1
γp = +∞, and

∑
p≥1

γ2p < +∞. (1.3)

When the function h is the gradient of a convex potential, the recursive procedure (1.2) is a stochastic gradient
algorithm. Indeed, replacing H(θp, U

p+1) by h(θp) in (1.2) leads to the usual deterministic descent gradient
procedure. When h(θ) = k(θ) − `, θ ∈ R, where k is a monotone function, say increasing, which writes
k(θ) = EK(θ, U), K : R× Rq → R being a Borel function and ` a given desired level, then setting H = K − `,
the recursive procedure (1.2) aims to compute the value θ̄ such that k(θ̄) = `.

In many applications, notably in computational finance, we are interested in the computation of the zero θ∗

of h given by h(θ) := Ex[H(θ,XT )], where H : Rd×Rq → Rd is a Borel function and XT is the value at time T of
the SDE given by (SDEb,σ). For instance, the computations of the implied volatility or the implied correlation
boils down to finding the zero of an unknown function. Computing the Value-at-Risk and the Conditional Value-
at-Risk of a financial portfolio when the dynamics of the underlying assets are given by (SDEb,σ) also appears
as an inverse problem for which a stochastic approximation may be devised, see e.g. [BFP09a] and [BFP09b].
Risk minimizing a financial portfolio by means of stochastic approximation has been studied in [BFP10]. For
more applications and a complete overview in the theory of stochastic approximation, the reader may refer
to [Duf96], [KY03] and [BMP90].

The function h is generally neither known nor computable and since the random variable XT cannot be
simulated in general, estimating θ∗ by devising directly the recursive scheme (1.2) is not possible. Therefore,
two steps are needed to compute θ∗:

- the first step consists in approximating the dynamic of (Xt)t∈[0,T ] by its Euler-Maruyama discretization scheme
(Xn

t )t∈[0,T ] given by (1.1) that can be easily simulated. Hence, the zero θ∗ of h is approximated by the zero

θ∗,n of hn defined by hn(θ) := Ex[H(θ,Xn
T )], θ ∈ Rd. It induces an implicit discretization error which writes

ED(n, T, b, σ,H) := θ∗ − θ∗,n.

Let us note that θ∗,n appears as a proxy of θ∗ and one would naturally expect that θ∗,n → θ∗ as the number n
of time step in the Euler-Maruyama scheme tends to infinity.

- the second step consists in approximating θ∗,n involving the scheme (1.1) by M ∈ N∗ steps of the following
stochastic approximation scheme

θnp+1 = θnp − γp+1H(θnp , (X
n
T )p+1), p ∈ [[0,M − 1]], (1.4)

where ((Xn
T )p)p∈[[1,M ]] is an i.i.d. sequence of random variables with the same law as Xn

T , θn0 is independent

of the innovation of the algorithm with supn≥1 E|θn0 |2 < +∞ and γ = (γp)p≥1 is a sequence of non-negative
deterministic and decreasing steps satisfying (1.3). This induces a statistical error which writes

ES(n,M, γ, T,H) := θ∗,n − θnM .

The global error between θ∗, the quantity to estimate, and its implementable approximation θnM can be
decomposed as follows:

Eglob(M,γ,H) = θ∗ − θ∗,n + θ∗,n − θnM
:= ED(n, T, b, σ,H) + ES(n,M, γ, T,H).

The first step of our analysis consists in investigating the behavior of the implicit discretization error
ED(n, T, b, σ,H). Under mild assumptions on the functions h and hn, namely the local uniform convergence of
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(hn)n≥1 towards h and a mean reverting assumption of h and hn, we prove that limn ED(n, T, b, σ,H) = 0. We
next show that under stronger assumption, namely the local uniform convergence of (Dhn)n≥1 towards Dh and
the non-singularity of Dh(θ∗), the rate of convergence of the standard weak discretization hn(θ) − h(θ), for a
fixed θ ∈ Rd, transfers to the implicit discretization error ED(n, T, b, σ,H) = θ∗ − θ∗,n.

Regarding the statistical error ES(n,M, γ, T,H) := θ∗,n− θnM , it is well-known that under standard assump-
tions, i.e. a mean reverting assumption on hn and a growth control of the L2-norm of the noise of the algorithm,
the Robbins-Monro theorem guarantees that limM ES(n,M, γ, T,H) = 0 for each fixed n ∈ N∗, see Theorem
2.3 below. Moreover, under mild technical conditions, a central limit theorem (CLT) holds at rate γ−1/2(M),
that is, for each fixed n ∈ N∗, γ−1/2(M)ES(n,M, γ, T,H) converges in distribution to a normally distributed
random variable with mean zero and finite covariance matrix, see Theorem 2.4 below. The reader may also
refer to [FM12] and [FF13] for some recent developments on non-asymptotic deviation bounds for the statistical

error. In particular if we set γ(p) = γ0/p, γ0 > 0, p ≥ 1, the weak convergence rate is
√
M provided that

γ0 > 1/(2Re(λmin)) where λmin denotes the eigenvalue of Dh(θ∗) with the smallest real part. However, this
local condition on the Jacobian matrix of h at the equilibrium is difficult to handle in practical situation.

To circumvent such a difficulty, it is fairly well-known that the key idea is to carefully smooth the trajec-
tories of a converging stochastic approximation algorithm by averaging according to the Ruppert & Polyak
averaging principle, see e.g. [Rup91] and [PJ92]. It consists in devising the original stochastic approximation
algorithm (1.4) with a slow decreasing step and to simultaneously compute the empirical mean (θ̄np )p≥1 (which
a.s. converges to θ∗,n) of the sequence (θnp )p≥0 by setting

θ̄np =
θn0 + θn1 + · · ·+ θnp

p+ 1
= θ̄np−1 −

1

p+ 1

(
θ̄np−1 − θnp

)
. (1.5)

The statistical error now writes ES(n,M, γ, T,H) := θ∗,n − θ̄nM and under mild assumptions a CLT holds at

rate
√
M without any stringent condition on γ0.

Given the order of the implicit discretization error and a step sequence γ satisfying (1.3) with which the
procedure (1.4) to estimate θ∗,n is devised, a natural question is to find the optimal balance between reducing
the time step T/n in the discretization scheme (1.1) and increasing the number M of steps in (1.4) to achieve
a given global error. This problem was originally investigated and solved in [DG95] for the Monte Carlo
approximation of Ex[f(XT )]. Their result implies that it is optimal to have M = n2α Monte Carlo simulations
when the weak discretization error is of the order n−α, α > 0. The error between θ∗ and the approximation
θnM writes θnM − θ∗ = θnM − θ∗,n + θ∗,n − θ∗ suggesting to select M = γ−1(1/n2α), where γ−1 is the inverse
function of γ, when the weak discretization error is of order n−α. However, due to the non-linearity of the
stochastic approximation algorithm (1.4), the methodology developed in [DG95] does not apply in our context.
The key tool to tackle this question consists in linearizing the dynamic of (θnp )p∈[[1,M ]] around its target θ∗,n,
quantifying the contribution of the non linearities in the space variable θnp and the innovations and finally
exploiting stability arguments from stochastic approximation schemes. Optimizing with respect to the usual
choice of the step sequence, the minimal computational cost to achieve an error of order n−α which is given by
CSA = C × n × γ−1(1/n2α) is reached by setting γ(p) = γ0/p, p ≥ 1, provided that the constant γ0 satisfies
a stringent condition involving hn, leading to a complexity of order n2α+1. We also obtain that the optimal
complexity is reached for free without any condition on γ0 when considering the empirical mean sequence
(θ̄np )p∈[[1,n2α]].

To reduce the computational cost of estimating θ∗ by means of stochastic approximation algorithm, we
investigate in a second part multi-level stochastic approximation algorithms. The first one is a two-level sto-
chastic approximation scheme, also referred as the statistical Romberg stochastic approximation method, that

approximates the unique zero θ∗ of h by Θsr
n = θn

β

M1
+ θnM2

− θnβM2
, β ∈ (0, 1). The couple (θnM2

, θn
β

M2
) is com-

puted using two Euler discretization schemes with different time steps but with the same Brownian motions

and the Brownian paths used for the computation of θn
β

M1
are independent of those used for the computation

of (θnM2
, θn

β

M2
). For an implicit discretization error of order n−α, we prove a CLT for the sequence (Θsr

n )n≥1
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through which we are able to optimally fix M1, M2 and β with respect to n and the step sequence γ. The

intuitive idea is that when n is large, (θnp )p∈[[0,M2]] and (θn
β

p )p∈[[0,M2]] are close to the SA (θp)p∈[[0,M2]] devised

with the innovation variables ((XT )p)p≥1 so that the correction term writes θnM2
− θM2 − (θn

β

M2
− θM2). The

key idea is then to quantify the two main contributions in this decomposition, namely the one due to the non

linearity in the space variables (θn
β

p , θnp , θp)p∈[[0,M2]] on one hand and the one due to the non linearity in the

innovation variables ((Xnβ

T )p, (Xn
T )p, (XT )p)p≥1 in the other hand. Under mild smoothness assumption on the

function H, the weak rate of convergence is ruled by the non linearity in the innovation variables for which we
use the weak convergence of the normalized error

√
n/T (Xn

T −XT ) of the Euler scheme for diffusions proved
in [JP98]. The optimal choice of the step sequence is again γp = γ0/p, p ≥ 1 and induces a complexity for

the procedure given by CSA-SR = C × n2α+1/2, C > 0 provided that γ0 satisfies again a condition involving hn

which is difficult to handle in practice. By considering the empirical mean sequence Θ̄sr
n = θ̄n

β

M3
+ θ̄nM4

− θ̄nβM4
,

where (θ̄n
β

p )p∈[[0,M3]] and (θ̄np , θ̄
nβ

p )p∈[[0,M4]] are respectively the empirical means of the sequences (θn
β

p )p∈[[0,M3]]

and (θnp , θ
nβ

p )p∈[[0,M4]] devised with the same slow decreasing step sequence, this optimal complexity is reached

for free by setting M3 = n2α, M4 = n2α−βT without any condition on γ0.
Moreover, we generalize this first approach to the case of the multi-level stochastic approximation method. In

the spirit of [Gil08b] for Monte Carlo path simulation, the multi-level stochastic approximation scheme estimates

θ∗ by computing the quantity Θml
n = θ1M0

+
∑L
`=1 θ

m`

M`
− θm`−1

M`
based on Euler schemes with the same geometric

sequence of time steps as for the estimation of Ex[f(XT )]. Here again to establish a CLT for this estimator (as
in [AK12] for the Monte Carlo path simulation), our analysis follows the lines of the methodology developed so
far. The optimal computational cost to achieve an accuracy of order 1/n is reached by setting M0 = γ−1(1/n2),
M` = γ−1(m` log(m)/(n2 log(n)(m − 1)T )), ` = 1, · · · , L. Once again the step sequence γ(p) = γ0/p, p ≥ 1,
is optimal among the usual choices of step sequence and it induces a complexity for the procedure given by
CSA-ML = C × n2(log(n))2 which is of the same order as the one obtained in [Gil08b] and [AK12].

The paper is organized as follows. Basic results concerning the Euler-Maruyama discretization scheme and
stochastic approximation schemes are briefly presented in the next section. We also investigate the behavior
of the implicit discretization error and derive the optimal balance between reducing the time step T/n and
increasing the number of steps in the stochastic approximation procedure to achieve a given global error. In
Section 3 we present and study the multi-level stochastic approximation algorithms. In Section 4 numerical
results are presented to confirm the theoretical analysis. Finally, Section 5 is devoted to technical results which
are useful throughout the paper.

2. General framework

In this section, we present some basic results concerning the Euler-Maruyama discretization scheme and
stochastic approximation schemes. In the present paper, we make no attempt to provide an exhaustive discussion
related to convergence results. We refer readers to [Duf96], [KY03] and [BMP90] among others for developments
and a more complete overview in the theory of stochastic approximation.

2.1. On some basic results related to the Euler-Maruyama scheme

In the current work, we assume that the coefficients of (SDEb,σ) satisfy the mild smoothness condition:

(HS) The coefficients b, σ are uniformly Lipschitz continuous.
(HD) The coefficients b, σ satisfy (HS) and are continuously differentiable.

Throughout the paper, we will use these well-known properties concerning the Euler-Maruyama scheme which
are valid under (HS), namely

∀p ≥ 1, ∃C := C(p, T, b, σ) > 0 Ex[ sup
0≤t≤T

|Xt −Xn
t |p]1/p ≤

C

n1/2
, (2.6)
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and

∀p ≥ 1, ∃K := K(p, x, T, b, σ) > 0 Ex[ sup
0≤t≤T

|Xt|p]1/p + Ex[ sup
0≤t≤T

|Xn
t |p]1/p ≤ K. (2.7)

Now we turn our attention to the weak convergence rate of the Euler scheme. We follow the notation of [JP98].
For a sequence of E-valued (E being a Polish space) random variables (Xn)n≥1 defined on a probability space

(Ω,F ,P), we say that (Xn)n≥1 converges in law stably to X defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) and

write Xn
stably
=⇒ X, if for all bounded random variable U defined on (Ω,F ,P) and for all h : E → R bounded

continuous, one has

EUh(Xn)→ ẼUh(X), n→ +∞.
Stable convergence was introduced in [Rén63] and notably investigated in [AE78].The following results will

be useful in order to derive a CLT for multi-level stochastic approximation algorithms. We first introduce some
notations, namely

f(Xt) =


b1(Xt) σ11(Xt) · · · σ1q′(Xt)
b2(Xt) σ21(Xt) · · · σ2q′(Xt)

...
... · · ·

...
bq(Xt) σq1(Xt) · · · σqq′(Xt)


and dYt = (dt dW 1

t · · · dW q′

t )T where here as below uT denotes the transpose of the vector u. Consequently,
the SDE (SDEb,σ) can be written in the compact form

∀t ∈ [0, T ], Xt = x+

∫ t

0

f(Xs)dYs

with its continuous Euler-Maruyama scheme with time step ∆ = T/n

Xn
t = x+

∫ t

0

f(Xn
φn(s)

)dWs.

The following result is due to [JP98], Theorem 3.2 p.276 and Theorem 5.5, p.293.

Theorem 2.1. Assume that (HD) holds. Then, the process Un := Xn −X satisfies√
n

T
Un

stably
=⇒ U, as n→ +∞

the process U being defined by U0 = 0 and

dU it =

q′+1∑
j=1

q∑
k=1

f
′ij
k (Xt)

Ukt dY jt − q′+1∑
`=1

fk`(Xt)dZ
`j
t

 (2.8)

where f
′ij
k is the kth partial derivative of f ij and

∀(i, j) ∈ [[2, q′ + 1]]× [[2, q′ + 1]], Zijt =
1√
2

∑
1≤k,`≤q

∫ t

0

σik(Xs)σ
j`(Xs)dB

k`
s ,

∀j ∈ [[1, q′ + 1]], Z1j = 0,

∀i ∈ [[1, q′ + 1]], Zi1 = 0,
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where B is a standard (q′)2-dimensional Brownian motion defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of (Ω,F , (Ft)t≥0,P)
and independent of W .

The following lemma is a basic result on stable convergence that will be useful throughout the paper. Here,
E and F will denote two Polish spaces. We consider a sequence (Xn)n≥1 of E-valued random variable defined
on (Ω,F).

Lemma 2.1. Let (Yn)n≥1 be a sequence of F -valued random variable defined on (Ω,F) satisfying

Yn
P−→ Y

where Y is defined on (Ω,F). If Xn
stably
=⇒ X where X is defined on an extension of (Ω,F) then, we have

(Xn, Yn)
stably
=⇒ (X,Y ).

Let us note that this result remains valid when Yn = Y , for all n ≥ 1

To prove a CLT for the multi-level stochastic approximation method, we will also need the following result
which is due to [AK12], Theorem 4.

Theorem 2.2. Let m ∈ N∗\{1}. Assume that (HD) holds. Then, we have√
m`

(m− 1)T
(Xm` −Xm`−1

)
stably
=⇒ U, as `→ +∞.

2.2. On some basic results related to stochastic approximation

The stochastic approximation provides various theorems that guarantee the a.s. and/or Lp convergence of
stochastic approximation algorithms. We provide below a general result in order to derive the a.s. convergence
of such procedures. It is also known as Robbins-Monro Theorem and covers most situations (see the remark
below).

Theorem 2.3 (Robbins-Monro Theorem). Let H : Rd×Rq → Rd a Borel function and U a Rq-valued random
vector with law µ. Define

∀θ ∈ Rd, h(θ) = E[H(θ, U)],

and denote by θ∗ the (unique) solution to h(θ) = 0. Suppose that h is a continuous function that satisfies the
mean-reverting assumption

∀θ ∈ Rd, θ 6= θ∗, 〈θ − θ∗, h(θ)〉 > 0. (2.9)

Let γ = (γp)p≥1 be a sequence of gain parameters satisfying (1.3). Suppose that

∀θ ∈ Rd, E|H(θ, U)|2 ≤ C(1 + |θ − θ∗|2) (2.10)

Let (Up)p≥1 be an i.i.d. sequence of random vectors with common law µ and θ0 a random vector independent
of (Up)p≥1 satisfying E|θ0|2 < +∞. Then, the recursive procedure defined by

θp+1 = θp − γp+1H(θp, Up+1), p ≥ 0 (2.11)

satisfies

θp
a.s.−→ θ∗, as p→ +∞.
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Let us point out that the Robbins-Monro theorem also covers the framework of stochastic gradient algorithm.
Indeed, if the function h is the gradient of a convex potential L, namely h = ∇L where L ∈ C1(Rd,R+), that
satisfies: ∇L is Lipschitz, |∇L|2 ≤ C(1 + L) and lim|θ|→+∞ L(θ) = +∞ then, ArgminL is non-empty and

according to the following standard lemma θ 7→ 1
2 |θ− θ∗|2 is a Lyapunov function so that the sequence (θn)n≥1

defined by (2.11) converges a.s. to θ∗.

