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Fast Ordering Algorithm for Exact Histogram Specification

. This variational method was shown to be superior to other state-of-the art ordering algorithms in terms of faithful total strict ordering but not in speed. Indeed, the relevant functionals are in general difficult to minimize because their gradient is nearly flat over vast regions.

In this paper we propose a simple and fast fixed point algorithm to minimize the functionals. The fast convergence of our algorithm results from known analytical properties of the model. In particular the original image is a good starting point for the iterations and the involved inverse functions admit a simple explicit form.

, where ♯ stands for cardinality.

. However, for digital images we are confronted with a large number of n discrete random variables taking only L possible values (i.e., n ≫ L).

Research on ordering problems has been conducted for four decades already [START_REF] Hall | Almost uniform distributions for computer image enhancement[END_REF]. State-of-the-art methods are -the local mean ordering (LM) of Coltuc, Bolon and Chassery [START_REF] Coltuc | Exact histogram specification[END_REF],

-the wavelet-based ordering (WA) of Wan and Shi [START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF], and -the special variational approach (VA) of Nikolova, Wen and Chan [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF].

The first two methods extract for any pixel f [i] in the input image K auxiliary informations, say κ k [i], k ∈ I K , where κ 1 := f . Then an ascending order "≺ " for all pixels could ideally be obtained using the rule i ≺ j if κ s [i] < κ s [j] for some s ∈ I K and κ k [i] = κ k [j] for all 1 ≤ k < s.

The third method uses an iterative procedure to find the minimizer of a certain functional related to f which components can be ordered in a strict way. The numerical results in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF] have shown that VA clearly outperforms LM and WA in terms of quality of the ordering and memory requirements, but not in speed. The main contribution of this paper consists in providing a simple fixed point minimization algorithm that attains the minimizer with remarkable speed and precision. Convergence and parameter selection are discussed. In particular, only few iterations are sufficient to provide the information needed for a meaningful strict ordering of the pixels.

Numerical tests confirm that the VA method along with the new fixed point algorithm outperforms by far all other relevant ordering methods in terms of quality and speed. In particular our algorithm can easily handle large size "mega-pixel" images where other algorithms as LM and WA run into storage problems without pertinent sorting strategies. Preliminary results of this paper were published in the conference paper [START_REF] Nikolova | A fast algorithm for exact histogram specification. Simple extension to color images, Scale Space and Variational Methods in Computer Vision[END_REF].

As already pointed out, one can design fast HS methods based on our ordering algorithm. The present paper thus provides the background for HS based methods for hue and range preserving color enhancement developed in our subsequent paper [START_REF] Nikolova | Fast Hue and Range preserving Histogram Specification[END_REF].

The outline of the paper is as follows: In Section II we review the specialised variational approach in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF] and some of its properties proven in [START_REF] Bauss | Fully smoothed ℓ 1 -TV models: Bounds for the minimizers and parameter choice[END_REF]. Then, in Section III, we propose a simple fixed point algorithm to find a minimizer of the our model which is indeed fast for two reasons: first we know a good starting point for the iterations, second the appearing inverse functions are given explicitly and need simple operations. Section IV contains numerical examples. We compare speed and accuracy in the sense of a faithful total strict ordering of our algorithm with state-of-the art algorithms and provide a histogram equalization inversion comparison. We will see that only few iterations are necessary to obtain promising ordering results.

II. THE MINIMIZERS OF A FULLY SMOOTHED ℓ 1 -TV MODEL

Consider a functional of the form

J(u, f ) := Ψ(u, f ) + βΦ(u), β > 0 (1) with Ψ(u, f ) := ∑ i∈In ψ(u[i] -f [i]), Φ(u) := ∑ j∈Ir φ(g j u), (2) 
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where g i ∈ R 1×n , i ∈ I r correspond to vertical and horizontal differences, i.e.,

g i [i] = -1, g i [i + 1] = 1 and g i [k] = 0 ∀ k ∈ I n \ {i, i + 1}, g j [j] = -1, g j [j + M ] = 1 and g i [k] = 0 ∀ k ∈ I n \ {j, j + M }.
(3)

In this case, the number r in the definition of Φ is r = 2M N -(M + N ). One can also add diagonal differences 1 to improve the rotation invariance of Φ(u). The experiments in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF] have shown that the simpler case when only the differences in (3) are used is enough to enable the minimizers of J to give rise to a prompt sorting. In all cases Neumann boundary conditions are adopted. The functions ψ(•) := ψ(•, α 1 ) : R → R and φ(•) := φ(•, α 2 ) : R → R depend on two parameters α 1 > 0 and α 2 > 0, respectively. When necessary, we also shall use the notation ψ(•, α 1 ) and φ(•, α 2 ). The parameters α 1 and α 2 shall be omitted when they are not explicitly involved in our derivations.

