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Fast Ordering Algorithm for Exact Histogram

Specification
Mila Nikolova, and Gabriele Steidl

Abstract

This paper provides a fast algorithm to order in a strict way the integer gray values in digital images which can

be applied for exact histogram specification. Our algorithm is based on the ordering procedure by the variational

approach in [9]. This variational method was shown to be superior to other state-of-the art ordering algorithms

in terms of faithful total strict ordering but not in speed. Indeed, the relevant functionals are in general difficult

to minimize because their gradient is nearly flat over vast regions.

In this paper we propose a simple and fast fixed point algorithm to minimize the functionals. The fast

convergence of our algorithm results from known analytical properties of the model. In particular the original

image is a good starting point for the iterations and the involved inverse functions admit a simple explicit form.

Only a few iteration steps of this algorithm provide an image whose pixels can be ordered in a strict and faithful

way. Numerical experiments confirm that our algorithm outperforms by far its main competitors in speed and

quality. Moreover, in contrast to other ordering algorithms we can handle large images commonly taken by

commercial cameras.

Concerning applications the proposed ordering algorithm is the basis of the hue and range preserving color

image enhancement method proposed in [11].

I. INTRODUCTION

Histogram processing is a technique with numerous applications, e.g., in invisible watermarking, image

normalization and enhancement, object recognition [3], [5], [11], [13]. The goal of exact histogram specification

(HS) is to transform an input image into an output image having a prescribed histogram. For a uniform target

histogram we speak about histogram equalization (HE).

Consider digital (i.e. quantized) M ×N images f with L gray values Q := {q1, · · · , qL}.. For 8-bit images

we have L = 256 and Q = {0, · · · , 255}. We reorder the image columnwise into a vector of size n := MN

and address the pixels by the index set In := {1, · · · , n}. The histogram of f , denoted by hf , is given by

hf [qk] = ♯ {i ∈ In | f [i] = qk}, k = 1, . . . , L, where ♯ stands for cardinality.

In theory, histogram specification uses the relation between the cumulative density function of an arbitrary

distributed continuous random variable and a uniformly distributed one, see [5]. However, for digital images we

are confronted with a large number of n discrete random variables taking only L possible values (i.e., n≫ L).
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Fig. 1. Illustration of the importance of ordering for histogram equalization (HE). First row: The pixels of a completely black image (left)

are strictly ordered using the Matlab routine sort which sorts equal pixels columnwise ascending. The resultant HE image (right) is perfectly

equalized and becomes lighter from left to right. Second row: The original image ’sand’ and different equalizations, namely Matlab histeq,

Matlab sort and perfect ordering, our sorting algorithm. The third image still has the lighting effects from left to right. Third row: The

corresponding histograms. Fourth row: Zooms of these images (rows from 1 to 64 and columns from 449 to 512). It can be seen that the

texture generated by our HE algorithm is more regular than the other ones.

Then the target histogram can almost never be satisfied exactly. Histogram specification is an ill-posed problem

for digital images. The Matlab function histeq is expected to produce HE; see Fig. 1 and the comments in

the caption. Additional effort should be paid to improve the specification as e.g. in [1], where the appearing

gaps in the target histogram of the HE were circumvented by so-called “probability smoothing”.

In this paper we focus on exact histogram specification to a target histogram ĥ = (ĥ1, . . . , ĥL) for the gray

values P = {0, . . . , L− 1}. If the pixels values of our image are pairwise different so that they can be strictly

ascending ordered, exact histogram specification can be easily done by dividing the corresponding ordered list

of indices into L groups and assigning gray value 0 to the first ĥ1 pixels, gray value 1 to the second ĥ2 pixels

and so on until gray value L − 1 to the last ĥL pixels. However, this simple procedure requires a meaningful

strict ordering of all pixels in the input image. Fig. 1 demonstrates the importance of ordering for histogram

equalization.
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Research on ordering problems has been conducted for four decades already [6]. State-of-the-art methods are

- the local mean ordering (LM) of Coltuc, Bolon and Chassery [4],

- the wavelet-based ordering (WA) of Wan and Shi [14], and

- the special variational approach (VA) of Nikolova, Wen and Chan [9].