Lemma 2.2. Let L ∈ C1(Rd,R+) be a convex function, then

∀θ, θ′ ∈ Rd, 〈∇L(θ)−∇L(θ′), θ − θ′〉 ≥ 0.

Moreover, if ArgminL is non-empty, then one has

∀θ ∈ Rd\ArgminL,∀θ∗ ∈ ArgminL, 〈∇L(θ), θ − θ∗〉 > 0.

Now, we provide a result on the weak rate of convergence of stochastic approximation algorithm. In standard

situations, it is well-known that a stochastic algorithm (θp)p≥1 converges to its target at a rate γ
−1/2
p . We also

refer to [FM12] and [FF13] for some recent developments on non-asymptotic deviation bounds. More precisely,

the sequence (γ
−1/2
p (θp−θ∗))p≥1 converges in distribution to some normal distribution with a covariance matrix

based on EH(θ∗, U)H(θ∗, U)T where U is the noise of the algorithm. The following result is due to [Pel98] (see
also [Duf96], p.161 Theorem 4.III.5) and has the advantage to be local, in the sense that a CLT holds on the
set of convergence of the algorithm to an equilibrium which makes possible a straightforward application to
multi-target algorithms.

Theorem 2.4. Let θ∗ ∈ {h = 0}. Suppose that h is twice continuously differentiable in a neighborhood of θ∗

and that Dh(θ∗) is a stable d×d matrix, i.e. all its eigenvalues have positive real parts. Assume that the function
H satisfies the following regularity and growth control property

θ 7→ EH(θ, U)H(θ, U)T is continuous on Rd, ∃b > 0 s.t. θ 7→ E|H(θ, U)|2+b is locally bounded on Rd.

Assume that the noise of the algorithm is not degenerated, that is Γ(θ∗) := EH(θ∗, U)H(θ∗, U)T is a positive
definite deterministic matrix.

The step sequence of the procedure (2.11) is given by γp = γ(p), p ≥ 1, where γ is a positive function defined
on [0,+∞[ decreasing to zero. We assume that γ satisfies one of the following assumptions:

• γ varies regularly with exponent (−ρ), ρ ∈ [0, 1), that is, for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ. In
this case, set ζ = 0.
• for t ≥ 1, γ(t) = γ0/t and γ0 satisfies γ0 > 1/(2Re(λmin)), where λmin denotes the eigenvalue of
Dh(θ∗) with the lowest real part. In this case, set ζ = 1

2γ0
.

Then, on the event {θp → θ∗}, one has

γ(p)−1/2 (θp − θ∗) =⇒ N (0,Σ∗)

where Σ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Γ(θ∗) exp (−s(Dh(θ∗)− ζId)) ds.

Remark 2.1. The assumption on the step sequence (γn)n≥1 is quite general and the above theorem is often
applied to the usual gain γp = γ(p) = γ0p

−ρ, with 1/2 < ρ ≤ 1, which notably satisfies (1.3).

Hence we clearly see that the optimal weak rate of convergence is achieved by choosing γp = γ0/p with
2Re(λmin)γ0 > 1. However the main drawback with this choice is that the constraint on γ0 is difficult to handle
in practical implementation. Moreover it is well-known that in this case the asymptotic covariance matrix is
not optimal, see e.g. [Duf96] or [BMP90] among others.
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As mentioned in the introduction, a solution consists in devising the original stochastic approximation algo-
rithm (2.11) with a slow decreasing step γ = (γp)p≥1, where γ varies regularly with exponent (−ρ), ρ ∈ (1/2, 1)
and to simultaneously compute the empirical mean (θ̄p)p≥1 of the sequence (θp)p≥0 by setting

θ̄p =
θ0 + θ1 + · · ·+ θp

p+ 1
= θ̄p−1 −

1

p+ 1

(
θ̄p−1 − θp

)
. (2.12)

The following result states the weak rate of convergence for the sequence (θ̄p)p≥1. In particular, it shows that
the optimal weak rate of convergence and the optimal asymptotic covariance matrix can be obtained without
any condition on γ0. For a proof, the reader may refer to [Duf96], p.169.

Theorem 2.5. Let θ∗ ∈ {h = 0}. Suppose that h is twice continuously differentiable in a neighborhood of θ∗

and that Dh(θ∗) is a stable d×d matrix, i.e. all its eigenvalues have positive real parts. Assume that the function
H satisfies the following regularity and growth control property

θ 7→ EH(θ, U)H(θ, U)T is continuous on Rd, ∃b > 0 s.t. θ 7→ E|H(θ, U)|2+b is locally bounded on Rd.

Assume that the noise of the algorithm is not degenerated, that is Γ(θ∗) := EH(θ∗, U)H(θ∗, U)T is a positive
definite deterministic matrix.

The step sequence of the procedure (2.11) is given by γp = γ(p), p ≥ 1, where γ varies regularly with exponent
(−ρ), ρ ∈ (1/2, 1). Then, on the event {θp → θ∗}, one has

√
p
(
θ̄p − θ∗

)
=⇒ N

(
0, Dh(θ∗)−1Γ(θ∗)(Dh(θ∗)−1)T

)
.

2.3. On the implicit discretization error

As already observed the approximation of θ∗ solution of h(θ) = Ex[H(θ,XT )] = 0 is affected by two errors:
the implicit discretization error and the statistical error. A first interesting problem concerns the convergence
of θ∗,n toward θ∗ as n→ +∞ or equivalently the behavior of the discretization error as the number of time step
n of the continuous Euler scheme goes to infinity.

Theorem 2.6. For all n ∈ N∗, assume that h and hn satisfy the mean reverting assumption (2.9) of Theorem
2.3. Moreover, suppose that (hn)n≥1 converges locally uniformly towards h. Then, one has

θ∗,n → θ∗ as n→ +∞.

Proof. Let ε > 0. The mean-reverting assumption (2.9) and the continuity of u 7→ 〈u, h(θ∗ + εu)〉 on the
(compact) set Sd :=

{
u ∈ Rd, |u| = 1

}
yields

η := inf
u∈Sd
〈u, h(θ∗ + εu)〉 > 0.

The local uniform convergence of hn implies

∃nη ∈ N∗, ∀n ≥ nη, θ ∈ B̄(θ∗, ε) ⇒ |hn(θ)− h(θ)| ≤ η/2.

Then, using the following decomposition

〈θ − θ∗, hn(θ)〉 = 〈θ − θ∗, h(θ)〉+ 〈θ − θ∗, hn(θ)− h(θ)〉

one has for θ = θ∗ ± εu, u ∈ Sd,

ε〈u, hn(θ∗ + εu)〉 ≥ 〈εu, h(θ∗ + εu)〉 − εη/2 ≥ εη − εη/2 = εη/2

−ε〈u, hn(θ∗ − εu)〉 ≥ 〈−εu, h(θ∗ − εu)〉 − εη/2 ≥ εη − εη/2 = εη/2
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so that, 〈u, hn(θ∗ + εu)〉 > 0 and 〈u, hn(θ∗ − εu)〉 < 0 which combined with the intermediate value theorem
applied to the continuous function x 7→ 〈u, hn(θ∗ + xu)〉 on the interval [−ε, ε] yields:

〈u, hn(θ∗ + x̃u)〉 = 0

for some x̃ = x̃(u) ∈]− ε, ε[. Now we set u = θ∗ − θ∗,n/|θ∗ − θ∗,n| as soon as it is possible (otherwise the proof
is complete). Hence, there exists x∗ ∈]− ε, ε[ such that〈

θ∗ − θ∗,n
|θ∗ − θ∗,n| , h

n

(
θ∗ + x∗

θ∗ − θ∗,n
|θ∗ − θ∗,n|

)〉
= 0

which clearly implies〈
θ∗,n +

(
x∗

|θ∗ − θ∗,n| + 1

)
(θ∗ − θ∗,n)− θ∗,n, hn

(
θ∗,n +

(
x∗

|θ∗ − θ∗,n| + 1

)
(θ∗ − θ∗,n)

)〉
= 0

so that by the very definition of θ∗,n, we have x∗ = ±|θ∗ − θ∗,n| and finally |θ∗ − θ∗,n| < ε for n ≥ nη. This
completes the proof. �

Now, we derive a convergence rate.

Theorem 2.7. Suppose the assumptions of theorem 2.6 hold and that h and hn, n ≥ 1, are continuously
differentiable and that Dh(θ∗) is non-singular. Assume that (Dhn)n≥1 converges locally uniformly to Dh. If
there exists α ∈ [0, 1] such that

∀θ ∈ Rd, lim
n→+∞

nα(hn(θ)− h(θ)) = E(h, α, θ),

then, one has

lim
n→+∞

nα(θ∗,n − θ∗) = −Dh−1(θ∗)E(h, α, θ∗).

Proof. A Taylor expansion yields for all n ≥ 1

hn(θ∗) = hn(θ∗,n) +

(∫ 1

0

Dhn(λθ∗,n + (1− λ)θ∗)dλ

)
(θ∗ − θ∗,n).

Combining the local uniform convergence of (Dhn)n≥1 to Dh, the convergence of (θ∗,n)n≥1 to θ∗ and the

non-singularity of Dh(θ∗), ones clearly gets that for n large enough
∫ 1

0
Dhn(λθ∗,n+ (1−λ)θ∗)dλ is non singular

and that (∫ 1

0

Dhn(λθ∗,n + (1− λ)θ∗)dλ

)−1
→ Dh−1(θ∗), n→ +∞.

Consequently, recalling that h(θ∗) = 0 and hn(θ∗,n) = 0, it is plain to see

nα(θ∗,n − θ∗) = −
(∫ 1

0

Dhn(λθ∗,n + (1− λ)θ∗)dλ

)−1
nα(hn(θ∗)− h(θ∗))→ −Dh−1(θ∗)E(h, α, θ∗).

�
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2.4. On the optimal tradeoff between the implicit discretization and the statistical errors

Given the order of the implicit discretization error, a natural question is to find the optimal balance between
the number of time steps n in the discretization of the process (Xt)0≤t≤T and the number M of steps in (1.4)
for the computation of θ∗ to achieve a given global error ε. We suppose that hn and H satisfy the following
assumptions:

(HR) There exists a ∈ (0, 1],

sup
n∈N∗,(θ,θ′)∈(Rd)2

E|H(θ,Xn
T )−H(θ′, Xn

T )|2
|θ − θ′|2a < +∞.

(HI) There exists b > 0 such that for all R > 0, we have sup{θ:|θ|≤R, n∈N∗} E|H(θ,Xn
T )|2+b < +∞. The sequence

(θ 7→ EH(θ,Xn
T )H(θ,Xn

T )T )n≥1 converges locally uniformly towards θ 7→ EH(θ,XT )H(θ,XT )T . The function
θ 7→ EH(θ,XT )H(θ,XT )T is continuous and EH(θ∗, XT )H(θ∗, XT )T is a positive deterministic matrix.

(HMR) There exists λ > 0 such that ∀n ≥ 1

∀θ ∈ Rd, 〈θ − θ∗,n, hn(θ)〉 ≥ λ|θ − θ∗,n|2.

We will denote λm the lowest real part of the eigenvalues of Dh(θ∗). We will assume that the step sequence
is given by γp = γ(p), p ≥ 1, where γ is a positive function defined on [0,+∞[ decreasing to zero and satisfying
one of the following assumptions:

(HS1) γ varies regularly with exponent (−ρ), ρ ∈ [0, 1), that is, for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ.
(HS2) for t ≥ 1, γ(t) = γ0/t and γ0 satisfies 2λγ0 > 1.

Remark 2.2. Assumption (HR) is trivially satisfied when θ 7→ H(θ, x) is Hölder-continuous with modulus
having polynomial growth in x. However, it is also satisfied when H is less regular. For instance, it holds for
H(θ, x) = 1{x≥θ} under the additional assumption that Xn

T has a bounded density (uniformly in n).

Remark 2.3. Assumption (HMR) already appears in [Duf96] and [BMP90], see also [FM12] and [FF13] in
another context. It allows to control the L2-norm E|θnp − θ∗,n|2 with respect to the step γ(p) uniformly in n, see
Lemma 5.2 in Section 5. As discussed in [KY03], Chapter 10, Section 5, if one considers the projected version
of the algorithm (1.4) on a bounded convex set H (for instance an hyperrectangle Πd

i=1[ai, bi]) containing θ∗,n,
∀n ≥ 1, as very often happens from a practical point of view, this assumption can be localized on H, that is it
holds on H instead of Rd. In this case, a sufficient condition is infθ∈H,n∈N∗ λmin((Dhn(θ) +Dhn(θ)T )/2) > 0,
where λmin(A) denotes the lowest eigenvalue of the matrix A.

We also want to point out that if it is satisfied then one has λm ≥ λ. Indeed, writing hn(θ) =
∫ 1

0
Dhn(tθ +

(1− t)θ∗,n)(θ − θ∗,n)dt, for all θ ∈ Rd, we clearly have

〈θ − θ∗,n, hn(θ)〉 =

∫ 1

0

〈θ − θ∗,n, Dh
n(tθ + (1− t)θ∗,n) +Dhn(tθ + (1− t)θ∗,n)T

2
(θ − θ∗,n)〉dt

≥ λ|θ − θ∗,n|2.

Using the local uniform convergence of (Dhn)n≥1 and the convergence of (θ∗,n)n≥1 toward θ∗, by passing to the
limit n→ +∞ in the above inequality, we obtain

∀θ ∈ K,
∫ 1

0

〈θ − θ∗, Dh(tθ + (1− t)θ∗) +Dh(tθ + (1− t)θ∗)T
2

(θ − θ∗)〉dt ≥ λ|θ − θ∗|2

where K is a compact set such that θ∗ + um ∈ K, um being the eigenvector associated to the eigenvalue of
Dh(θ∗) with the lowest real part. Hence, selecting θ = θ∗ + εum in the previous inequality and passing to the
limit ε→ 0, we get λm ≥ λ.
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Theorem 2.8. Suppose that the assumptions of Theorem 2.7 are satisfied and that h satisfies the assumptions
of Theorem 2.4. Assume that (HR), (HI) and (HMR) hold and that hn is twice continuously differentiable
with Dhn Lipschitz continuous uniformly in n. If (HS1) or (HS2) is satisfied then one has

nα
(
θnγ−1(1/n2α) − θ∗

)
=⇒ −Dh−1(θ∗)E(h, α, θ∗) +N (0,Σ∗) ,

where

Σ∗ :=

∫ ∞
0

exp (−s(Dh(θ∗)− ζId))T Ex[H(θ∗, XT )H(θ∗, XT )T ] exp (−s(Dh(θ∗)− ζId)) ds

with ζ = 0 if (HS1) holds and ζ = 1/2γ0 if (HS2) holds.

Lemma 2.3. Let δ > 0. Under the assumptions of Theorem 2.8, one has

nα
(
θn

δ

γ−1(1/n2α) − θ∗,n
δ
)

=⇒ N (0,Σ∗), n→ +∞.

Proof. With the notations of Section 2.2, we define for all p ≥ 1, ∆Mnδ

p := hn
δ

(θn
δ

p−1) − H(θn
δ

p−1, (X
nδ

T )p) =

E[H(θn
δ

p−1, (X
nδ

T )p)
∣∣∣Fp−1]−H(θn

δ

p−1, (X
nδ

T )p). Recalling that ((Xnδ

T )p)p≥1 is a sequence of i.i.d. random variables

we have that (∆Mnδ

p )p≥1 is a sequence of martingale increments w.r.t. the natural filtration F := (Fp :=

σ(θ0, (X
nδ

T )1, · · · , (Xnδ

T )p); p ≥ 1).
Using Taylor’s formula, we get for p ≥ 0

θn
δ

p+1 − θ∗,n
δ

= θn
δ

p − θ∗,n
δ − γp+1Dh

nδ(θ∗,n
δ

)(θn
δ

p − θ∗,n
δ

) + γp+1∆Mnδ

p+1 − γp+1ζ
nδ

p

with ζn
δ

p := hn
δ

(θn
δ

p )−Dhnδ(θnδp )(θn
δ

p − θ∗,n
δ

) = O(|θnδp − θ∗,n
δ |2) since Dhn

δ

is Lipschitz-continuous uniformly
in n. Hence, by a simple induction, we obtain

θn
δ

n − θ∗,n
δ

= Π1,n(θn
δ

0 − θ∗,n
δ

) +

n∑
k=1

γkΠk+1,n∆Mnδ

k +

n∑
k=1

γkΠk+1,n

(
ζn

δ

k−1 + (Dh(θ∗)−Dhnδ(θ∗,nδ))(θnδk−1 − θ∗,n
δ

)
)

(2.13)

where Πk,n :=
∏n
j=k (Id − γjDh(θ∗)), with the convention that Πn+1,n = Id. We now investigate the asymptotic

behavior of each term in the above decomposition.

Step 1: study of the sequence
{
nαΠ1,γ−1(1/n2α)(θ

nδ

0 − θ∗,n
δ

), n ≥ 0
}

Under our general assumptions on the step sequence, one has for all η ∈ (0, λm)

nαE|Π1,γ−1(1/n2α)z
nδ

0 | ≤ C(sup
n≥1

E|θn0 |+ 1)nα exp

−(λm − η)

γ−1(1/n2α)∑
k=1

γk

 .

Selecting η such that 2(λm − η)γ0 > 2(λ − η)γ0 > 1 under (HS2) and any η ∈ (0, λm) under (HS1), we
derive the convergence to zero of the right hand side of the last but one inequality.