The first two methods extract for any pixel f [i] in the input image K auxiliary informations, say κk[i], k ∈ IK ,

where κ1 := f . Then an ascending order “≺ ” for all pixels could ideally be obtained using the rule

i ≺ j if κs[i] < κs[j] for some s ∈ IK and κk[i] = κk[j] for all 1 ≤ k < s.

The third method uses an iterative procedure to find the minimizer of a certain functional related to f which

components can be ordered in a strict way. The numerical results in [9] have shown that VA clearly outperforms

LM and WA in terms of quality of the ordering and memory requirements, but not in speed. The main contribution

of this paper consists in providing a simple fixed point minimization algorithm that attains the minimizer

with remarkable speed and precision. Convergence and parameter selection are discussed. In particular, only

few iterations are sufficient to provide the information needed for a meaningful strict ordering of the pixels.

Numerical tests confirm that the VA method along with the new fixed point algorithm outperforms by far all

other relevant ordering methods in terms of quality and speed. In particular our algorithm can easily handle large

size “mega-pixel” images where other algorithms as LM and WA run into storage problems without pertinent

sorting strategies. Preliminary results of this paper were published in the conference paper [10].

As already pointed out, one can design fast HS methods based on our ordering algorithm. The present paper

thus provides the background for HS based methods for hue and range preserving color enhancement developed

in our subsequent paper [11].

The outline of the paper is as follows: In Section II we review the specialised variational approach in [9] and

some of its properties proven in [2]. Then, in Section III, we propose a simple fixed point algorithm to find a

minimizer of the our model which is indeed fast for two reasons: first we know a good starting point for the

iterations, second the appearing inverse functions are given explicitly and need simple operations. Section IV

contains numerical examples. We compare speed and accuracy in the sense of a faithful total strict ordering of

our algorithm with state-of-the art algorithms and provide a histogram equalization inversion comparison. We

will see that only few iterations are necessary to obtain promising ordering results.

II. THE MINIMIZERS OF A FULLY SMOOTHED ℓ1−TV MODEL

Consider a functional of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (1)

with
Ψ(u, f) :=

∑
i∈In

ψ(u[i]− f [i]),

Φ(u) :=
∑
j∈Ir

φ(gju),
(2)

October 7, 2013 DRAFT



4

where gi ∈ R1×n, i ∈ Ir correspond to vertical and horizontal differences, i.e.,

gi[i] = −1, gi[i+ 1] = 1 and gi[k] = 0 ∀ k ∈ In \ {i, i+ 1},

gj [j] = −1, gj [j +M ] = 1 and gi[k] = 0 ∀ k ∈ In \ {j, j +M}.
(3)

In this case, the number r in the definition of Φ is r = 2MN − (M + N). One can also add diagonal

differences1 to improve the rotation invariance of Φ(u). The experiments in [9] have shown that the simpler

case when only the differences in (3) are used is enough to enable the minimizers of J to give rise to a prompt

sorting. In all cases Neumann boundary conditions are adopted. The functions ψ(·) := ψ(·, α1) : R → R and

φ(·) := φ(·, α2) : R → R depend on two parameters α1 > 0 and α2 > 0, respectively. When necessary, we

also shall use the notation ψ(·, α1) and φ(·, α2). The parameters α1 and α2 shall be omitted when they are not

explicitly involved in our derivations.

Following [9], the hint for achieving strict ordering is that the functions ψ and φ belong to a family of

functions θ(·, α) : R → R, α > 0, satisfying the requirements in assumptions H1 and H2 described next. The

rationale for these choices is extensively discussed in [9]. For simplicity, we denote θ′(t, α) := d
dtθ(t, α) and

θ′′(t, α) := d2

dt2 θ(t, α).

H 1: For any fixed α > 0 the function t 7→ θ(t, α) is in Cs(Rn), s ≥ 2 and even, i.e., θ(−t, α) = θ(t, α)

for all t ∈ R. Its derivative θ′(t, α) is strictly increasing with limt→∞ θ′(t, α) = 12 and its second derivative

θ′′(t, α) is decreasing on [0,+∞).

H 2: For fixed t > 0, the function α 7→ θ(t, α) is strictly decreasing on (0,+∞) with

lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

From H1 we see that θ′(t, α) is odd and has an inverse function

ξ(t, α) := (θ′)−1(t, α)

which is also odd and strictly increasing.
Under these assumptions, the functional J(·, f) amounts to a fully smoothed ℓ1-TV model. There are many

possible choices of functions θ meeting H1 and H2, see [9]. In our numerical examples we will focus on the
functions θ given in Table I.

Since J(·, f) is a strictly convex, coercive functional it has a unique minimizer û ∈ Rn. The following theorems collect

properties of this minimizer which are important for our faithful and fast sorting algorithm. The first theorem which proof

can be found in [9, Theorem 1] guaranties that the entries of the minimizer differ in general pairwise from each other so

that û provides an auxiliary information for ordering the pixels of f .

Theorem 1: (Strict ordering information) Let ψ and φ fulfill H1 and H2. Then there exists a dense open subset Kn of

Rn such that for any f ∈ Kn the minimizer û of J(·, f) satisfies

û[i] ̸= û[j], ∀ i, j ∈ In, i ̸= j,

û[i] ̸= f [i], ∀ i ∈ In.
(4)

1Diagonal differences are given by

gi[i] = −1, gi[i+M − 1] = 1 and gi[k]= 0 ∀ k ∈ In\ {i, i+M−1},
gj [j] = −1, gj [j +M + 1] = 1 and gj [k]= 0 ∀ k ∈ In\ {j, j+M+1}.

2The upper bound on θ′ is set to 1 just for definiteness.
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θ θ′ θ′′ ξ = (θ′)−1 ξ′

θ1
√

t2 + α
t

√
t2 + α

α(√
t2 + α

)3
t

√
α

1− t2

√
α

(
√
1− t2)3

θ2 |t| − α log

(
1 +

|t|
α

)
t

α+ |t|
α

(α+ |t|)2
αt

1− |t|
α

1− |t|

TABLE I

CHOICES FOR θ(·, α) TOGETHER WITH THE USED DERIVATIVES AND INVERSE FUNCTIONS.

The fact that Kn is dense and open in Rn means that the property in (4) is generically true. This result is much stronger

than saying that (4) holds true almost everywhere on Rn. 3 Therefore, the elements of Rn \Kn are highly exceptional in Rn.

The second theorem provides an estimate of ∥f − û∥∞ which was proved by the authors in [2, Theorems 1 and 2]. It

shows in particular that for our parameter settings in the numerical part we can guarantee that |f [i]− û[i]| < 0.5, for any

i ∈ In. Consequently, if for f [i] ∈ {0, . . . , 255}, i ∈ In, the relation f [i] < f [j] holds true, then also û[i] < û[j] such that

the initial ordering of pairwise different pixels is preserved.

Theorem 2: (Distance of û from f )

Let ψ and φ fulfill H1 and H2. Then, for β < 1
4

, the minimizer û of J(·, f) satisfies

∥û− f∥∞ ≤ (ψ′)−1(4β, α1

)
= ξ

(
4β, α1

)
, (5)

where ξ := (ψ′)−1. Further,

∥û− f∥∞ ↗ ξ
(
4β, α1

)
as α2 ↘ 0

under the assumption that νf := maxi∈I minj∈Ni

( ∣∣ f [i]− f [j]
∣∣) > 2ξ

(
4β, α1

)
, where

I :=
{
i ∈ int In : sign

(
f [i]− f [j]

)
= σ, ∀ j ∈ Ni with σ ∈ {−1,+1}

}
, and νf := 0 if I = ∅.