Step 2: study of the sequence
{
nα
∑γ−1(1/n2α)
k=1 γkΠk+1,γ−1(1/n2α)

(
ζn

δ

k−1 + (Dh(θ∗)−Dhnδ(θ∗,nδ))(θnδk−1 − θ∗,n
δ

)
)
, n ≥ 0

}
We focus on the last term of (2.13). Using Lemma 5.2 we get

E

∣∣∣∣∣
n∑
k=1

γkΠk+1,n(ζn
δ

k−1 + (Dh(θ∗)−Dhnδ(θ∗,nδ))(θnδk−1 − θ∗,n
δ

))

∣∣∣∣∣ ≤ C
n∑
k=1

‖Πk+1,n‖(γ2k + γ
3/2
k ‖Dh(θ∗)−Dhnδ(θ∗,nδ)‖),
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so that by Lemma 5.1 (see also remark 2.3), the local uniform convergence of (Dhn)n≥1 and the continuity of
Dh at θ∗, we derive

lim sup
n

nαE

∣∣∣∣∣∣
γ−1(1/n2α)∑

k=1

γkΠk+1,γ−1(1/n2α)(ζ
nδ

k−1 + (Dh(θ∗)−Dhnδ(θ∗,nδ))(θnδk−1 − θ∗,n
δ

))

∣∣∣∣∣∣ = 0.

Step 3: study of the sequence
{
nα
∑γ−1(1/n2α)
k=1 γkΠk+1,γ−1(1/n2α)∆M

nδ

k , n ≥ 0
}

We use the following decomposition

n∑
k=1

γkΠk+1,n∆Mnδ

k =

n∑
k=1

γkΠk+1,n(hn
δ

(θn
δ

k )− hnδ(θ∗,nδ)− (H(θn
δ

k , (Xnδ

T )k+1)−H(θ∗,n
δ

, (Xnδ

T )k+1)))

+

n∑
k=1

γkΠk+1,n(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))

:= Rn +Mn

Now, by (HR), we have

E|Rn|2 ≤
n∑
k=1

γ2k‖Πk+1,n‖2E|θn
δ

k − θ∗,n
δ |2a ≤

n∑
k=1

γ2+ak ‖Πk+1,n‖2

where we used Lemma 5.2 and Jensen’s inequality for the last inequality. Moreover, according to Lemma 5.1,
we have

lim sup
n

n2α
γ−1(1/n2α)∑

k=1

γ2+ak ‖Πk+1,γ−1(1/n2α)‖2 = 0

so that, nα
∑n
k=1 γkΠk+1,n(hn

δ

(θn
δ

k )− hnδ(θ∗,nδ)− (H(θn
δ

k , (Xnδ

T )k+1)−H(θ∗,n
δ

, (Xnδ

T )k+1)))
L2(P)−→ 0.

To conclude we prove that the sequence
{

1
γ1/2(n)

Mn, n ≥ 0
}

, satisfies a CLT. In order to do this we apply

standard results on CLT for martingale arrays. More precisely, we will apply Theorem 3.2 and Corollary 3.1,
p.58 in [HH80]. By (HI), it holds for some R > 0 such that ∀n ≥ 1, θ∗,n ∈ B(0, R)

n∑
k=1

E
∣∣∣γ− 1

2 (n)γkΠk+1,n(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))
∣∣∣2+b ≤ C( sup

θ:|θ|≤R,n∈N∗
E|H(θ,Xn

T )|2+b)γ−1+ b
2 (n)

n∑
k=1

γ2+bk ‖Πk+1,n‖2+b

By Lemma 5.1, we have lim supn γ
−1+b/2(n)

∑n
k=1 γ

2+b
k ‖Πk+1,n‖2+b ≤ lim supn γ

b/2(n) = 0, so that the
conditional Lindeberg condition, see [HH80], Corollary 3.1 is satisfied. Now we focus on the conditional variance.
We set

Sn :=
1

γ(n)

n∑
k=1

γ2kΠk+1,nEk[(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))T ]ΠT
k+1,n,

=
1

γ(n)

n∑
k=1

γ2kΠk+1,nΓnΠT
k+1,n

with

Γn := E[H(θ∗,n
δ

, Xnδ

T )(H(θ∗,n
δ

, Xnδ

T ))T ] and Γ∗ := E[H(θ∗, XT ))(H(θ∗, XT ))T ].
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By the local uniform convergence of (θ 7→ EH(θ,Xnδ

T )(H(θ,Xnδ

T ))T )n≥0, the continuity of θ 7→ EH(θ,XT )(H(θ,XT ))T

at θ∗ and since θ∗,n
δ → θ∗, we have

Γn → Γ∗,

so that from Lemma 5.1, it follows that

lim sup
n

∥∥∥∥∥ 1

γ(n)

n∑
k=1

γ2kΠk+1,n(Γn − Γ∗)ΠT
k+1,n

∥∥∥∥∥ ≤ lim sup
n
‖Γn − Γ∗‖ = 0.

Hence we see that limn Sn = limn
1

γ(n)

∑n
k=1 γ

2
kΠk+1,nΓ∗ΠT

k+1,n if this latter limit exists. Let Σ∗ be the

(unique) matrix solution to the Lyapunov equation:

Γ∗ − (Dh(θ∗)− ζId)A−A(Dh(θ∗)− ζId)T = 0.

We aim at proving that Sn
a.s.−→ Σ∗. In order to do this, we define

An+1 :=
1

γ(n+ 1)

n+1∑
k=1

γ2kΠk+1,nΓ∗ΠT
k+1,n

which can be written in the following recursive form

An+1 = γn+1Γ∗ +
γn
γn+1

(Id − γn+1Dh(θ∗))An(Id − γn+1Dh(θ∗))T

= An + γn(Γ∗ −Dh(θ∗)An −AnDh(θ∗)T ) + (γn+1 − γn)Γ∗ + γnγn+1Dh(θ∗)AnDh(θ∗)T

+
γn − γn+1

γn+1
An

Under the assumptions made on the step sequence (γn)n≥1, we have γn−γn+1

γn+1
= 2ζγn+o(γn) and γn+1−γn =

O(γ2n). Consequently, introducing Zn = An − Σ∗, simple computations from the previous equality yield

Zn+1 = Zn − γn
(
(Dh(θ∗)− ζId)Zn + Zn(Dh(θ∗)− ζId)T

)
+ γnγn+1Dh(θ∗)ZnDh(θ∗)T

+

(
γn − γn+1

γn+1
− 2ζγnId

)
Zn + γnγn+1Dh(θ∗)Σ∗Dh(θ∗)T + (γn+1 − γn)Γ∗ +

(
γn − γn+1

γn+1
− 2ζγnId

)
Σ∗

Let us note that by the very definition of ζ and assumptions (HS1), (HS2), the matrix Dh(θ∗)− ζId is stable,
so that taking the norm in the previous equality, there exists λ > 0 such that

‖Zn+1‖ ≤ (1− λγn + o(γn))‖Zn‖+ o(γn)

for n ≥ n0, n0 large enough. By a simple induction, it holds for n ≥ N ≥ n0

‖Zn‖ ≤ C‖ZN‖ exp(−λsN,n) + C exp(−λsN,n)

n∑
k=N

exp(λsN,k)γk‖ek‖

where en = o(1) and we set sN,n :=
∑n
k=N γk. From the assumption (1.3), it follows that for N ≥ n0

lim sup
n
‖Zn‖ ≤ C sup

k≥N
‖ek‖
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and passing to the limit as N goes to infinity it clearly yields lim supn ‖Zn‖ = 0. Hence, Sn
a.s.−→ Θ∗ and the

proof is complete.
�

Proof of Theorem 2.8. We decompose the error as follows:

θnγ−1(1/n2α) − θ∗ = θnγ−1(1/n2α) − θ∗,n + θ∗,n − θ∗

and analyze each term of the above sum. By Lemma 2.3, we have

nα
(
θnγ−1(1/n2α) − θ∗,n

)
=⇒ N (0,Σ∗)

where Σ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Ex[H(θ∗, XT )H(θ∗, XT )T ] exp (−s(Dh(θ∗)− ζId)) ds. Moreover, us-
ing Theorem 2.7, we obtain

nα(θ∗,n − θ∗)→ −Dh−1(θ∗)E(h, α, θ∗).

This completes the proof.
�

The result of Theorem 2.8 could be construed as follows. For a total error of order 1/nα, it is necessary to
achieve at least M = γ−1(1/n2α) steps of the stochastic approximation scheme defined by (1.4). Hence, in this
case the complexity (or computational cost) of the algorithm is given by

CSA(γ) = C × n× γ−1(1/n2α), (2.14)

where C is some positive constant. We now investigate the impact of the step sequence (γn)n≥1 on the complexity
by considering the two following basic step sequences:

• if we choose γ(p) = γ0/p with 2λγ0 > 1, then CSA = C × n2α+1.
• if we choose γ(p) = γ0/p

ρ, 1
2 < ρ < 1 then CSA = C × n2α/ρ+1.

Hence we clearly see that the minimal complexity is achieved by choosing γp = γ0/p with 2λγ0 > 1. In
this latter case, we see that the computational cost is similar to the one achieved by the classical Monte Carlo
algorithm for the computation of Ex[f(XT )]. However the main drawback with this choice of step sequence
comes from the constraint on γ0. Next result shows that the optimal complexity can be reached for free through
the smoothing of the procedure (1.4) according to the Ruppert & Polyak averaging principle.

Theorem 2.9. Suppose that the assumptions of Theorem 2.7 are satisfied and that h satisfies the assumptions
of Theorem 2.4. Assume that (HR), (HI) and (HMR) hold and that hn is twice continuously differentiable
with Dhn Lipschitz continuous uniformly in n. Define the empirical mean sequence (θ̄np )p≥1 of the sequence
(θnp )p≥1 by setting

θ̄np =
θ0 + θn1 + · · ·+ θnp

p+ 1
= θ̄np−1 −

1

p+ 1

(
θ̄np−1 − θnp

)
,

where the step sequence γ = (γp)p≥1 satisfies (HS1) with ρ ∈ (1/2, 1). Then, one has

nα
(
θ̄nn2α − θ∗

)
=⇒ −Dh−1(θ∗)E(h, α, θ∗) +N

(
0, Dh(θ∗)−1Ex[H(θ∗, XT )H(θ∗, XT )T ](Dh(θ∗)−1)T

)
,

Lemma 2.4. Let δ > 0. Under the assumptions of Theorem 2.9, one has

nα
(
θ̄n

δ

n2α − θ∗,n
δ
)

=⇒ N
(
0, Dh(θ∗)−1Ex[H(θ∗, XT )H(θ∗, XT )T ](Dh(θ∗)−1)T

)
, n→ +∞.
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Proof. We freely use the notations and the intermediate results of the proof of Lemma 2.3. Using (2.13) in its
recursive form, for any p ≥ 0 and for n large enough, it holds

θn
δ

p − θ∗,n
δ

=
1

γp+1
(Dhn

δ

(θ∗,n
δ

))−1(θn
δ

p+1 − θn
δ

p )− (Dhn
δ

(θ∗,n
δ

))−1∆Mnδ

p+1 − (Dhn
δ

(θ∗,n
δ

))−1ζn
δ

p .

Hence, using an Abel’s transform we derive

θn
δ

n2α − θ∗,n
δ

=
1

n2α + 1

n2α∑
k=0

θn
δ

k − θ∗,n
δ

=
(Dhn

δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=0

1

γk+1
(θn

δ

k+1 − θn
δ

k )

− (Dhn
δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=0

∆Mnδ

k+1 −
(Dhn

δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=0

ζn
δ

k

=
(Dhn

δ

(θ∗,n
δ

))−1

n2α + 1

(
θn

δ

n2α+1 − θ∗,n
δ

γn2α+1
− θn

δ

0 − θ∗,n
δ

γ1

)
+

(Dhn
δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=1

(
1

γk
− 1

γk+1

)
(θn

δ

k − θ∗,n
δ

)

− (Dhn
δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=0

∆Mnδ

k+1 −
(Dhn

δ

(θ∗,n
δ

))−1

n2α + 1

n2α∑
k=0

ζn
δ

k

We now study each term of the above decomposition.

Step 1: study of the sequence

{
nα

n2α+1

(
θn
δ

n2α+1
−θ∗,nδ

γn2α+1
− θn

δ

0 −θ∗,n
δ

γ1

)
, n ≥ 0

}
For the first term, by Lemma 5.2, Proposition 5.1 and (HS1) it follows

E

∣∣∣∣∣ nα

n2α + 1

(
θn

δ

n2α+1 − θ∗,n
δ

γn2α+1
− θn

δ

0 − θ∗,n
δ

γ1

)∣∣∣∣∣ ≤ C
 1

nαγ
1
2

n2α+1

γ
− 1

2

n2α+1E|θnn2α+1 − θ∗,n|+
1

nα
(sup
n≥1

E|θn0 |+ 1)


≤ C

 1

nαγ
1
2

n2α+1

+
1

nα

 −→ 0,

since nγn → 0, n→ +∞.

Step 2: study of the sequence
{

nα

n2α+1

∑n2α

k=1

(
1
γk
− 1

γk+1

)
(θn

δ

k − θ∗,n
δ

), n ≥ 0
}

Similarly for the second term, we have

E

∣∣∣∣∣∣ nα

n2α + 1

n2α∑
k=1

(
1

γk
− 1

γk+1

)
(θn

δ

k − θ∗,n
δ

)

∣∣∣∣∣∣ ≤ C 1

nα

n2α∑
k=1

γ
1/2
k

(
1

γk+1
− 1

γk

)
γ
−1/2
k E|θnδk − θ∗,n

δ |

≤ C 1

nα

n2α∑
k=1

γ
1/2
k

(
1

γk+1
− 1

γk

)
→ 0, n→ +∞.

where we used Lemma 5.2 for the last inequality.

Step 3: study of the sequence
{

nα

n2α+1

∑n2α

k=0 ∆Mnδ

k+1, n ≥ 0
}
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As in the proof of Lemma 2.3, we decompose this sequence as follows

nα

n2α + 1

n2α∑
k=0

∆Mnδ

k+1 =
nα

n2α + 1

n2α∑
k=1

(hn
δ

(θn
δ

k )− hnδ(θ∗,nδ)− (H(θn
δ

k , (Xnδ

T )k+1)−H(θ∗,n
δ

, (Xnδ

T )k+1)))

+
nα

n2α + 1

n2α∑
k=1

(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))

:= Rn +Mn

For the sequence (Rn)n≥1 we use (HR) to write

E|Rn|2 ≤
C

n2α

n2α∑
k=0

E|H(θn
δ

k , (Xnδ

T )k+1)−H(θ∗,n
δ

, Xnδ

T )|2 =
C

n2α

n2α∑
k=1

γ2ak → 0,

owing to Cesàro’s Lemma. We now prove a CLT for the sequence (Mn)n≥1 by applying Theorem 3.2 and

Corollary 3.1, p.58 in [HH80]. Since θ∗,n
δ → θ∗, it holds for some R > 0

n2α∑
k=0

E
∣∣∣∣ nα

n2α + 1
(hn

δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))

∣∣∣∣2+b ≤ C

nαb
( sup
θ:|θ|≤R, n∈N∗

E|H(θ,Xn
T )|2+b)→ 0, n→ +∞,

so that the conditional Lindeberg condition is satisfisfied, see [HH80] Corollary 3.1. Now, we focus on the
conditional variance. For convenience, we set

Sn :=
n2α

(n2α + 1)2

n2α∑
k=1

Ek[(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))(hn
δ

(θ∗,n
δ

)−H(θ∗,n
δ

, (Xnδ

T )k+1))T ]

=
n2α

(n2α + 1)2

n2α∑
k=1

E[H(θ∗,n
δ

, Xnδ

T )(H(θ∗,n
δ

, Xnδ

T ))T ]

=
n4α

(n2α + 1)2
E[H(θ∗,n

δ

, Xnδ

T )(H(θ∗,n
δ

, Xnδ

T ))T ],

so that we clearly have Sn → E[H(θ∗, XT )(H(θ∗, XT ))T ] by the local uniform convergence of (θ 7→ E[H(θ,Xn
T )(H(θ,Xn

T ))T ])n≥1,

the continuity of θ 7→ E[H(θ,XT )(H(θ,XT ))T ] at θ∗ and the convergence of (θ∗,n
δ

)n≥1 towards θ∗. Therefore,

since (Dhn
δ

(θ∗,n
δ

))−1 → (Dh(θ∗))−1, we conclude that

(Dhn
δ

(θ∗,n
δ

))−1
nα

n2α + 1

n2α∑
k=0

∆Mnδ

k+1 =⇒ N (0, Dh(θ∗)−1Ex[H(θ∗, XT )H(θ∗, XT )T ](Dh(θ∗)−1)T ).

Step 4: study of the sequence
{

nα

n2α+1

∑n2α

k=0 ζ
nδ

k , n ≥ 0
}

Now, observe that by Lemma 5.2 the last term is bounded in L1-norm by

nα

n2α + 1

n2α∑
k=0

E|ζnδk | ≤
C

nα

n2α∑
k=0

γk → 0, n→ +∞

since γ varies regularly with exponent −ρ, ρ ∈ (1/2, 1). �
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Proof of Theorem 2.9. Similarly to the proof of Theorem 2.8 we decompose the error as follows:

θ̄nn2α − θ∗ = θ̄nn2α − θ∗,n + θ∗,n − θ∗.

Applying successively Theorem 2.7 and Lemma 2.4, we obtain

nα
(
θ̄nn2α − θ∗

)
=⇒ −Dh−1(θ∗)E(h, α, θ∗) +N (0,Σ∗) .

�

The result of Theorem 2.9 shows that for a total error of order 1/nα, it is necessary to achieve at least
M = n2α steps of the stochastic approximation scheme defined by (1.4) with step sequence satisfying (HS1)
and to simultaneously compute its empirical mean, which represents a negligible part of the total cost. As a
consequence, we see that in this case the complexity of the algorithm is given by

CSA-RP(γ) = C × n2α+1.

Therefore, the optimal complexity is reached for free without any condition on γ0 thanks to the Ruppert &
Polyak averaging principle.

3. Multi-level stochastic approximation algorithms

3.1. The statistical Romberg stochastic approximation method

In this section we present a two-level stochastic approximation scheme that will be also referred as the statisti-
cal Romberg stochastic approximation method which allows to minimize the complexity of the stochastic approx-
imation algorithm (θnp )p∈[[0,γ−1(1/n2α)]] for the numerical computation of θ∗ solution to h(θ) = Ex[H(θ,XT )] = 0.
It is clearly apparent that

θ∗,n = θ∗,n
β

+ θ∗,n − θ∗,nβ , β ∈ (0, 1).

The statistical Romberg stochastic approximation scheme independently estimates each of the solutions

appearing on the right-hand side in a way that minimizes the computational complexity. Let θn
β

M1
be an

estimator of θ∗,n
β

using M1 samples and θnM2
− θnβM2

be an estimator of θ∗,n − θ∗,nβ using M2 paths. Using the
above decomposition, we estimate θ∗ by the quantity

Θsr
n = θn

β

M1
+ θnM2

− θnβM2
.

It is important to point out here that the couple (θnM2
, θn

β

M2
) is computed using two Euler approximation

schemes with different time steps but with the same Brownian path. Moreover, the quantity θn
β

M1
comes from

Brownian paths which are independent to those used for the computation of (θnM2
, θn

β

M2
).

We also establish a central limit theorem for the statistical Romberg based empirical sequence according to
the Ruppert & Polyak averaging principle. It consists in estimating θ∗ by

Θ̄sr
n = θ̄n

β

M3
+ θ̄nM4

− θ̄nβM4
,

where (θ̄n
β

p )p∈[[0,M3]] and (θ̄np , θ̄
nβ

p )p∈[[0,M4]] are respectively the empirical means of the sequences (θn
β

p )p∈[[0,M3]]

and (θnp , θ
nβ

p )p∈[[0,M4]] devised with the same slow decreasing step, that is a step sequence (γ(p))p≥1 where γ
varies regularly with exponent (−ρ), ρ ∈ (1/2, 1).

To establish the rate of convergence of the two-level stochastic approximation scheme, we require smoothness
assumptions on H:

(HDH) For all θ ∈ Rd, P(XT /∈ DH,θ) = 0 with DH,θ := {x ∈ Rq : x 7→ H(θ, x) is differentiable at x}.
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(HLH) For all (θ, θ′, x) ∈ (Rd)2 × Rq, |H(θ, x)−H(θ′, x)| ≤ C(1 + |x|r)|θ − θ′|, for some C, r > 0.

Theorem 3.1. Suppose that h and hn satisfy the assumptions of Theorem 2.7 with α ∈ (1/2 ∨ β, 1] and that
h satisfies the assumptions of Theorem 2.4. Assume that (HD), (HMR), (HDH) and (HLH) hold and that
hn are twice continuously differentiable in a neighborhood of θ∗, with Dhn Lipschitz-continuous uniformly in n
satisfying:

∀θ ∈ Rd, n1/2‖Dhn(θ)−Dh(θ)‖ → 0, as n→ +∞.

Suppose that Ẽ(DxH(θ∗, XT )UT )(DxH(θ∗, XT )UT )T is a positive definite matrix. Assume that the step
sequence is given by γp = γ(p), p ≥ 1, where γ is a positive function defined on [0,+∞[ decreasing to zero,
satisfying one of the following assumptions:

• γ varies regularly with exponent (−ρ), ρ ∈ (1/2, 1), that is, for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ.
• for t ≥ 1, γ(t) = γ0/t and γ0 satisfies λγ0 > 1.

Then, for M1 = γ−1(1/n2α) and M2 = γ−1(1/(n2α−βT )), one has

nα(Θsr
n − θ∗) =⇒ Dh−1(θ∗)E(h, α, θ∗) +N (0,Σ∗), n→ +∞

with

Σ∗ :=

∫ ∞
0

(
e−s(Dh(θ

∗)−ζId)
)T

(Ex[H(θ∗, XT )H(θ∗, XT )T ]+Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

)e−s(Dh(θ
∗)−ζId)ds

and UT is the value at time T of the process (2.8) defined on (Ω̃, F̃ , (F̃t)t≥0, P̃).

Lemma 3.1. Let (θp)p≥0 be the procedure defined for p ≥ 0 by

θp+1 = θp − γp+1H(θp, (XT )p+1), θ0 = θn0 , (3.15)

where ((Xn
T )p, (XT )p)p≥1 is an i.i.d sequence of random variables with the same law as (Xn

T , XT ) and (γp)p≥1
is the step sequence of the procedure (θn

β

p )p≥0 and (θnp )p≥0. Under the assumptions of Theorem 3.1, one has

nα
(
θn

β

γ−1(1/(n2α−βT )) − θγ−1(1/(n2α−βT )) − (θ∗,n
β − θ∗)

)
=⇒ N (0,Θ∗), n→ +∞,

with Θ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

exp (−s(Dh(θ∗)− ζId)) ds, and

nα
(
θnγ−1(1/(n2α−βT )) − θγ−1(1/(n2α−βT )) − (θ∗,n − θ∗)

)
P−→ 0, n→ +∞.

Proof. We will just prove the first assertion of the Lemma. The second one will readily follow. When the exact
value of a constant is not important we may repeat the same symbol for constants that may change from one
line to next. We come back to the decomposition used in the proof of Lemma 2.3. We consequently use the
same notations. Let us note that the procedure (θp)p≥0 a.s. converges to θ∗ and satisfies a CLT according to
Theorem 2.4.

A Taylor’s expansion yields for p ≥ 0

θn
β

p+1 − θ∗,n
β

= θn
β

p − θ∗,n
β − γp+1Dh

nβ (θ∗,n
β

)(θn
β

p − θ∗,n
β

) + γp+1∆Mn
p+1 − γp+1ζ

nβ

p

θp+1 − θ∗ = θp − θ∗ − γp+1Dh(θ∗)(θp − θ∗) + γp+1∆Mp+1 − γp+1ζp,
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with ∆Mp+1 = h(θp) −H(θp, (XT )p+1), p ≥ 0. Therefore, defining zn
β

p = θn
β

p − θp − (θ∗,n
β − θ∗), p ≥ 0, with

zn
β

0 = θ∗ − θ∗,nβ , by a simple induction argument one has

zn
β

n = Π1,nz
nβ

0 +

n∑
k=1

γkΠk+1,n∆Nnβ

k +

n∑
k=1

γkΠk+1,n∆Rn
β

k

+

n∑
k=1

γkΠk+1,n

(
ζnk−1 − ζk−1 + (Dh(θ∗)−Dhnβ (θ∗,n

β

))(θn
β

k−1 − θ∗,n
β

)
)

(3.16)

where Πk,n :=
∏n
j=k (Id − γjDh(θ∗)), with the convention that Πn+1,n = Id, and ∆Nnβ

k := hn
β

(θ∗) − h(θ∗) −
(H(θ∗, (Xnβ

T )k+1)−H(θ∗, (XT )k+1)), ∆Rn
β

k = hn
β

(θn
β

k )− hnβ (θ∗)− (H(θn
β

k , (Xnβ

T )k+1)−H(θ∗, (Xnβ

T )k+1)) +
H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗)) for k ≥ 1.

Step 1: study of the sequence
{
nαΠ1,γ−1(1/(n2α−βT ))z

nβ

0 , n ≥ 0
}

Under the assumptions on the step sequence γ, one has for all η ∈ (0, λm)

nα|Π1,γ−1(1/(n2α−βT ))z
nβ

0 | ≤ nα‖Π1,γ−1(1/(n2α−βT ))‖|θ∗,n
β−θ∗| ≤ Cn(1−β)α exp(−(λm−η)

γ−1(1/(n2α−βT ))∑
k=1

γk)→ 0,

by selecting η s.t. (λm − η)γ0 > (λ− η)γ0 > 1 if γ(p) = γ0/p, p ≥ 1.
Step 2: study of the sequence{
nα
∑γ−1(1/(n2α−βT ))
k=1 γkΠk+1,γ−1(1/(n2α−βT ))

(
ζnk−1 − ζk−1 + (Dh(θ∗)−Dhnβ (θ∗,n

β

))(θn
β

k−1 − θ∗,n
β

)
)
, n ≥ 0

}
By Lemma 5.2, one has

E

∣∣∣∣∣
n∑
k=1

γkΠk+1,n(ζn
β

k−1 + (Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k−1 − θ∗,n
β

))

∣∣∣∣∣ ≤ C
n∑
k=1

‖Πk+1,n‖(γ2k + γ
3/2
k ‖Dh(θ∗)−Dhnβ (θ∗,n

β

)‖),

so that by Lemma 5.1, we easily derive that (if γ(p) = γ0/p recall that λγ0 > 1)
∑n
k=1 γ

2
k‖Πk+1,n‖ = O(γ(n))

and
∑n
k=1 γ

3/2
k ‖Πk+1,n‖ = O(γ1/2(n)) so that

lim sup
n

nα
γ−1(1/(n2α−βT ))∑

k=1

γ2k‖Πk+1,γ−1(1/(n2α−βT ))‖ = 0.

Moreover, since Dhn
β

is a Lipschitz function uniformly in n we clearly have

n∑
k=1

γ
3/2
k ‖Πk+1,n‖‖Dh(θ∗)−Dhnβ (θ∗,n

β

)‖ ≤
n∑
k=1

γ
3/2
k ‖Πk+1,n‖(‖Dh(θ∗)−Dhnβ (θ∗)‖+ |θ∗,nβ − θ∗)|)

which combined with nβ/2‖Dh(θ∗)−Dhnβ (θ∗)‖ → 0 and nβ/2|θ∗,nβ − θ∗| → 0 (recall that α > 1/2) imply that

lim supn n
α
∑γ−1(1/(n2α−βT ))
k=1 γ

3/2
k ‖Πk+1,γ−1(1/(n2α−βT ))‖‖Dh(θ∗)−Dhnβ (θ∗,n

β

)‖ = 0.

Using the notations of Proposition 5.1 and the inequality |θk − θ∗|2 ≤ |µk|2 + 2|θk − θ∗||rk|, we get∣∣∣∣∣
n∑
k=1

γkΠk+1,nζk−1

∣∣∣∣∣ ≤ C
n∑
k=1

γ2k‖Πk+1,n‖γ−1k−1|µk−1|2 + C

n∑
k=1

γ1+bk ‖Πk+1,n‖|θk − θ∗|γ−bk−1|rk−1|.
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Now since α > β, we clearly derive

lim sup
n

nα
γ−1(1/(n2α−βT ))∑

k=1

γ2k‖Πk+1,γ−1(1/(n2α−βT ))‖γ−1k−1E|µk−1|2

≤ (sup
k≥1

γ−1k E|µk|2) lim sup
n

nα
γ−1(1/(n2α−βT ))∑

k=1

γ2k‖Πk+1,γ−1(1/(n2α−βT ))‖ = 0.

For the second term, we first write

n∑
k=1

γ1+bk ‖Πk+1,n‖|θk − θ∗|γ−bk−1|rk−1| ≤ X1(sup
k≥1
|θk − θ∗|)

n∑
k=1

γ1+bk ‖Πk+1,n‖Yk−1,

withX1 < +∞, supk≥1 EYk < +∞. Now observe that from Lemma 5.2, it follows lim supn γ
−b(n)

∑n
k=1 γ

1+b
k ‖Πk+1,n‖ ≤

1 under our assumptions on the step sequence (if γ(p) = γ0/p it is valid for any b ∈ (0, 1) since λmγ0 > 1 and
we select b such that (2α− β)b > α otherwise b = 1). Therefore, we clearly have

lim sup
n
nα(sup

k≥1
E|Yk−1)|)

γ−1(1/(n2α−βT ))∑
k=1

γ1+bk ‖Πk+1,γ−1(1/(n2α−βT ))‖ = 0,

which in turn implies

nα
γ−1(1/(n2α−βT ))∑

k=1

γkΠk+1,γ−1(1/(n2α−βT ))ζk−1
P−→ 0.

Hence, we finally conclude that

nα
γ−1(1/(n2α−βT ))∑

k=1

γkΠk+1,γ−1(1/(n2α−βT ))

(
ζn

β

k−1 − ζk−1 + (Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k−1 − θ∗,n
β

)
)

P−→ 0.

Step 3: study of the sequence
{
nα
∑γ−1(1/(n2α−βT ))
k=1 γkΠk+1,γ−1(1/(n2α−βT ))∆R

nβ

k , n ≥ 0
}

Regarding the third term of (3.16), namely
∑n
k=1 γkΠk+1,n∆Rn

β

k , we decompose it as follows

n∑
k=1

γkΠk+1,n∆Rn
β

k =
n∑
k=1

γkΠk+1,n(hn
β

(θn
β

k )− hnβ (θ∗)− (H(θn
β

k , (Xnβ

T )k+1)−H(θ∗, (Xnβ

T )k+1)))

+

n∑
k=1

γkΠk+1,n(H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗)))

= An +Bn

Now, by (HLH) it follows that

E|An|2 ≤ C
n∑
k=1

γ2k‖Πk+1,n‖2(E|θnβk − θ∗,n
β |2 + |θ∗,nβ − θ∗|2)

≤ C(

n∑
k=1

γ3k‖Πk+1,n‖2 +

n∑
k=1

γ2k‖Πk+1,n‖2|θ∗,n
β − θ∗|2)

:= A1
n +A2

n
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Similar computations to those of Lemma 5.1 show that there are two cases to distinguish:

- If γ varies regularly with exponent (−ρ), ρ ∈ [0, 1), then
∑n
k=1 γ

3
k‖Πk+1,n‖2 = O(γ2(n)).

- if γ(p) = γ0/p then a comparison between series and integrals show that:

- if λmγ0 < 1 then
∑n
k=1 γ

3
k‖Πk+1,n‖2 = O(n−2λmγ0) ,

- if λmγ0 = 1 then
∑n
k=1 γ

3
k‖Πk+1,n‖2 = O(log(n)n−2),

-
∑n
k=1 γ

3
k‖Πk+1,n‖2 = O(n−2) otherwise.

Consequently, under our assumptions on the step sequence (if γ(p) = γ0/p recall that λmγ0 > 1) we

have lim supn n
2αA1

γ−1(1/(n2α−βT )) = 0. Moreover since nβ/2|θ∗,nβ − θ∗| → 0 as n → +∞, we also derive

lim supn n
2αA2

γ−1(1/(n2α−βT )) = 0. We now focus on the sequence (Bn)n≥1. We freely use the notations of

Proposition 5.1. Let ε > 0. We write

P(nαBγ−1(1/(n2α−βT )) > ε) ≤ P(nαB1
γ−1(1/(n2α−βT )) > ε/2) + P(nαB2

γ−1(1/(n2α−βT )) > ε/2)

withB1
n :=

∑n
k=1 γkΠk+1,n

{
H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗))

}
1{γ−bk (supk≥1 |θk−θ∗|)|rk|<KYk}

and B2
n := Bn − B1

n for all K > 0. Using the Chebyshev inequality with the trivial inequality |θk − θ∗|2 ≤
|µk|2 + 2|θk − θ∗||rk| and (HLH) we deduce from the previous computations that

P(nαB1
γ−1(1/(n2α−βT )) > ε) ≤ n2α

ε2

γ−1(1/(n2α−βT ))∑
k=1

γ2k‖Πk+1,γ−1(1/(n2α−βT ))‖2

× E|H(θk, (XT )k+1)−H(θ∗, (XT )k+1)|21{γ−bk (supk≥1 |θk−θ∗|)|rk|<KYk}

≤ Cn2α

ε2

γ−1(1/(n2α−βT ))∑
k=1

γ2+bk ‖Πk+1,γ−1(1/(n2α−βT ))‖2

× γ−bk (E[|µk|2 + (sup
k≥1
|θk − θ∗|)|rk|1{γ−bk (supk≥1 |θk−θ∗|)|rk|<KYk}])

≤ C(K)n2α

ε2

γ−1(1/(n2α−βT ))∑
k=1

γ2+bk ‖Πk+1,γ−1(1/(n2α−βT ))‖2 sup
k≥1

(γ−bk E|µk|2 + E|Yk|)

where C(K) is a constant depending on K only. Therefore using Lemma 5.1 we derive (if γ(p) = γ0/p take b
such that 1 > b > β/(2α− β) otherwise take b = 1) that

lim
n

P(nαB1
γ−1(1/(n2α−βT )) > ε) = 0.

Moreover, since for all k ∈ [[1, n]], γ−bk |rk| ≤ XYk it follows

P(nαB2
γ−1(1/(n2α−βT )) > ε/2) = P(nαB2

γ−1(1/(n2α−βT )) > ε/2, X(sup
k≥1
|θk − θ∗|) ≥ K)

+ P(nαB2
γ−1(1/(n2α−βT )) > ε/2, X(sup

k≥1
|θk − θ∗|) < K)

≤ P(X(sup
k≥1
|θk − θ∗|) ≥ K)

which in turn implies

lim
n

P(nαB2
γ−1(1/(n2α−βT )) > ε) ≤ P(X(sup

k≥1
|θk − θ∗|) ≥ K).
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Letting K goes to infinity in the previous inequality we conclude that nαB2
γ−1(1/(n2α−βT ))

P−→ 0 as n→ +∞
so that

nα
γ−1(1/(n2α−βT ))∑

k=1

γkΠk+1,γ−1(1/(n2α−βT ))∆R
nβ

k
P−→ 0, n→ +∞.

Step 4: study of the sequence
{
nα
∑γ−1(1/(n2α−βT ))
k=1 γkΠk+1,γ−1(1/(n2α−βT ))∆N

nβ

k , n ≥ 0
}

We now prove a CLT for the sequence
{
nα
∑γ−1(1/(n2α−βT ))
k=1 γkΠk+1,γ−1(1/(n2α−βT ))∆N

nβ

k , n ≥ 0
}

. Let ε > 0.

It holds

γ−1(1/(n2α−βT ))∑
k=1

E
∣∣∣nαγkΠk+1,γ−1(1/(n2α−βT ))∆N

nβ

k

∣∣∣2+ε ≤ sup
n≥1

sup
k∈[[1,n]]

E
∣∣∣nβ/2∆Nnβ

k

∣∣∣2+ε

× n(2+ε)(α−β/2)
γ−1(1/(n2α−βT ))∑

k=1

γ2+εk ‖Πk+1,γ−1(1/(n2α−βT ))‖2+ε.