The above assumption on νf is quite realistic for natural images with 8 bit gray values. For the collection of natural

images considered in [2] we have for example mean(νf ) ≈ 224. In our numerical examples we will use the parameters

β = 0.1 and α1 = α2 = 0.05. For these values we obtain by (5) the following upper estimates:

ψ = φ = θ1 : ∥û− f∥∞ ≤ 0.0976,

ψ = φ = θ2 : ∥û− f∥∞ ≤ 0.03̄.

III. FAST MINIMIZATION AND SORTING ALGORITHM

The function û is a minimizer of J(·, f) in (1) if and only if ∇J(û, f) = 0. This is equivalent to ∇Ψ(û, f) = −β∇Φ(û).

By (2) we have
dΨ(u, f)

du[i]
= ψ′(u[i]− f [i]) and

dΦ(u)

du[i]
=

∑
j∈Ir

φ′(gju)gj [i]

so that the minimizer û is determined by

ψ′(û[i]− f [i]) = −β
∑
j∈Ir

φ′(gj û)gj [i], i ∈ In.

With ξ := (ψ′)−1(·, α1) this can be rewritten as

û[i] = f [i] + ξ
(
− β

∑
j∈Ir

φ′(gj û)gj [i]
)
, i ∈ In. (6)

3An almost everywhere true property requires only that Kn is dense in Rn. But Kn may not contain open subsets. There are many

examples. For instance, K := [0, 1] \ {x ∈ [0, 1] : x is rational} is dense in [0, 1] and K does not contain open subsets.
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Using the vector notation

G :=


g1
...

gr

 ∈ Rr×n , φ(Gu) := (φ(gju))
r
j=1 , and ξ(u) := (ξ(ui))

n
i=1

and recalling that ξ is odd, we obtain from (6) the fixed point equation

û = T (û), T (u) := f − ξ(β GTφ′(Gu)). (7)

We propose to apply a simple fixed point algorithm to compute û:

Minimization Algorithm

Initialization: u(0) = f

For r = 1, . . . , R compute until a convergence criterion is reached

u(r) = T (u(r−1)). (8)

As stopping criterion we propose ∥∇J∥∞ ≤ 10−6. For the images used in our numerical examples and in many more

experiments the required precision was reached in general within less than 35 iterations.

The efficiency of the algorithm relies on two clues:

- By Theorem 2 the vector u(0) = f is very close to the fixed point û and is therefore a good starting point.

- The functions φ′ and ξ appearing in the algorithm are given explicitly, in our experiments by Table 1.

The following theorem provides a convergence result for our fixed point algorithm.

Theorem 3: (Convergence of Fixed Point Algorithm) Let ψ and φ fulfill H1. Let α1, α2 > 0 and β > 0 be chosen such

that β < 1
4

and

8β ξ′(4β, α1)φ
′′(0, α2) < 1. (9)

Then the sequence {u(r)}r generated by the minimization algorithm converges to the minimizer û of J(·, f).
Proof. By Ostrowski’s theorem [12] it is enough to prove that the Jacobian matrix ∇T (u) becomes smaller than 1 in some

norm on Rn for all u ∈ Rn. Since

∇T (u) = β diag
(
ξ′(βGTφ′(Gu))

)
GT diag

(
φ′′ (Gu)

)
G

we obtain

∥∇T (u)∥2 ≤ β ∥diag
(
ξ′(βGTφ′(Gu)

)
∥2 ∥GT∥2 ∥ diag

(
φ′′(Gu)

)
∥2 ∥G∥2.

Since φ′′ is monotone decreasing on [0,+∞) we get ∥diag
(
φ′′(Gu)

)
∥2 ≤ φ′′(0). Further, we have by definition (3) of G

that ∥GT∥2 ∥G∥2 = ∥GTG∥2 < 8. Note that GTG is a discrete Laplacian with Neumann boundary conditions and that the

bound is sharp in the sense that ∥GTG∥2 approaches 8 as n→ ∞.