By Lemma 5.1, we have the following bound:
∑n
k=1 γ

2+ε
k ‖Πk+1,n‖2+ε = O(γ1+ε(n)) so that we have

lim sup
n

n(2+ε)(α−β/2)
γ−1(1/(n2α−βT ))∑

k=1

γ2+εk ‖Πk+1,γ−1(1/(n2α−βT ))‖2+ε = 0

Moreover simple computations lead

E
∣∣∣nβ/2∆Nnβ

k

∣∣∣2+ε ≤ C(|nβ/2(hn
β

(θ∗)− h(θ∗))|2+ε + E(nβ/2|H(θ∗, Xnβ

T )−H(θ∗, XT )|)2+ε).

For the first term in the above inequality we have supn≥1 |nβ/2(hn
β

(θ∗) − h(θ∗))|2+ ε < +∞ ⇔ α ≥ 1/2.

For the second term, using assumption (HLH), properties (2.6) and (2.7) we have supn≥1 E(nβ/2|H(θ∗, Xnβ

T )−
H(θ∗, XT )|)2+ε < +∞. Hence we conclude that

sup
n≥1

sup
k∈[[1,n]]

E
∣∣∣nβ/2∆Nnβ

k

∣∣∣2+ε < +∞,

so that the conditional Lindeberg condition. Now, we focus on the conditional variance. We set

Sn := n2α
γ−1(1/(n2α−βT ))∑

k=1

γ2kΠk+1,γ−1(1/(n2α−βT ))Ek[∆Nnβ

k (∆Nnβ

k )T ]ΠT
k+1,γ−1(1/(n2α−βT )), and Un

β

T = Xnβ

T −XT .

(3.17)
A Taylor’s expansion yields√

nβ

T

(
H(θ∗, Xnβ

T )−H(θ∗, XT )
)

= DxH(θ∗, XT )

√
nβ

T
Un

β

T + ψ(θ∗, XT , U
nβ

T )

√
nβ

T
Un

β

T

with ψ(θ∗, XT , U
nβ

T )
P−→ 0. From the tightness of (

√
nβ

T U
nβ

T )n≥1, we get ψ(θ∗, XT , U
nβ

T )
√

nβ

T U
nβ

T
P−→ 0 so that

using Theorem 2.1 and Lemma 2.1 yield√
nβ

T

(
H(θ∗, Xnβ

T )−H(θ∗, XT )
)

=⇒ DxH(θ∗, XT )UT .
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Moreover, from assumption (HLH), properties (2.6) and (2.7) it follows that

∀p > 0, sup
n≥1

E|
√
nβ

T
(H(θ∗, Xnβ

T )−H(θ∗, XT ))|2+p < +∞,

which combined with (HDH) imply

E

(√
nβ

T

(
H(θ∗, Xnβ

T )−H(θ∗, XT )
))
→ ẼDxH(θ∗, XT )UT = 0

E

(√
nβ

T

(
H(θ∗, Xnβ

T )−H(θ∗, XT )
))(√nβ

T

(
H(θ∗, Xnβ

T )−H(θ∗, XT )
))T

→ Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

where we used ẼDxH(θ∗, XT )UT = Ẽ[DxH(θ∗, XT )Ẽ[UT |FT ]] and Ẽ[UT |FT ] = 0 (see e.g. Proposition 2.1,
p.2685 in [Keb05]). Hence, we have

Γn → Γ∗ := Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

where for n ≥ 1

Γn :=
nβ

T
Ek[∆Nnβ

k (∆Nnβ

k )T ].

Consequently, using the following decomposition

1

γ(n)

n∑
k=1

γ2kΠk+1,nΓnΠT
k+1,n =

1

γ(n)

n∑
k=1

γ2kΠk+1,nΓ∗ΠT
k+1,n +

1

γ(n)

n∑
k=1

γ2kΠk+1,n(Γn − Γ∗)ΠT
k+1,n

with

lim sup
n

1

γ(n)

∥∥∥∥∥
n∑
k=1

γ2kΠk+1,n(Γn − Γ∗)ΠT
k+1,n

∥∥∥∥∥ ≤ C lim sup
n
‖Γn − Γ∗‖ = 0,

which is a consequence of by Lemma 5.1, we clearly see that limn Sn = limn
1

γ(n)

∑n
k=1 γ

2
kΠk+1,nΓ∗ΠT

k+1,n if

this latter limit exists. We denote by Θ∗ the (unique) matrix A solution to the Lyapunov equation:

Γ∗ − (Dh(θ∗)− ζId)A−A(Dh(θ∗)− ζId)T = 0.

Following the lines of the proof of Lemma 2.3, step 3, we have Sn
a.s.−→ Θ∗. We leave the computational details

to the reader. �

Proof of Theorem 3.1. We first write the following decomposition

Θsr
n − θ∗ = θn

β

γ−1(1/n2α) − θ∗,n
β

+ θnγ−1(1/n2α−β) − θn
β

γ−1(1/n2α−β) − (θ∗,n − θ∗,nβ ) + θ∗,n − θ∗

For the last term of the above sum, we use Theorem 2.7 to directly deduce

nα(θ∗,n − θ∗)→ −Dh−1(θ∗)E(h, α, θ∗), as n→ +∞.

For the first term, from Lemma 2.3 it follows

nα(θn
β

γ−1(1/n2α) − θ∗,n
β

) =⇒ N (0,Γ∗),
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with Γ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Ex[H(θ∗, XT )H(θ∗, XT )T ] exp (−s(Dh(θ∗)− ζId)) ds. We decompose

the last remaining term, namely θnγ−1(1/n2α−β) − θn
β

γ−1(1/n2α−β) − (θ∗,n − θ∗,nβ ) as follows

θnγ−1(1/n2α−β) − θn
β

γ−1(1/n2α−β) − (θ∗,n − θ∗,nβ ) = θnγ−1(1/n2α−β) − θγ−1(1/n2α−β) − (θ∗,n − θ∗)
− (θn

β

γ−1(1/n2α−β) − θγ−1(1/n2α−β) − (θ∗,n
β − θ∗))

and use Lemma 3.1 to conclude the proof. �

Theorem 3.2. Suppose that h and hn satisfy the assumptions of Theorem 2.7 (with α ∈ (1/2 ∨ β, 1]) and that
h satisfies the assumptions of Theorem 2.4. Assume that (HD), (HMR), (HDH) and (HLH) hold and that
hn is twice continuously differentiable in a neighborhood of θ∗, with Dhn Lipschitz-continuous uniformly in n
satisfying:

∀θ ∈ Rd, nα−(α−β/2)ρ‖Dh(θ)−Dhnβ (θ)‖ → 0, as n→ +∞. (3.18)

Assume that the step sequence γ = (γp)p≥1 satisfies (HS1) with ρ ∈ (1/2, 1) and ρ > α
2α−β ∨

α(1−β)
(α−β/2) .

Suppose that Ẽ(DxH(θ∗, XT )UT )(DxH(θ∗, XT )UT )T is a positive definite matrix.
Then, for M3 = n2α and M4 = n2α−βT , one has

nα(Θ̄sr
n − θ∗) =⇒ Dh−1(θ∗)E(h, α, θ∗) +N (0, Σ̄∗), n→ +∞,

where

Σ̄∗ := Dh(θ∗)−1(EH(θ∗, XT )H(θ∗, XT )T + Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

)(Dh(θ∗)−1)T .

Lemma 3.2. Let (θ̄p)p≥1 be the empirical mean sequence associated to (θp)p≥1 defined by (3.15).Under the
assumptions of Theorem 3.2, one has

nα
(
θ̄n

β

n2α−βT − θ̄n2α−βT − (θ∗,n
β − θ∗)

)
=⇒ N (0, Dh(θ∗)−1 Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )

T
(Dh(θ∗)−1)T ),

and

nα
(
θ̄nn2α−βT − θ̄n2α−βT − (θ∗,n − θ∗)

) P−→ 0.

Proof. We will just prove the first assertion. The second one will readily follow. The notation C denotes
a constant that may change from one line to the next. Using the notations of Lemma 3.1, the sequence

(z̄n
β

p )p∈[[0,n2α−βT ]] can be decomposed as follows:

z̄n
β

n2α−βT =
1

n2α−βT + 1

n2α−βT∑
k=0

zn
β

k

= (Dh(θ∗))−1
1

n2α−βT + 1

(
zn

β

n2α−βT+1

γn2α−βT+1

− zn
β

0

γ1

)
+ (Dh(θ∗))−1

1

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk
− 1

γk+1

)
zn

β

k

− (Dh(θ∗))−1
1

n2α−βT + 1

n2α−βT∑
k=0

(∆Nnβ

k+1 + ∆Rn
β

k+1)

− (Dh(θ∗))−1
1

n2α−βT + 1

n2α−βT∑
k=0

(ζn
β

k − ζk + (Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k − θ∗,n
β

)).

Our aim is to study the contribution of each term in this decomposition.
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Step 1: study of the sequence

{
nα

n2α−βT+1

(
zn
β

n2α−βT+1

γ
n2α−βT+1

− zn
β

0

γ1

)
, n ≥ 0

}
:

Using Proposition 5.2 clearly yields

nα

n2α−βT + 1

∣∣∣∣∣ zn
β

n2α−βT+1

γn2α−βT+1

− zn
β

0

γ1

∣∣∣∣∣ ≤ C

(nα−βT )γn2α−βT+1

(|µ̃nβn2α−βT |+ |r̃n
β

1,n2α−βT |+ |r̃2,n2α−βT |)+
C

nα−β
|θ∗−θ∗,nβ |.

We evaluate each term appearing in the right hand side of the last but one inequality. First we clearly have

1

(nα−βT )γn2α−βT+1

E|µ̃nβn2α−βT | ≤
C√

(n2α−βT )γn2α−βT+1

→ 0, as n→ +∞,

and
1

(nα−βT )γn2α−βT+1

|r̃nβ1,n2α−βT | ≤ C
1

nα−β
X̃Ỹ n

β

n2α−βT
P−→ 0, as n→ +∞.

We write r̃2,n2α−βT = c1,n + c2,n where for K > 0 the sequence (c1,n)n≥0 is given by

c1,n :=

n2α−βT∑
k=1

γkΠk+1,n2α−βT (H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)−h(θ∗)))1{γ−1
k (supk≥1 |θk−θ∗|)|rk|≤KYk}

satisfying

E|c1,n|2 ≤ C
n2α−βT∑
k=1

γ2k‖Πk+1,n2α−βT ‖2E|θk − θ∗|21{γ−1
k (supk≥1 |θk−θ∗|)|rk|≤KYk}

≤ C
n2α−βT∑
k=1

γ2k‖Πk+1,n2α−βT ‖2(E|µk|2 + E(sup
k≥1
|θk − θ∗|)|rk|1{γ−1

k (supk≥1 |θk−θ∗|)|rk|≤KYk})

≤ C
n2α−βT∑
k=1

γ3k‖Πk+1,n2α−βT ‖2 = O(γ2n2α−βT )

where we used |θk − θ∗|2 ≤ |µk|2 + 2|θk − θ∗||rk|. Hence, we deduce that 1
nα−βγ

n2α−βT
c1,n

L1(P)−→ 0. Now observe

that from Proposition 5.1 for all k ∈ [[1, n]], we have γ−1k rk ≤ KYk so that for all ε > 0

P
(

1

nα−βγn2α−βT+1

c2,n > ε

)
≤ P

(
C

nα−βγn2α−βT+1

c2,n > ε, (sup
k≥1
|θk − θ∗|)X ≤ K

)
+ P

(
(sup
k≥1
|θk − θ∗|)X > K

)
= P

(
(sup
k≥1
|θk − θ∗|)X > K

)
.

Therefore passing to the limit n → +∞ in the previous inequality we get limn P( 1
nα−βγ

n2α−βT+1
c2,n > ε) ≤

P
(
(supk≥1 |θk − θ∗|)X > K

)
for allK > 0. Passing to the limitK → +∞, we conclude that 1

nα−βγ
n2α−βT+1

c2,n
P−→

0 as n→ +∞ which in turn implies

1

nα−βγn2α−βT+1

|r̃2,n2α−βT | P−→ 0.
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Finally since α > β and |θ∗ − θ∗,nβ | → 0, we clearly have 1
nα−β |θ∗ − θ∗,n

β | → 0 so that

nα

n2α−βT + 1

(
zn

β

n2α−βT+1

γn2α−βT+1

− zn
β

0

γ1

)
P−→ 0, as n→ +∞.

Step 2: study of the sequence
{

nα

n2α−βT+1

∑n2α−βT
k=1

(
1
γk
− 1

γk+1

)
zn

β

k , n ≥ 0
}

:

Note that we also have

nα

n2α−βT + 1

∣∣∣∣∣∣
n2α−βT∑
k=1

(
1

γk
− 1

γk+1

)
zn

β

k

∣∣∣∣∣∣ ≤ nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
(|µ̃nβk |+ |r̃n

β

1,k|+ |r̃2,k|).

We take the expectation of the first term appearing in the right hand side of the above inequality and since
ρ < 1 we deduce

nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
E|µ̃nβk | ≤

C

nα−β/2T

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
γ

1
2

k → 0.

For the second term, we have

nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
|r̃nβ1,k| ≤

X̃

nα−βT

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
γkỸ

n
k ,

which combined with

1

nα−βT

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
γkEỸ nk ≤ ( sup

n≥1,k≥1
EỸ nk )

1

nα−βT

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
γk → 0

since α > β allow to deduce that

nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
|r̃nβ1,k|

P−→ 0.

For the third term, we use the decomposition r̃2,p = c1,p + c2,p as previously done. We clearly have

nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
E|c1,k| ≤

C

nα−βT

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
γk → 0,

and for all K > 0

P

 nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
|c2,k| > ε

 ≤ P

 nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk+1
− 1

γk

)
|c2,k| > ε, (sup

k≥1
|θk − θ∗|)X ≤ K


+ P

(
(sup
k≥1
|θk − θ∗|)X > K

)
= P

(
(sup
k≥1
|θk − θ∗|)X > K

)
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so that passing to the limit n→ +∞ we get limn P
(

nα

n2α−βT+1

∑n2α−βT
k=1

(
1

γk+1
− 1

γk

)
|c2,k| > ε

)
≤ P

(
(supk≥1 |θk − θ∗|)X > K

)
.

Passing to the limit K → +∞ leads to limn P
(

nα

n2α−βT+1

∑n2α−βT
k=1

(
1

γk+1
− 1

γk

)
|c2,k| > ε

)
= 0 which in turn

implies

nα

n2α−βT + 1

n2α−βT∑
k=1

(
1

γk
− 1

γk+1

)
zn

β

k
P−→ 0.

Step 3: study of the sequence
{

nα

n2α−βT+1

∑n2α−βT
k=1 (ζn

β

k − ζk + (Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k − θ∗,n
β

)), n ≥ 0
}

:

Now we focus on the last term. We firstly note that thanks to Lemma 5.2 we clearly have

nα

n2α−βT + 1
E

∣∣∣∣∣∣
n2α−βT∑
k=0

ζn
β

k

∣∣∣∣∣∣ ≤ C

nα−βT

n2α−βT∑
k=0

γk → 0

since ρ > α/(2α− β). Moreover, from Proposition 5.1 it follows

nα

n2α−βT + 1

∣∣∣∣∣∣
n2α−βT∑
k=0

ζk

∣∣∣∣∣∣ ≤ C

nα−βT

n2α−βT∑
k=0

|µk|2+(sup
k≥1
|θk−θ∗|)|rk| ≤

C

nα−βT

n2α−βT∑
k=0

|µk|2+(sup
k≥1
|θk−θ∗|)X

C

nα−βT

n2α−βT∑
k=0

γkYk.

The first term converges to zero in L1(P) since (1/(n−(α−β)T )
∑n2α−βT
k=0 E|µk|2 ≤ (supk≥1 γ

−1
k E|µk|2) 1

nα−βT

∑n2α−β

k=0 γk →
0 and similarly the second term converges to zero in probability. Now since Dhn

β

is Lipschitz-continuous uni-
formly in n we easily get

nα

n2α−βT + 1
E

∣∣∣∣∣∣
n2α−βT∑
k=0

(Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k − θ∗,n
β

)

∣∣∣∣∣∣ ≤ C

nα−βT
(‖Dh(θ∗)−Dhnβ (θ∗)‖+|θ∗−θ∗,nβ |)

n2α−βT∑
k=0

γ
1
2

k ,

and recalling that nα−(α−β/2)ρ‖Dh(θ∗)−Dhnβ (θ∗)‖ → 0 and ρ > α(1−β)/(α−β/2) which implies nα−(α−β/2)ρ|θ∗−
θ∗,n

β | → 0 we deduce

nα

n2α−βT + 1

n2α−βT∑
k=0

(Dh(θ∗)−Dhnβ (θ∗,n
β

))(θn
β

k − θ∗,n
β

)
L1(P)−→ 0.

Step 4: study of the sequence
{

nα

n2α−βT+1

∑n2α−βT
k=0 (∆Nnβ

k+1 + ∆Rn
β

k+1), n ≥ 0
}

:

Similarly to the proof of Lemma 3.3, we decompose the sequence
{

nα

n2α−βT+1

∑n2α−βT
k=1 ∆Rn

β

k , n ≥ 1
}

as

follows

nα

n2α−βT + 1

n2α−βT∑
k=0

∆Rn
β

k =
nα

n2α−βT + 1

n2α−βT∑
k=0

(hn
β

(θn
β

k )− hnβ (θ∗)− (H(θn
β

k , (Xnβ

T )k+1)−H(θ∗, (Xnβ

T )k+1)))

+
nα

n2α−βT + 1

n2α−βT∑
k=0

(H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗)))

= An +Bn.
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From the Cauchy-Schwarz inequality and Lemma 5.2 it easily follows

E|An| ≤
1

nα−βT

n2α−βT∑
k=0

γk

 1
2

→ 0

since ρ > α/(2α− β) > β/(2α− β). Now we write Bn = B1,n +B2,n with for all K > 0

B1,n =
nα

n2α−βT + 1

n2α−βT∑
k=0

(H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗)))1{γ−1
k (supk≥1 |θk−θ∗|)|rk|≤KYk}.

and simple computations similar to that of the sequence (c1,n)n≥1 lead to

E|B1,n| ≤
C

nα−βT

n2α−βT∑
k=0

γk

1/2

→ 0.