It remains to estimate ξ′ (βGTφ′(Gu)). Regarding that |φ′(t)| ≤ 1 for all t ∈ R we conclude ∥GTφ′(Gu)∥∞ ≤ ∥G∥1 ≤ 4

where the later follows by (3). Since ξ′ increases on (0, 1) and 4β < 1 we obtain finally

∥diag
(
ξ′(βGTφ′(Gu)

)
∥2 ≤ ξ′(4β).

Multiplying the parts together we obtain the assertion. �

If both ψ(·, α1) and φ(·, α2) are equal to θ1, resp. θ2 in Table I, then the left-hand side of (9) becomes

θ1 θ2

8β ξ′(4β, α1)φ
′′(0, α2)

√
α1
α2

8β√
(1−(4β)2)3

α1
α2

8β
1−|4β|

,
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and in case α1 = α2 condition (9) reads as

β < 0.0976 if ψ = φ = θ1, β < 0.0833 if ψ = φ = θ2, (10)

In practice, we are not really interested in the minimizer û of J(·, f), but want to use the sorting of its components to

get a meaningful ordering of the original image. Here we observed the following phenomenon:

Observation. The approximation u(r) obtained after r = 6 steps of the minimization algorithm leads nearly to the same

ordering as the ordering obtained when the convergence criterion was reached. More precisely, a nearly strict ordering is

always possible after these few steps, see Table II. In the histogram inversion experiments, the obtained PSNR values are

the same, see Table III and the difference images are not distinguishable for the naked eye, see Fig. 3.

This fact led us to propose the following efficient ordering algorithm for R≪ 35:

Ordering Algorithm

Initialization: u(0) = f

1. For r = 1, . . . , R compute

u(r) = T (u(r−1)).

2. Order the values in In according to the corresponding ascending entries of u(r).

Note that step 1 of this algorithm is a nonlinear filtering of f .

Applying the same technique as in [2, Theorems 1] we can prove the following corollary.

Corollary 1: (Distance of u(r) from f : upper bound) Let ψ and φ fulfill H1. Then, for β < 1
4

, all iterates u(r) generated

by the fixed point algorithm satisfy

∥u(r) − f∥∞ ≤ (ψ′)−1(4β, α1

)
= ξ

(
4β, α1

)
.

Proof. By (7), (8) and H1 we can estimate

∥u(r) − f∥∞ ≤ (ψ′)−1(β∥h(r−1)∥∞
)
,

where

h[i](r−1) :=
∑
j∈Ir

φ′(gju
(r−1))gj [i], i ∈ In.

Using |φ′(t)| ≤ 1 and the definition of the gj [i] we obtain |h[i](r−1)| ≤
∑

j∈Ir gj [i] ≤ 4 and since (ψ′)−1 is increasing

on [−1, 1] for β < 1
4

finally

∥u(r) − f∥∞ ≤ (ψ′)−1(4β, α1

)
.

�

The corollary has two important consequences: first, since for β < 1
4

the sequence of iterates {u(r)}r∈N is bounded, it

has a convergent subsequence. Convergence of the whole sequence is ensured under the more restrictive conditions posed in

Theorem 3. Second, for appropriately chosen parameters β and α1 as those in our numerical experiments all iterates fulfill

again the important property |f [i]− u(r)[i]| < 0.5, i ∈ In. This means if f [i] < f [j], f [i] ∈ Z, then also u(r)[i] < u(r)[j],

so that the pixel ordering in all iterates always respects the pixel ordering in the original image.
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IV. NUMERICAL COMPARISON OF SORTING ALGORITHMS

From Table I one sees that the main ingredients of the fixed point algorithm (7), namely ξ and φ′ involve much easier

arithmetical operations for θ2 than for θ1. So we can expect that using θ2 would give rise to a faster algorithm than using θ1.

In this section we demonstrate that our variational approach together with the proposed sorting algorithm for the functions

ψ = φ = θ2 is actually the best way (in terms of speed and quality) to order the pixels in digital images. Note that extensive

qualitative comparisons of the variational ordering method with a slower algorithm were done in [9]. These experiments

have always shown that the variational method clearly outperforms other state-of-the-art algorithms as LM [4] and WA

[14] concerning quality. Here we want to demonstrate that our new sorting algorithm ensures nearly the same quality, in

particular a faithful strict ordering, but is much faster than the previous implementations. All algorithms are implemented

in MATLAB and executed on a computer with an Intel Core i7-870 Processor (8M Cache, 2.93 GHz) and 8 GB physical

memory, 64 Bit Linux.