Moreover, similarly to the computations done for the sequence (c2,n)n≥1, we have limn P(B2,n > ε) ≤
P
(
(supk≥1 |θk − θ∗|)X > K

)
and passing to the limit K → +∞ we obtain limn P(B2,n > ε) = 0 which in turn

implies

nα

n2α−βT + 1

n2α−βT∑
k=0

∆Rn
β

k
P−→ 0, n→ +∞.

We now prove a CLT for the sequence
{

nα

n2α−βT+1

∑n2α−βT
k=0 ∆Nnβ

k , n ≥ 0
}

. Let ε > 0.

n2α−βT∑
k=0

E
∣∣∣∣ nα

n2α−βT + 1
∆Nnβ

k

∣∣∣∣2+ε ≤ sup
n≥1

sup
k∈[[0,n]]

E
∣∣∣nβ/2∆Nnβ

k

∣∣∣2+ε 1

nαε−βε/2
→ 0 n→ +∞

where we used assumption (HLH), properties (2.6) and (2.7) to derive that supn≥1 supk∈[[1,n]] E
∣∣∣nβ/2∆Nnβ

k

∣∣∣2+ε <
+∞. Therefore the conditional Lindeberg condition is satisfied. Now, we focus on the conditional variance.
Recall that (see the the proof of Lemma 3.3) we have

nβ

T
Ek[∆Nnβ

k (∆Nnβ

k )T ] =
nβ

T
E
[
(H(θ∗, Xnβ

T )−H(θ∗, XT )− (hn
β

(θ∗)− h(θ∗)))

×(H(θ∗, Xnβ

T )−H(θ∗, XT )− (hn
β

(θ∗)− h(θ∗)))T
]

→ Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T
,

so that if we set

Sn :=
n2α

(n2α−βT + 1)2

n2α−βT∑
k=0

Ek[∆Nnβ

k (∆Nnβ

k )T ]

=
n2α−βT

n2α−βT + 1

nβ

T
E
[
(H(θ∗, Xnβ

T )−H(θ∗, XT )− (hn
β

(θ∗)− h(θ∗)))(H(θ∗, Xnβ

T )−H(θ∗, XT )− (hn
β

(θ∗)− h(θ∗)))T
]
,
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we clearly get

Sn → Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T
.

This completes the proof. �

Proof of Theorem 3.2. We decompose the error as follows

Θ̄sr
n − θ∗ = θ̄n

β

n2α − θ∗,n
β

+ θ̄nn2α−β − θ̄n
β

n2α−β − (θ∗,n − θ∗,nβ ) + θ∗,n − θ∗.

For the first term, from Lemma 2.4 it follows that

nα(θ̄n
β

n2α − θ∗,n
β

) =⇒ N (0, Dh(θ∗)−1Ex[H(θ∗, XT )H(θ∗, XT )T ](Dh(θ∗)−1)T ).

For the last term using Theorem 2.7, we have nα(θ∗,n − θ∗)→ −Dh−1(θ∗)E(h, α, θ∗). We now focus on the

last remaining term, namely θ̄nn2α−β − θ̄n
β

n2α−β − (θ∗,n − θ∗,nβ ). We decompose it as follows

θ̄nn2α−β − θ̄n
β

n2α−β − (θ∗,n − θ∗,nβ ) = θ̄nn2α−β − θ̄n2α−β − (θ∗,n − θ∗)− (θ̄n
β

n2α−β − θ̄n2α−β − (θ∗,n
β − θ∗))

where (θ̄p)p≥1 is the empirical mean sequence associated to (θp)p≥1 and use Lemma 3.2 to conclude the proof. �

3.2. The multi-level stochastic approximation method

As mentioned in the introduction the multi-level stochastic approximation scheme uses L Euler approximation
schemes with different time steps given by T/m`, ` ∈ {1, · · · , L} for a fixed integer m ≥ 2 such that mL = n
and estimates θ∗ by computing the quantity

Θml
n = θ1M0

+

L∑
`=1

θm
`

M`
− θm`−1

M`
.

It is important to point out here that each couple (θm
`

M`
, θm

`−1

M`
) is computed using two Euler approximation

schemes with different time steps but with the same Brownian path. Moreover, for two different levels, the
stochastic approximation schemes are based on independent Brownian paths.

Theorem 3.3. Suppose that h and hm
`

, ` = 0, · · · , L, satisfy the assumptions of Theorem 2.7 (with α = 1) and
that h satisfies the assumptions of Theorem 2.4. Assume that (HD), (HMR), (HDH) and (HLH) hold and
that hn is twice continuously differentiable in a neighborhood of θ∗, with Dhn Lipschitz-continuous uniformly
in n satisfying:

∃β > 1/2, ∀θ ∈ Rd, nβ‖Dhn(θ)−Dh(θ)‖ → 0, as n→ +∞.
Suppose that Ẽ(DxH(θ∗, XT )UT )(DxH(θ∗, XT )UT )T is a positive definite matrix. Assume that the step

sequence is given by γp = γ(p), p ≥ 1, where γ is a positive function defined on [0,+∞[ decreasing to zero,
satisfying one of the following assumptions:

• γ varies regularly with exponent (−ρ), ρ ∈ (1/2, 1), that is, for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ.
• for t ≥ 1, γ(t) = γ0/t and γ0 satisfies λγ0 > 1.

Then, for M0 = γ−1(1/n2) and Ml = γ−1(m` log(m)/(n2 log(n)(m− 1)T )), ` = 1, · · · , L, one has

n(Θml
n − θ∗) =⇒ −Dh−1(θ∗)E(h, 1, θ∗) +N (0,Σ∗), n→ +∞

with

Σ∗ :=

∫ ∞
0

(
e−s(Dh(θ

∗)−ζId)
)T

(Ex[H(θ∗, X1
T )H(θ∗, X1

T )T ]+Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

)e−s(Dh(θ
∗)−ζId)ds

and UT is the value at time T of the process (2.8) defined on (Ω̃, F̃ , (F̃t)t≥0, P̃).
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Proof. We first write the following decomposition

Θml
n − θ∗ = θ1γ−1(1/n2) − θ∗,1 +

L∑
`=1

θm
`

M`
− θm`−1

M`
− (θ∗,m

` − θ∗,m`−1

) + θ∗,n − θ∗

For the last term of the above sum, we use Theorem 2.7 to directly deduce

n(θ∗,n − θ∗)→ −Dh−1(θ∗)E(h, 1, θ∗), as n→ +∞.

For the first term, the standard CLT (theorem 2.4) for stochastic approximation leads to

n(θ1γ−1(1/n2) − θ∗,1) =⇒ N (0,Γ∗),

with Γ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Ex[H(θ∗, X1
T )H(θ∗, X1

T )T ] exp (−s(Dh(θ∗)− ζId)) ds.To deal with the

last remaining term, namely nα
∑L
`=1 θ

m`

M`
− θm`−1

M`
− (θ∗,m

` − θ∗,m`−1

) we will need the following lemma. �

Lemma 3.3. Under the assumptions of Theorem 3.1, one has

n

L∑
`=1

θm
`

M`
− θm`−1

M`
− (θ∗,m

` − θ∗,m`−1

) =⇒ N (0,Θ∗), n→ +∞,

with Θ∗ :=
∫∞
0

exp (−s(Dh(θ∗)− ζId))T Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

exp (−s(Dh(θ∗)− ζId)) ds.

Proof. We come back to the decomposition used in the proof of Lemma 2.3. We consequently use the same
notations. We will not go into all computational details.

A Taylor’s expansion yields for p ≥ 0

θm
`

p+1 − θ∗,m
`

= θm
`

p − θ∗,m
` − γp+1Dh

m`(θ∗,m
`

)(θm
`

p − θ∗,m
`

) + γp+1∆Mm`

p+1 − γp+1ζ
m`

p

with ∆Mm`

p+1 = hm
`

(θm
`

p )−H(θm
`

p , (Xm`

T )p+1), p ≥ 0. Therefore, defining z`p = θm
`

p − θm
`−1

p − (θ∗,m
` − θ∗,m`−1

),

p ≥ 0, with z`0 = θ∗,m
` − θ∗,m`−1

, by a simple induction argument one has

z`M`
= Π1,M`

z`0 +

M∑̀
k=1

γkΠk+1,M`
∆N `

k +

M∑̀
k=1

γkΠk+1,M`
∆R`k

+

M∑̀
k=1

γkΠk+1,M`

(
ζ`k−1 − ζ`−1k−1 + (Dh(θ∗)−Dhm`(θ∗,m`))(θm`k−1 − θ∗,m

`

)

−(Dh(θ∗)−Dhm`−1

(θ∗,m
`−1

))(θm
`−1

k−1 − θ∗,m
`−1

)
)

(3.19)

where Πk,n :=
∏n
j=k (Id − γjDh(θ∗)), with the convention that Πn+1,n = Id, and ∆N `

k := hm
`

(θ∗)−hm`−1

(θ∗)−
(H(θ∗, (Xm`

T )k+1)−H(θ∗, (Xm`−1

T )k+1)), ∆R`k = hm
`

(θm
`

k )−hm`(θ∗)−(H(θm
`

k , (Xm`

T )k+1)−H(θ∗, (Xm`

T )k+1))+

H(θm
`−1

k , (Xm`−1

T )k+1)−H(θ∗, (Xm`−1

T )k+1)− (hm
`−1

(θm
`−1

k )− hm`−1

(θ∗)) for k ≥ 0.

Step 1: study of
{
n
∑L
`=1 Π1,M`

z`0, n ≥ 0
}

Under the assumptions on the step sequence γ, for all η ∈ (0, λm) we have ‖Π1,M`
‖ ≤ exp(−(λm −

η)
∑M`

k=1 γk) ≤ C
√
γ(M`) for a positive constant C independent of ` (select η s.t. 2(λm−η)γ0 > 1 if γ(p) = γ0/p,
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p ≥ 1). Therefore, one has

∣∣∣∣∣n
L∑
`=1

Π1,M`
z`0

∣∣∣∣∣ ≤ n
L∑
`=1

‖Π1,M`
‖|θ∗,m` − θ∗,m`−1 | ≤ Cn

L∑
`=1

1

m`

m`/2

n log1/2(n)
≤ C

log1/2(n)
→ 0, n→ +∞.

Step 2: study of
{
n
∑L
`=1

∑M`

k=1 γkΠk+1,M`

(
ζ`k−1 − ζ`−1k−1

)
, n ≥ 0

}
By Lemma 5.2, one has

E

∣∣∣∣∣n
L∑
`=1

M∑̀
k=1

γkΠk+1,M`

(
ζ`k−1 − ζ`−1k−1

)∣∣∣∣∣ ≤ Cn
L∑
`=1

M∑̀
k=1

γ2k‖Πk+1,M`
‖.

However, by Lemma 5.1 (if γ(p) = γ0/p recall that λmγ0 > 1) we easily derive lim supn
1

γ(n)

∑n
k=1 γ

2
k‖Πk+1,n‖ ≤

1, so that

n

L∑
`=1

M∑̀
k=1

γ2k‖Πk+1,M`
‖ ≤ Cn

L∑
`=1

γ(M`) ≤ Cn
L∑
`=1

m`

n2 log(n)
≤ C 1

log(n)
→ 0, n→ +∞.

Step 3: study of
{
n
∑L
`=1

∑M`

k=1 γkΠk+1,M`

(
(Dh(θ∗)−Dhm`(θ∗,m`))(θm`k−1 − θ∗,m

`

)
)
, n ≥ 0

}
and

{
n
(∑L

`=1

∑M`

k=1 γkΠk+1,M`
(Dh(θ∗)−Dhm`−1

(θ∗,m
`−1

))(θm
`−1

k−1 − θ∗,m
`−1

)
)
, n ≥ 0

}
By Lemma 5.2 and since Dhm

`

is a Lipschitz function uniformly in m we clearly have

E

∣∣∣∣∣n
L∑
`=1

M∑̀
k=1

γ
3/2
k Πk+1,M`

(Dh(θ∗)−Dhm`(θ∗,m`))(θm`k−1 − θ∗,m
`

)

∣∣∣∣∣ ≤ n
L∑
`=1

M∑̀
k=1

γ
3/2
k ‖Πk+1,n‖

× (‖Dh(θ∗)−Dhm`(θ∗)‖+ |θ∗,m` − θ∗)|)

≤ Cn
L∑
`=1

γ1/2(M`)(‖Dh(θ∗)−Dhm`(θ∗)‖+ |θ∗,m` − θ∗)|)

which combined with supn≥1 n
β‖Dh(θ∗)−Dhn(θ∗)‖ < +∞ with β > 1/2 and supn≥1 n|θ∗,n− θ∗| < +∞ imply

that

E

∣∣∣∣∣n
L∑
`=1

M∑̀
k=1

γkΠk+1,M`
(Dh(θ∗)−Dhm`(θ∗,m`))(θm`k−1 − θ∗,m

`

)

∣∣∣∣∣ ≤ C

log1/2(n)

L∑
`=1

m`/2(m−` +m−`β) ≤ C

log1/2(n)

so that n
∑L
`=1

∑M`

k=1 γkΠk+1,M`
(Dh(θ∗)−Dhm`(θ∗,m`))(θm`k−1− θ∗,m

`

)
L1(P)−→ 0. By similar arguments, we easily

deduce n
∑L
`=1

∑M`

k=1 γkΠk+1,M`
(Dh(θ∗)−Dhm`−1

(θ∗,m
`−1

))(θm
`−1

k−1 − θ∗,m
`−1

)
L1(P)−→ 0.

Step 4: study of
{
n
∑L
`=1

∑M`

k=1 γkΠk+1,M`
∆R`k, n ≥ 0

}
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We take the square of the L2(P)-norm of this term to deduce

E

∣∣∣∣∣n
L∑
`=1

M∑̀
k=1

γkΠk+1,M`
∆R`k

∣∣∣∣∣
2

≤ 2n2
L∑
`=1

M∑̀
k=1

γ2k‖Πk+1,M`
‖2E|H(θm

`

k , (Xm`

T )k+1)−H(θ∗, (Xm`

T )k+1)|2

+ 2n2
L∑
`=1

M∑̀
k=1

γ2k‖Πk+1,M`
‖2E|H(θm

`−1

k , (Xm`−1

T )k+1)−H(θ∗, (Xm`−1

T )k+1)|2

≤ Cn2
L∑
`=1

M∑̀
k=1

γ3k‖Πk+1,M`
‖2

where we used (HLH) and Lemma 5.2. Now from Lemma 5.1 and simple computations it follows

n2
L∑
`=1

M∑̀
k=1

γ3k‖Πk+1,M`
‖2 ≤ Cn2

L∑
`=1

γ2(M`) ≤
C

n2 log2(n)

L∑
`=1

m2` ≤ C

log2(n)
→ 0, n→ +∞.

Therefore, we conclude that

n

L∑
`=1

M∑̀
k=1

γkΠk+1,M`
∆R`k

L2(P)−→ 0, n→ +∞.

Step 5: study of
{
n
∑L
`=1

∑M`

k=1 γkΠk+1,M`
∆N `

k, n ≥ 0
}

We now prove a CLT for the sequence
{
n
∑L
`=1

∑M`

k=1 γkΠk+1,M`
∆N `

k, n ≥ 0
}

. Let ε > 0. By Burkholder’s

inequality and elementary computations, it holds

L∑
`=1

E

∣∣∣∣∣
M∑̀
k=1

nγkΠk+1,M`
∆N `

k

∣∣∣∣∣
2+ε

≤ Cn(2+ε)
L∑
`=1

E

(
M∑̀
k=1

γ2k‖Πk+1,M`
‖2|∆N `

k|2
)1+ε/2

≤ Cn(2+ε)
L∑
`=1

(

M∑̀
k=1

γ2k‖Πk+1,M`
‖2)ε/2

M∑̀
k=1

γ2+εk ‖Πk+1,M`
‖2+εE|∆N `

k|2+ε.

Using (HLH), properties (2.6) and (2.7) we have sup`≥1 E(m`/2|H(θ∗, Xm`

T )−H(θ∗, XT )|)2+ε < +∞ so that

E|∆N `
k|2+ε ≤

K

m`(1+ε/2)
.

Moreover, by Lemma 5.1, we have

lim sup
n

(1/γ(1+ε)(n))

n∑
k=1

γ2+εk ‖Πk+1,n‖2+ε ≤ 1 and lim sup
n

(1/γ(n))

n∑
k=1

γ2k‖Πk+1,n‖2 ≤ 1

so that

L∑
`=1

E

∣∣∣∣∣
M∑̀
k=1

nγkΠk+1,M`
∆N `

k

∣∣∣∣∣
2+ε

≤ Cn(2+ε)
L∑
`=1

γ1+3ε/2(M`)m
−`(1+ε/2) ≤ C

n2ε log1+3ε/2(n)

L∑
`=1

m`ε ≤ C

nε log1+3ε/2(n)
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which in turn implies

L∑
`=1

E

∣∣∣∣∣
M∑̀
k=1

nαγkΠk+1,M`
∆N `

k

∣∣∣∣∣
2+ε

→ 0, n→ +∞

and the conditional Lindeberg condition is satisfied. Now, we focus on the conditional variance. We set

S` := n2
M∑̀
k=1

γ2kΠk+1,M`
Ek[∆N `

k(∆N `
k)T ]ΠT

k+1,M`
, and U `T = Xm`

T −Xm`−1

T . (3.20)

Observe that by the very definition of M` one has

S` =
1

γ(M`)

log(m)

log(n)

m`

(m− 1)T

M∑̀
k=1

γ2kΠk+1,M`
Ek[∆N `

k(∆N `
k)T ]ΠT

k+1,M`

A Taylor’s expansion yields

H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ) = DxH(θ∗, XT )U `T + ψ(θ∗, XT , X
m`

T −XT )(Xm`

T −XT ) + ψ(θ∗, XT , X
m`−1

T −XT )(Xm`−1

T −XT )

with (ψ(θ∗, XT , X
m`

T −XT ), ψ(θ∗, XT , X
m`−1

T −XT ))
P−→ 0 as ` → +∞. From the tightness of the sequences

(
√

m`

(m−1)T (Xm`

T −XT ))`≥1 and (
√

m`

(m−1)T (Xm`−1

T −XT ))`≥1, we get

√
m`

(m− 1)T

(
ψ(θ∗, XT , X

m`

T −XT )(Xm`

T −XT ) + ψ(θ∗, XT , X
m`−1

T −XT )(Xm`−1

T −XT )
)

P−→ 0, `→ +∞.

Therefore using Theorem 2.1 and Lemma 2.1 yield√
m`

(m− 1)T

(
H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T )
)

=⇒ DxH(θ∗, XT )UT .

Moreover, from assumption (HLH), properties (2.6) and (2.7) it follows that

∀p > 0, sup
`≥1

E

∣∣∣∣∣
√

m`

(m− 1)T
(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))

∣∣∣∣∣
2+p

< +∞,

which combined with (HDH) imply√
m`

(m− 1)T
E(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))→ ẼDxH(θ∗, XT )UT = 0

m`

(m− 1)T
E(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))T → Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )
T

as `→ +∞, where we used ẼDxH(θ∗, XT )UT = Ẽ[DxH(θ∗, XT )Ẽ[UT |FT ]] and Ẽ[UT |FT ] = 0. Hence, we have

m`

(m− 1)T
Γ` → Γ∗ := Ẽ (DxH(θ∗, XT )UT ) (DxH(θ∗, XT )UT )

T
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where for ` ≥ 1

Γ` := Ek[∆N `
k(∆N `

k)T ]

= E(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))(H(θ∗, Xm`

T )−H(θ∗, Xm`−1

T ))T − (hm
`

(θ∗)− hm`−1

(θ∗))(hm
`

(θ∗)− hm`−1

(θ∗))T .

Consequently, using the following decomposition

1

γ(M`)

m`

(m− 1)T

M∑̀
k=1

γ2kΠk+1,M`
Γ`Π

T
k+1,M`

=
1

γ(M`)

M∑̀
k=1

γ2kΠk+1,M`
Γ∗ΠT

k+1,M`

+
1

γ(M`)

M∑̀
k=1

γ2kΠk+1,M`

(
m`

(m− 1)T
Γ` − Γ∗

)
ΠT
k+1,M`

with

lim sup
`

1

γ(M`)

∥∥∥∥∥
M∑̀
k=1

γ2kΠk+1,n

(
m`

(m− 1)T
Γ` − Γ∗

)
ΠT
k+1,M`

∥∥∥∥∥ ≤ C lim sup
`

∥∥∥∥ m`

(m− 1)T
Γ` − Γ∗

∥∥∥∥ = 0,

which is a consequence of Lemma 5.1, we clearly see that log(n)
log(m) lim` S` = limp→+∞ 1

γ(p)

∑p
k=1 γ

2
kΠk+1,pΓ

∗ΠT
k+1,p

if this latter limit exists. We denote by Θ∗ the (unique) matrix A solution to the Lyapunov equation:

Γ∗ − (Dh(θ∗)− ζId)A−A(Dh(θ∗)− ζId)T = 0.

Following the lines of the proof of Lemma 2.3, step 3, we have log(n)
log(m)S`

a.s.−→ Θ∗. We leave the computational

details to the reader. Finally, from Cesàro’s Lemma it follows that

L∑
`=1

S` =
1

L

L∑
`=1

S`
log(n)

log(m)
−→

n→+∞
Θ∗.

�

Remark 3.1. The previous result shows that a CLT for the multi-level stochastic approximation estimator
of θ∗ holds if the weak discretization, and thus the implicit discretization errors, is of order 1/n. Due to the
non-linearity of the procedure, this result seems not to extend to a weak discretization error of order 1/nα with
α < 1. Moreover, for the same reason this result does not seem to extend to the empirical sequence associated
to the multi-level estimator according to the Ruppert & Polyak averaging principle.

3.3. Complexity Analysis

The result of Theorem 3.1 can be interpreted as follows. For a total error of order 1/nα, it is necessary to
set M1 = γ−1(1/n2α) steps of a stochastic algorithm with time step nβ and M2 = γ−1(1/(n2α−βT )) steps of
two stochastic algorithms with time step n and nβ using the same Brownian motion, the samples used for the
first M1 steps being independent of those used for the second scheme. Hence, the complexity of the statistical
Romberg stochastic approximation method is given by

CSR-SA(γ) = C × (nβγ−1(1/n2α) + (n+ nβ)γ−1(1/(n2α−βT ))) (3.21)

under the constraint: α > β ∨ 1/2. Consequently, concerning the impact of the step sequence (γn)n≥1 on the
complexity of the procedure we have the two following cases:
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• If we choose γ(p) = γ0/p then simple computations show that β∗ = 1/2 is the optimal choice leading
to a complexity

CSR-SA(γ) = C ′n2α+1/2,

under the constraint λγ0 > 1 and and α > 1/2. This computational cost is similar to the one achieved
by the statistical Romberg Monte Carlo method for the computation of Ex[f(XT )].

• If we choose γ(p) = γ0/p
ρ, 1

2 < ρ < 1 then the computational cost is given by

CSR-SA(γ) = C ′(n
2α
ρ +β + n

2α
ρ −

β
ρ+1)

which is minimized for β∗ = ρ/(1 + ρ) leading to an optimal complexity

CSR-SA(γ) = C ′n
2α
ρ + ρ

1+ρ .

under the constraint α > 1/2. Observe that this complexity decreases with respect to ρ and that it
is minimal for ρ → 1 leading to the optimal computational cost obtained in the previous case. Let us
also point out that contrary to the case γ(p) = γ0/p, p ≥ 1 there is no constraint on the choice of γ0.
Moreover, such condition is difficult to handle and to check in practical implementation so that a blind
choice has often to be made.

The CLT proved in Theorem 3.2 shows that for a total error of order 1/nα, it is necessary to set M1 = n2α

steps of the stochastic approximation scheme defined by (1.4) with time step T/nβ , M2 = n2α−βT steps of
stochastic approximation scheme defined by (1.4) with time step T/n and T/nβ and to simultaneously compute
its empirical mean, which represents a negligible part of the total cost. Both stochastic approximation algorithm

are devised with a step γ satisfying (HS1) with ρ ∈ (1/2, 1) and ρ > α
2α−β ∨

α(1−β)
α−β/2 . It is plain to see that

β∗ = 1/2 is the optimal choice leading to a complexity given by

CSR-RP(γ) = C × n2α+1/2,

provided that ρ > α
2α−1/2 and ∀θ ∈ Rd, nα−(α−

1
4 )ρ‖Dh(θ) − Dhn1/2

(θ)‖ → 0 as n → +∞ (note that when

ρ→ 1 this condition is the same as in Theorem 3.1). For instance, if α = 1, then this condition writes ρ > 2/3

and n1−
3
4ρ‖Dh(θ) − Dhn

1/2

(θ)‖ → 0 and ρ should be selected sufficiently close to 1 according to the weak
discretization error of the Jacobian matrix of h. Therefore, the optimal complexity is reached for free without
any condition on γ0 thanks to the Ruppert & Polyak averaging principle. Let us also note that ought we do
not intend to develop this point, it is possible to prove that averaging allows to achieve the optimal asymptotic
covariance matrix as for standard stochastic approximation algorithms.

Finally, the CLT proved in Theorem 3.3 shows that if the weak discretization error is of order 1/n, that is α =
1, then for a total error of order 1/n, if we set M0 = γ−1(1/n2) and Ml = γ−1(m` log(m)/(n2 log(n)(m− 1)T )),
` = 1, · · · , L, the complexity of the multi-level stochastic approximation method is given by

CML-SA(γ) = C ×
(
γ−1(1/n2) +

L∑
`=1

M`(m
` +m`−1)

)
. (3.22)

As for the statistical Romberg stochastic approximation method, we distinguish the two following cases:

• If γ(p) = γ0/p then the optimal complexity is given by

CML-SA(γ) = C

(
n2 + n2(log n)2

m2 − 1

m(logm)2

)
= O(n2(log(n))2),

under the constraint λγ0 > 1. This computational cost is similar to the one achieved by the multi-
level Monte Carlo method for the computation of Ex[f(XT )], see [Gil08b] and [AK12]. As discussed
in [Gil08b], this complexity attains a minimum near m = 7.
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• If we choose γ(p) = γ0/p
ρ, 1

2 < ρ < 1 then simple computations show that the computational cost is
given by

CML-SA(γ) = C ×
(
n

2
ρ + n

2
ρ (log n)

1
ρ

(m− 1)
1
ρ (m+ 1)

m(logm)
1
ρ

L∑
`=1

m−`(
1
ρ−1)

)
= O(n

2
ρ (log n)

1
ρ ).

Observe that once again this complexity decreases with respect to ρ and that it is minimal for ρ→ 1
leading to the optimal computational cost obtained in the previous case. In this last case, the optimal
choice for the parameter m depends on the value of ρ.

4. Numerical Results

In this section we illustrate the results obtained in sections 2.3 and 2.4 on one hand and those obtained in
section 3.

4.1. Computation of quantiles of a one dimensional diffusion process

We first consider the problem of the computation of a quantile at level l ∈ (0, 1) of a one dimensional diffusion
process. This quantity, also referred as the Value-at-Risk at level l in the practice of risk management, is the
lowest amount not exceeded by XT with probability l, namely

ql(XT ) := inf {θ : P(XT ≤ θ) ≥ l} .

To illustrate the results of sections 2.3 and 2.4, we consider a simple geometric Brownian motion

Xt = x0 +

∫ t

0

rXsds+

∫ t

0

σXsdWs, t ∈ [0, T ] (4.23)

for which the quantile is explicitly known at any level l. The distribution function of XT being increasing,
ql(XT ) is the unique solution of the equation h(θ) = Ex[H(θ,XT )] = 0 with H(θ, x) = 1{x≤θ} − l. A simple
computation shows that

ql(XT ) = x0 exp((r − σ2/2)T + σ
√
Tφ−1(l))

where φ is the distribution function of the standard normal distribution N (0, 1). We associate to the SDE (4.23)
its Euler like scheme Xn = (Xn

t )t∈[0,T ] with time step ∆ = T/n. We use the following values for the parameters:
x0 = 100, r = 0.05, σ = 0.4, T = 1, l = 0.7. The reference Black-Scholes quantile is q0.7(XT ) = 119.69.

Remark 4.1. Let us note that when l is close to 0 or 1 (usually less than 0.05 or more than 0.95) the convergence
of the considered stochastic approximation algorithm is slow and chaotic. This is mainly due to the fact that
the procedure obtains few significant samples to update the estimate in this rare event situation. One solution is
to combine it with a variance reduction algorithm such as an adaptive importance sampling procedure that will
generate more samples in the area of interest, see e.g. [BFP09a] and [BFP09b].

In order to illustrate the result of Theorem 2.7, we plot in Figure 1 the behaviors of nhn(θ∗) and n(θ∗,n− θ∗)
for n = 100, · · · , 500. Actually, hn(θ∗) is approximated by its Monte Carlo estimator and θ∗,n is estimated by
θnM , both estimators being computed with M = 108 samples. The variance of the Monte Carlo estimator ranges
from 2102.4 for n = 100 to 53012.5 for n = 500. We set γp = γ0/p with γ0 = 200. We clearly see that nhn(θ∗)
and n(θ∗,n− θ∗) are stable with respect to n. The histogram of Fig 2 illustrates Theorem 2.8. The distribution
of n(θnγ−1(1/n2) − θ∗), obtained with n = 100 and N = 1000 samples, is close to a normal distribution.
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Figure 1. On the left: Weak discretization error n 7→ nhn(θ∗). On the right: Implicit dis-
cretization error n 7→ n(θ∗,n − θ∗), n = 100, · · · , 500.
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Figure 2. Histogram of n(θnγ−1(1/n2) − θ∗), n = 100, with N = 1000 samples.

4.2. Computation of the level of an unknown function

We turn our attention to the computation of the level of the function θ 7→ e−rTE(XT − θ)+ (European call
option) for which the closed-form formula under the dynamic (4.23) is given by

e−rTE(XT − θ)+ = e−rTx0φ(d+(x0, θ, σ))− e−rT θφ(d−(x0, θ, σ)), (4.24)

where d±(x, y, z) = log(x/y)/(z
√
T ) ± z

√
T/2. Therefore, we first fix a value θ∗ (the target of our procedure)

and compute the corresponding level l = E(XT −θ∗)+ by (4.24). The values of the parameters x0, r, σ, T remain
unchanged. We plot in Figure 3 the behaviors of nhn(θ∗) and n(θ∗,n − θ∗) for n = 100, · · · , 500. As in the
previous example, hn(θ∗) is approximated by its Monte Carlo estimator and θ∗,n is estimated by θnM , both
estimators being computed with M = 108 samples. The variance of the Monte Carlo estimator ranges from
9.73× 106 for n = 100 to 9.39× 107 for n = 500.

To compare the three methods to approximate the solution to h(θ) = Ex0
[H(θ,XT )] = 0 with H(θ, x) =

l − (x − θ)+ in terms of computational costs, we compute the different estimators, namely θnγ−1(1/n2) where
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(θnp )p≥1 is given by (1.4), Θsr
n and Θml

n for a set of N = 200 values of the target θ∗ equidistributed on the
interval [90, 110] and for different values of n. For each value n and for each method we compute the complexity
given by (2.14), (3.21) and (3.22) respectively and the root-mean-squared error which is given by

RMSE =

(
1

N

N∑
k=1

(Θn
k − θ∗k)2

)1/2

where Θn
k = θnγ−1(1/n2), Θsr

n or Θml
n is the considered estimator. For each given n, we provide a couple

(RMSE,Complexity) which is plotted on Figure 5. Let us note that the multi-level SA estimator has been
computed for different values of m (ranging from m = 2 to m = 7) and different values of L. We set γ(p) = γ0/p,
with γ0 = 2, p ≥ 1, so that β∗ = 1/2.

100 150 200 250 300 350 400 450 500
−5

−4

−3

−2

−1

0

1

2

3

4

5
Convergence of n.hn(�*)

discretization size n

n
.h

n
(�

* )

100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

8
Convergence of n.(�*,n−�*)

discretization size n

n
.(
�

*,
n
−
�

* )

Figure 3. On the left: Weak discretization error n 7→ nhn(θ∗). On the right: Implicit dis-
cretization error n 7→ n(θ∗,n − θ∗), n = 100, · · · , 500.

From a practical point of view, it is of interest to use the information provided at level 1 by the statistical
romberg SA estimator and at each level by the multi-level SA estimator. More precisely, the initialization point

of the SA procedures devised to compute the correction terms θn
γ0n3/2T

−θ
√
n

γ0n3/2T
(for the statistical Romberg SA)

and θm
`

M`
−θm`−1

M`
(for the Multi-level SA) at level ` are fixed to θ

√
n

γ0n2 and to θ1γ0n2 +
∑L−1
`=1 θ

m`

M`
−θm`−1

M`
respectively.

We set θn
1/2

0 = θ10 = x0 for all k ∈ {1, · · · ,M} to initialize the procedures. Moreover, by Lemma 5.2, the L1-norm

of an increment of a SA algorithm is of order
√
γ0/p since E|θnp+1−θnp | ≤ E[|θnp+1−θ∗,n|2]1/2+E[|θnp−θ∗,n|2]1/2 ≤

C(H, γ)
√
γ(p). Hence, to ensure that the different procedures do not jump too far ahead in one step, we freeze

the value of θ
√
n

p+1 (respectively θm
`

p+1) and reset it to the value of the previous step as soon as |θ
√
n

p+1−θ
√
n

p | ≤ K/√p
(respectively |θm`p+1 − θm

`

p | ≤ K/
√
p), for a pre-specified value of K. It notably prevents the algorithm from

blowing up during the first iterates. We select K = 5 in the different procedures. Note anyway that this
projection-reinitialization step slightly increases the complexity of each procedures. In our numerical examples,
we observe that it only represents around 1-2% of the total complexity.

Now let us interpret Figure 5. The curves of the statical romberg SA and the multi-level SA methods are
displaced below the curve of the SA method. Therefore, for a given error, the complexity of both methods are
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much lower than the SA procedure one. The difference in terms of computational cost becomes more significant
as the RMSE is small, which corresponds to large values of n. The difference between the statistical romberg
and the multi-level SA method is not significant for small values of n, i.e. for a RMSE between 1 and 0.1. For
a RMSE lower than 5.10−2, which corresponds to a number of steps n greater than about 600-700, we observe
that the multi-level SA procedure becomes much more effective than both methods. For a RMSE fixed around
1 (which corresponds to n = 100 for the SA algorithm and statical romberg SA), one divides the complexity by
a factor of approximately 5 by using the statistical romberg SA. For a RMSE fixed at 10−1, the computational
cost gain is approximately equal to 10 by using either the statistical romberg SA algorithm or the multi-level SA
one. Finally, for a RMSE fixed at 5.5.10−2, the complexity gain achieved by using the multi-level SA procedure
instead of the statistical romberg one is approximately equal to 5.

The histograms of Fig 4 illustrates Theorems 2.8, 3.1 and 3.3. The distributions of n(θnγ−1(1/n2) − θ∗),

n(Θsr
n − θ∗) and n(Θml

n − θ∗), obtained with n = 44 = 256 and N = 1000 samples, are close to a normal
distribution.
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Figure 4. Histograms of n(θγ−1(1/n2) − θ∗), n(Θsr
n − θ∗) and n(Θml

n − θ∗) (from left to right),
n = 256, with N = 1000 samples.