The performance was done for the 24 digital 8-bit images in Fig. 2, where the first six images have size 256× 256, the

next six images 512× 512, then 1024× 1024 and finally size 2048× 2048. The tables give the average computation time

of 50 runs of the algorithms, respectively.

We compare the ordering methods:

a) LM: local mean ordering [4] with parameter K = 6,

b) WA: wavelet-based ordering [14] with parameter K = 9,

with our variational approach (VA) with parameters (β, α1, α2) = (0.1, 0.05, 0.05) and

c) VA-PR: the Polak-Ribiére algorithm and θ1, stop if ∥∇J∥∞ < 10−6 but at most 35 iterations as proposed in [9],

d) VA-θ1: our fixed point sorting algorithm with R = 35 steps and function θ1 proposed in [10],

e) VA-θ2: our fixed point sorting algorithm with R = 35 steps and function θ2,

f) VA-θ2f : our fast fixed point sorting algorithm with R = 6 steps and function θ2.

We want to mention that the estimate in Theorem 3, see (10) is too restrictive and we have chosen β slightly larger which

still provides a convergent iteration scheme.

Concerning the speed of WA and LM we like to emphasize the following: In our present implementation we have to

keep for the LM method six images of the size of the original image into the storage and for the WA method nine images.

These 6, resp. 9 images were ordered at once to achieve the fast speed commented in the tables. For larger images, e.g., of

size 5616 × 3744 taken by usual commercial cameras, both the LM and WA algorithms do not work in the present form

due to storage problems while our algorithm performs fine.

First we compare how faithful the algorithms can order natural images and the corresponding computational time. The

results are reported in Tab. II. Here Fail% gives the percentage of image pixels which cannot be faithfully ordered. All

VA algorithms clearly outperform the LM and WA algorithms also if only a reduced number of 6 iterations was applied.

Concerning computational time the VA with the fixed point algorithm and θ2 is the fastest and VA-θ2f clearly outperforms

LM and WA.

Next we compare the performance of the several algorithms for histogram equalization inversion: First the original 8-bit

image f with histogram hf is mapped to an 8-bit image g which histogram resembles a uniform distribution. This requires

the first application of an ordering algorithm. Then g is transformed to an 8-bit image f̃ with histogram hf which requires a

second time an ordering algorithm. Tab. III shows the PSNR 20 log10(255M ·N/∥f− f̃∥2), the percentage of pixels Fail%

which cannot be faithfully ordered averaged over the two applied ordering procedures and the computational time of the

whole histogram equalization inversion process. Since VA-PR and VA-θ1 give qualitatively, in terms of PSNR and FAIL,

the same results as VA-θ2 but VA-θ2 is faster, we consider only VA-θ2 and its faster variant VA-θ2f . The VA-algorithms

outperform LM and WA wrt PSNR and FAIL. Moreover, VA-θ2f is the fastest algorithm. The quality of our VA algorithms

is emphasized by Fig. 3 which shows three difference images between the original f and the image f̃ obtained by histogram

equalization inversion. The first row contains the original images, respectively, a part of them. The following rows contains

October 7, 2013 DRAFT
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chemical clock elaine moon tree trui

aerial airplane boat mandrill raffia stream

bark man pentagon smarties stones traffic

eifel boys plants pont church violine

Fig. 2. All 24 digital 8-bit images with their histograms used for our comparison. The size of the images ranges from 256× 256 in the

first row to 2048× 2048 in the fourth row.

the difference images between the original image and the image obtained by histogram equalization inversion. The second

and third rows show the results obtained by the LM and WA ordering, respectively. The fourth row shows the difference

images by VA-θ2 and the fifth row by VA-θ2f . The VA methods, in particular the fast one, are able to reconstruct the

original image more precisely than its competitors in particular at edges.