5. Technical results

We provide here some useful technical results that are used repeatedly throughout the paper. When the
exact value of a constant is not important we may repeat the same symbol for constants that may change from
one line to next.

Lemma 5.1. Let H be a stable d × d matrix and denote by λmin its eigenvalue with the lowest real part. Let
(γn)n≥1 be a sequence defined by γn = γ(n), n ≥ 1, where γ is a positive function defined on [0,+∞[ decreasing
to zero and such that

∑
n≥1 γ(n) = +∞. Let a, b > 0. We assume that γ satisfies one of the following

assumptions:

• γ varies regularly with exponent (−ρ), ρ ∈ [0, 1), that is for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ.
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Figure 5. Complexity with respect to RMSE.

• for t ≥ 1, γ(t) = γ0/t with bRe(λmin)γ0 > a.

Let (vn)n≥1 be a non-negative sequence. Then, for some positive constant C, one has

lim sup
n
γ−an

n∑
k=1

γ1+ak vk‖Πk+1,n‖b ≤ C lim sup
n
vn,

where Πk,n :=
∏n
j=k(Id − γjH), with the convention Πn+1,n = Id.

Proof. First, from the stability of H, for all 0 < λ < Re(λmin), there exists a positive constant C such that for
any k ≤ n, ‖Πk+1,n‖ ≤ C

∏n
j=k(1−λγj). Hence, we have

∑n
k=1 γ

1+a
k vk‖Πk+1,n‖b ≤ C

∑n
k=1 γ

1+a
k vke

−λb(sn−sk),
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n ≥ 1, with sn :=
∑n
k=1 γk. We set zn :=

∑n
k=1 γ

1+a
k vke

−λb(sn−sk). It can written in the recursive form

zn+1 = e−λbγnzn + γa+1
n+1vn+1, n ≥ 0.

Hence, a simple induction shows that for any N ∈ N∗

zn+1 ≤ zN exp(−λb(sn − sN−1)) + exp(−λbsn)

n∑
k=N

exp(λbsk)γa+1
k vk+1

≤ zN exp(−λb(sn − sN−1)) +

(
sup
k>N

vk

)
exp(−λbsn)

n∑
k=N

exp(λbsk)γa+1
k .

We study now the impact of the step sequence (γp)p≥1 on the above estimate. We first assume that γp = γ0/p
with bRe(λmin)γ0 > a. We select λ > 0 such that bRe(λmin)γ0 > bλγ0 > a. Then, one has sp = γ0 log(p) +
c1 + rp, c1 > 0 and rp → 0 so that a comparison between the series and the integral yields

exp(−λbsn)

n∑
k=N

exp(λbsk)γa+1
k ≤ Cγan

for some positive constant C (independent of N) so that we clearly have

lim sup
n
γ−an zn+1 ≤ C sup

k>N
vk.

and we conclude by passing to the limit N → +∞.

We now assume that γ varies regularly with exponent −ρ, ρ ∈ [0, 1). Let s(t) =
∫ t
0
γ(s)ds. We have

exp(−λbsn)

n∑
k=N

exp(λbsk)γa+1
k+1 ∼ exp(−λbs(n))

∫ n

0

exp(λs(t))γa+1(t)dt

∼ exp(−λbs(n))

∫ s(n)

0

exp(λbt)γa(s−1(t))dt,

so that for any x such that 0 < x < 1, since t 7→ γa(s−1(t)) is decreasing, we deduce∫ s(n)

0

exp(λbt)γa(s−1(t))dt ≤ γa(s−1(0))

∫ xs(n)

0

exp(λbt)dt+ γa(s−1(xs(n)))

∫ s(n)

xs(n)

exp(λbt)dt

≤ γa(s−1(0))

λb
exp(λbxs(n)) +

γa(s−1(xs(n)))

λb
exp(λbs(n)).

Hence it follows that

exp(−λbs(n))

γa(n)

∫ s(n)

0

exp(λbt)γa+1(t)dt ≤ γ(s−1(0))

λγa(n)
exp(−λb(1− x)s(n)) +

γa(s−1(xs(n)))

λbγa(n)
,

and since t 7→ γa(s−1(t)) varies regular with exponent −aρ/(1−ρ), and limn→+∞ 1
γa(n) exp(−λ(1−x)s(n)) = 0,

lim sup
n→+∞

exp(−λbs(n))

γa(n)

∫ s(n)

0

exp(λbt)γa+1(t)dt ≤ x−aρ/(1−ρ)

λb
.

An argument similar to the previous case concludes the proof.
�
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Lemma 5.2. Let (θnp )p≥0 be the procedure defined by (1.4) where θn0 is independent of the innovation of the

algorithm with supn≥1 E|θn0 |2 < +∞. Suppose that the mean-field function hn satisfies

∃λ > 0, ∀n ∈ N∗, ∀θ ∈ Rd, 〈θ − θ∗,n, hn(θ)〉 ≥ λ|θ − θ∗,n|2, (5.25)

where θ∗,n is the unique zero of hn satisfying supn≥1 |θ∗,n| < +∞.
Moreover, we assume that γ satisfies one of the following assumptions:

• γ varies regularly with exponent (−ρ), ρ ∈ [0, 1), that is for any x > 0, limt→+∞ γ(tx)/γ(t) = x−ρ.
• for t ≥ 1, γ(t) = γ0/t with 2λγ0 > 1.

Then, one has:

∀p ≥ 1, sup
n≥1

E[|θnp − θ∗,n|2] ≤ Cγ(p)

for some positive constant C independent of p and n.

Proof. From the dynamic of (θnp )p≥1, we have

|θnp+1 − θ∗,n|2 = |θnp − θ∗,n|2 − 2γp+1〈θnp − θ∗,n, hn(θnp 〉+ 2γp+1〈θnp − θ∗,n,∆Mn
p+1〉

+ γ2p+1|H(θnp , (X
n
T )p+1)|2,

so that taking expectation in the previous equality and using assumptions (2.10) and (5.25), we easily derive

E|θnp+1 − θ∗,n|2 ≤ (1− 2λγp+1 + Cγ2p+1)E|θnp − θ∗,n|2 + Cγ2p+1.

Now a simple induction argument yields

E|θnp − θ∗,n|2 ≤ E|θn0 − θ∗,n|2Π1,p +

p∑
k=1

Πk+1,pγ
2
k

where we set Πk,p :=
∏p
j=k(1−2λγj +Cγ2j ) for sake of simplicity. Computations similar to the proof of Lemma

5.1 imply

∀p ≥ 1, E|θnp − θ∗,n|2 ≤ Cγ(p).

�

Proposition 5.1. Assume that the assumptions of Theorem 2.4 are satisfied and that θ0 is independent of
the innovation of the algorithm with E|θ0|2 < +∞.Then, there exists two sequences (µp)p≥0 and (rp)p≥0, with
µ0 = θ0 − θ∗ and r0 = 0 such that

∀p ≥ 0, θp − θ∗ = µp + rp

and satisfying

sup
p≥1

γ−1p E|µp|2 < +∞ and γ−bp |rp| ≤ X1Yp

with b = 1 under (HS1) or b ∈ (1/2, 1 ∧ λmγ0) under (HS2) and where X1 is a finite random variable and
(Yp)p≥1 is a sequence of random variables bounded in L1(P), that is supp≥1 E|Yp| < +∞.

Proof. We first write

θp+1 − θ∗ = (Id − γp+1Dh(θ∗))(θp − θ∗) + γp+1∆Mp+1 − γp+1(h(θp)−Dh(θ∗)(θp − θ∗)).

We define the two sequences (µp)p≥0 and (rp)p≥0 by

µp+1 = (Id − γp+1Dh(θ∗))µp + γp+1∆Mp+1 (5.26)
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with µ0 = θ0 − θ∗ and rp = θp − θ∗ − µp, p ≥ 1, with r0 = 0. By iterating (5.26), we clearly get

µn = Π1,nµ0 +

n∑
k=1

γkΠk,n∆Mk

Since θ0 is independent of the innovation of the algorithm with E|θ0|2 < +∞, for all ε ∈ (0, λm), we have

E|µn|2 ≤ C‖Π1,n‖2E|θ0|2 + C

n∑
k=1

γ2k‖Πk,n‖2E|∆Mk|2

≤ C exp(−2(λm − ε)
n∑
k=1

γk)E|θ0|2 + C sup
k≥1

E|θk − θ∗|2
n∑
k=1

γ2k‖Πk,n‖2

where we used (2.10) to derive E|∆Mk|2 ≤ C supk≥1 E|θk − θ∗|2 < +∞ for the last inequality. Consequently,
similar computations as those used in Lemma 5.1 (select ε s.t. (λm − ε)γ0 > 1/2 under (HS1)) allow to derive

sup
p≥1

γ−1p E|µp|2 < +∞.

We now prove that µn
a.s.−→ 0. The convergence to zero of (

∑n
k=1 γkΠk,n∆Mk)n≥1 will follow from the

convergence of the series

Nn =

n∑
k=1

γk∆Mk, n ≥ 1.

The sequence (Nn)n≥1 is a martingale. By (2.10) and the a.s. convergence of (θk)k≥1, one has

〈N〉∞ =
∑
k≥1

γ2kE[ (∆Mk)2
∣∣Fk−1] <∞

which yields the a.s. convergence of (Nn)n≥1 towards a finite r.v. N∞. Then, using an abel’s transform, we get

n∑
k=1

γkΠk,n∆Mk = Πn,nNn −
n−1∑
k=1

(Πk+1,n −Πk,n)Nk

= Πn,n(Nn −N∞) + Π1,nN∞ −
n∑
k=1

γkΠk+1,nDh(θ∗)(Nk −N∞).

The a.s. convergence of (Nn) towards N∞ yields the a.s. convergence to zero of the first term. Since
‖Π1,n‖ → 0, the second term a.s. converges to zero. The a.s. convergence to zero of the last term follows from

|
n∑
k=1

γkΠk+1,nDh(θ∗)(Nk −N∞)| ≤
n∑
k=1

γk‖Πk+1,n‖‖Dh(θ∗)‖|Nk −N∞|

and Lemma 5.1.
Now, we focus on the estimates concerning (rp)p≥1. Since h is twice differentiable in a neighborhood of

θ∗, the line i of the column vector h(θp) −Dh(θ∗)(θp − θ∗) is equal to (θp − θ∗)THp
i (θp − θ∗) with (Hp

i )k,l =∫ 1

0
1
2 (1− t)2 ∂2hi

∂θk∂θl
(tθ∗ + (1− t)θp)dt, (k, l) ∈ [[1, d]]2. Hence, we define Hp such that h(θp)−Dh(θ∗)(θp − θ∗) =

(θp− θ∗)THp(θp− θ∗) and the line i of the column vector (θp− θ∗)THp(θp− θ∗) is (θp− θ∗)THp
i (θp− θ∗). With
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these notations, we have

rp+1 = (Id − γp+1Dh(θ∗))rp + γp+1(θp − θ∗)THp(θp − θ∗)
= (Id − γp+1Dh(θ∗) + 2γp+1µ

T
pH

p + γp+1r
T
pH

p)rp + γp+1µ
T
pH

pµp. (5.27)

By iterating the above equality we obtain

rp =

p∑
k=1

γkAk+1,pµ
T
k−1H

k−1µk−1

with Ak,p :=
∏p
j=k(Id − γj(Dh(θ∗)− 2µTj−1H

j−1 − rTj−1Hj−1)). Let us note that since θp
a.s.−→ θ∗ and µp

a.s.−→ 0,

we have rp
a.s.−→ 0 so that the sequence (Dh(θ∗)−2µTp−1H

p−1−rTp−1Hp−1)p≥1 of random matrices converges a.s.
to the stable matrix Dh(θ∗). Hence (see e.g. [Duf96]) for all δ ∈ (0, λm) there exists a finite random variable X
such that for all k ∈ [[1, p]],

‖Ak,p‖ ≤ X exp(−(λm − δ)
p∑
j=k

γj)

so that we derive

|rp| ≤ X sup
k≥1
‖Hk‖

p∑
k=1

γk exp(−(λm − δ)
p∑
j=k

γj)|µk−1|2.

where we used the fact that supk≥1 ‖Hk‖ < +∞ since h is twice continuously differentiable. Hence, there exists
a finite random variable that we still denote X such that

γ−bp |rp| ≤ Xγ−bp
p∑
k=1

γ2k exp(−(λm − δ)
p∑
j=k

γj)γ
−1
k−1|µk−1|2.

We select δ such that (λm − δ)γ0 > b and an analysis along the lines of the proof of Lemma 5.1 shows that
the sequence of random variables appearing in the second term in the right hand side of the above inequality is
bounded in L1(P).

�

Proposition 5.2. Assume that the assumptions of Theorem 3.2 are satisfied. Then, for all n ∈ N there exists
two sequences (µ̃np )p∈[[0,n]] and (r̃np )p∈[[0,n]] with µ̃n0 = θ∗ − θ∗,n such that

∀p ∈ [[0, n]], znp = θnp − θ∗,n − (θp − θ∗) = µ̃np + r̃n1,p + r̃2,p

and satisfying for all n ∈ N, for all p ∈ [[1, n]]

sup
p≥1

γ−1/2p E|µ̃np | < Cn−1/2, γ−1p |r̃n1,p| ≤ X̃Ỹ np

and

r̃2,p =

p∑
k=1

γkΠk+1,p(H(θk, (XT )k+1)−H(θ∗, (XT )k+1)− (h(θk)− h(θ∗)))

for some positive constant C independent of p and n and where X̃ is a finite random variable (being independent

of n) and (Ỹ np )p≥1 is a sequence of random variables bounded in L1(P), that is supn≥1,p≥1 E|Ỹ np | < +∞.
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Proof. Using (3.16), we define the two sequences (µ̃np )p∈[[0,n]] and (r̃np )p∈[[0,n]] by

µ̃np = Π1,pz
n
0 +

p∑
k=1

γkΠk+1,p∆N
n
k +

p∑
k=1

γkΠk+1,p(Dh(θ∗)−Dhn(θ∗,n))(θnk−1 − θ∗,n)

+

p∑
k=1

γkΠk+1,n(hn(θ∗,n)− hn(θ∗)− (H(θ∗,n, (Xn
T )k+1)−H(θ∗, (Xn

T )k+1)))

and

r̃n1,p =

p∑
k=1

γkΠk+1,p(ζ
n
k−1 − ζk−1) +

p∑
k=1

γkΠk+1,p(h
n(θnk )− hn(θ∗,n)− (H(θnk , (X

n
T )k+1)−H(θ∗,n, (Xn

T )k+1))).

We first focus on the sequence (µ̃np )p∈[[0,n]]. Under the assumption on the step sequence we have

|Π1,pz
n
0 | ≤ ‖Π1,p‖|θ∗ − θ∗,n| = O(γ1/2p n−1/2).

Moreover, by the definition of the sequence (∆Nn
k )k∈[[1,n]] and the Cauchy-Schwarz inequality we derive

E

∣∣∣∣∣
p∑
k=1

γkΠk+1,p∆N
n
k

∣∣∣∣∣ ≤ C(E|H(θ∗, Xn
T )−H(θ∗, XT )|2)1/2(

p∑
k=1

γ2k‖Πk+1,p‖2)1/2 = O(γ1/2p n−1/2).

Taking the expectation for the third term and following the lines of the proof of Lemma 3.3, we obtain

E

∣∣∣∣∣
p∑
k=1

γkΠk+1,p(Dh(θ∗)−Dhn(θ∗,n))(θnk−1 − θ∗,n)

∣∣∣∣∣ ≤ C
p∑
k=1

γ
3/2
k ‖Πk+1,p‖(|θ∗,n − θ∗|+ ‖Dh(θ∗)−Dhn(θ∗)‖)

= O(γ1/2p n−1/2).

Finally we take the square of the L2-norm of the last term and use Lemma 5.1 to derive

E

∣∣∣∣∣
p∑
k=1

γkΠk+1,p(h
n(θ∗,n)− hn(θ∗)− (H(θ∗,n, (Xn

T )k+1)−H(θ∗, (Xn
T )k+1)))

∣∣∣∣∣
2

≤ |θ∗ − θ∗,n|2
p∑
k=1

γ2k‖Πk+1,p‖2

= O(γpn
−1).

We now prove the bound concerning the sequence (r̃n1,p)p∈[[0,n]]. Observe first that the inequality |θk−1−θ∗|2 ≤
|µk−1|2 + 2|θk−1 − θ∗||rk−1| combined with Proposition 5.1 lead to∣∣∣∣∣

p∑
k=1

γkΠk+1,p(ζ
n
k−1 − ζk−1)

∣∣∣∣∣ ≤ C
p∑
k=1

γ2k‖Πk+1,p‖(γ−1k−1|θnk−1 − θ∗,n|2 + γ−1k−1|µk−1|2 + |θk−1 − θ∗|γ−1k−1|rk−1|)

≤ C(1 + sup
k≥0
|θk − θ∗|)

p∑
k=1

γ2k‖Πk+1,p‖(γ−1k−1|θnk−1 − θ∗,n|2 + γ−1k−1|µk−1|2 + Yk−1),

so that since supn≥1 E
∑p
k=1 γ

2
k‖Πk+1,p‖(γ−1k−1|θnk−1 − θ∗,n|2 + γ−1k−1|µk−1|2 + Yk−1) = O(γp) we conclude that

the first term appearing in the decomposition of r̃n1,p satisfies the desired bound. Concerning the second term,
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following the lines of the proof of Lemma 3.3 we simply take the square of its L2-norm to derive

sup
n≥1

E

∣∣∣∣∣
p∑
k=1

γkΠk+1,p(h
n(θnk )− hn(θ∗,n)− (H(θnk , (X

n
T )k+1)−H(θ∗,n, (Xn

T )k+1)))

∣∣∣∣∣
2

≤ C
p∑
k=1

γ3k‖Πk+1,p‖2

= O(γ2p).

�
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