Acknowledgements. The work of Mila Nikolova was supported in part by the “FMJH Program Gaspard Monge in
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Fail % Computation Time

VA VA

method LM WA PR θ1 θ2 θ2f LM WA PR θ1 θ2 θ2f

chemical 0.01 0.06 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01

clock 1.57 4.52 0.00 0.00 0.00 0.00 0.03 0.04 0.27 0.08 0.06 0.01

elaine 0.00 0.02 0.00 0.00 0.00 0.00 0.03 0.03 0.61 0.08 0.07 0.02

moon 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.61 0.08 0.06 0.02

tree 0.02 0.19 0.00 0.00 0.00 0.00 0.03 0.04 0.59 0.08 0.06 0.01

trui 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.30 0.08 0.06 0.02

means 0.27 0.80 0.00 0.00 0.00 0.00 0.03 0.04 0.50 0.08 0.06 0.01

aerial 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.16 2.28 0.40 0.29 0.07

airplane 5.30 17.70 0.00 0.00 0.00 0.00 0.16 0.31 1.16 0.40 0.29 0.07

boat 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.15 1.40 0.40 0.29 0.07

mandrill 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.14 2.25 0.40 0.29 0.07

raffia 13.66 16.05 0.00 0.00 0.00 0.00 0.20 0.35 1.04 0.39 0.29 0.07

stream 0.41 0.75 0.00 0.00 0.00 0.07 0.13 0.19 1.03 0.41 0.29 0.07

means 3.23 5.75 0.00 0.00 0.00 0.01 0.14 0.22 1.53 0.40 0.29 0.07

bark 0.00 0.00 0.00 0.00 0.00 0.00 0.64 0.80 10.16 1.79 1.33 0.26

man 0.34 0.68 0.00 0.00 0.00 0.00 0.61 0.82 4.47 1.62 1.22 0.26

pentagon 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.87 9.48 1.80 1.32 0.26

smarties 0.08 0.05 0.00 0.00 0.00 0.00 0.68 0.90 9.43 1.82 1.46 0.30

stones 1.14 1.39 0.00 0.00 0.00 0.03 0.66 0.90 4.76 1.78 1.32 0.25

traffic 0.10 0.07 0.00 0.00 0.00 0.00 0.65 0.88 4.96 1.80 1.44 0.28

means 0.28 0.36 0.00 0.00 0.00 0.00 0.65 0.86 7.21 1.77 1.35 0.27

eifel 0.57 0.37 0.00 0.00 0.00 0.00 4.24 6.55 22.29 8.08 6.58 1.38

boys 0.02 0.00 0.00 0.00 0.00 0.00 3.84 5.46 42.64 8.06 6.60 1.38

plants 0.00 0.00 0.00 0.00 0.00 0.00 3.74 4.74 21.61 8.08 6.62 1.38

pont 1.96 5.77 0.00 0.00 0.00 0.00 3.98 5.70 43.15 8.08 6.63 1.46

church 0.61 0.78 0.13 0.05 0.07 0.26 3.62 5.16 20.74 8.08 6.60 1.39

violine 0.25 0.23 0.00 0.00 0.00 0.00 3.76 5.95 43.25 8.07 6.59 1.37

means 0.57 1.19 0.02 0.01 0.01 0.04 3.86 5.59 32.28 8.07 6.60 1.39
TABLE II

COMPARISON OF DIFFERENT ORDERING METHODS FOR THE IMAGES IN FIG. 2.

optimization and operation research”, and by the support to this program from EDF.
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Fig. 3. Comparison of ordering methods for histogram equalization inversion. First row: true images or parts of them. The following rows

show the difference images between the original one and those obtained after histogram equalization inversion Second row: LM method.

Third row: WA method. Fourth row: variational method e). Fifth row: variational method f). The variational methods (VA) contain much

less errors than those achieved by LM and WA. Moreover there is no visual difference between the VA with 35 iterations and its faster

variant with only 6 iterations.
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