Following [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF], the hint for achieving strict ordering is that the functions ψ and φ belong to a family of functions θ(•, α) : R → R, α > 0, satisfying the requirements in assumptions H1 and H2 described next. The rationale for these choices is extensively discussed in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF]. For simplicity, we denote θ ′ (t, α) := d dt θ(t, α) and θ ′′ (t, α) := d2 dt 2 θ(t, α). H 1: For any fixed α > 0 the function t → θ(t, α) is in C s (R n ), s ≥ 2 and even, i.e., θ(-t, α) = θ(t, α) for all t ∈ R. Its derivative θ ′ (t, α) is strictly increasing with lim t→∞ θ ′ (t, α) = 1 2 and its second derivative From H1 we see that θ ′ (t, α) is odd and has an inverse function

θ ′′ (t, α) is decreasing on [0, +∞).
ξ(t, α) := (θ ′ ) -1 (t, α)
which is also odd and strictly increasing.

Under these assumptions, the functional J(•, f ) amounts to a fully smoothed ℓ 1 -TV model. There are many possible choices of functions θ meeting H1 and H2, see [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF]. In our numerical examples we will focus on the functions θ given in Table I.

Since J(•, f ) is a strictly convex, coercive functional it has a unique minimizer u ∈ R n . The following theorems collect properties of this minimizer which are important for our faithful and fast sorting algorithm. The first theorem which proof can be found in [9, Theorem 1] guaranties that the entries of the minimizer differ in general pairwise from each other so that u provides an auxiliary information for ordering the pixels of f . Theorem 1: (Strict ordering information) Let ψ and φ fulfill H1 and H2. Then there exists a dense open subset

K n of R n such that for any f ∈ K n the minimizer u of J(•, f ) satisfies u[i] ̸ = u[j], ∀ i, j ∈ In, i ̸ = j, u[i] ̸ = f [i], ∀ i ∈ In. (4) 
1 Diagonal differences are given by

g i [i] = -1, g i [i + M -1] = 1 and g i [k] = 0 ∀ k ∈ In\ {i, i+M-1}, g j [j] = -1, g j [j + M + 1] = 1 and g j [k] = 0 ∀ k ∈ In\ {j, j +M+1}. θ θ ′ θ ′′ ξ = (θ ′ ) -1 ξ ′ θ1 √ t 2 + α t √ t 2 + α α ( √ t 2 + α ) 3 t √ α 1 -t 2 √ α ( √ 1 -t 2 ) 3 θ2 |t| -α log ( 1 + |t| α ) t α + |t| α (α + |t|) 2 αt 1 -|t| α 1 -|t| TABLE I CHOICES FOR θ(•, α) TOGETHER WITH THE USED DERIVATIVES AND INVERSE FUNCTIONS.
The fact that K n is dense and open in R n means that the property in ( 4) is generically true. This result is much stronger than saying that (4) holds true almost everywhere on R n . 3 Therefore, the elements of R n \ K n are highly exceptional in R n .

The second theorem provides an estimate of ∥f -u∥∞ which was proved by the authors in [2, Theorems 1 and 2]. It shows in particular that for our parameter settings in the numerical part we can guarantee that |f

[i] -u[i]| < 0.5, for any i ∈ In. Consequently, if for f [i] ∈ {0, . . . , 255}, i ∈ In, the relation f [i] < f [j] holds true, then also u[i] < u[j] such that
the initial ordering of pairwise different pixels is preserved.

Theorem 2: (Distance of u from f )
Let ψ and φ fulfill H1 and H2. Then, for β < 1 4 , the minimizer

u of J(•, f ) satisfies ∥ u -f ∥∞ ≤ (ψ ′ ) -1 ( 4β, α1 ) = ξ ( 4β, α1 ) , (5) 
where

ξ := (ψ ′ ) -1 . Further, ∥ u -f ∥∞ ↗ ξ ( 4β, α1 ) as α2 ↘ 0 under the assumption that ν f := maxi∈I minj∈N i ( f [i] -f [j] ) > 2ξ ( 4β, α1 )
, where

I := { i ∈ int In : sign ( f [i] -f [j] ) = σ, ∀ j ∈ Ni with σ ∈ {-1, +1} } , and ν f := 0 if I = ∅.
The above assumption on ν f is quite realistic for natural images with 8 bit gray values. For the collection of natural images considered in [START_REF] Bauss | Fully smoothed ℓ 1 -TV models: Bounds for the minimizers and parameter choice[END_REF] we have for example mean(ν f ) ≈ 224. In our numerical examples we will use the parameters β = 0.1 and α1 = α2 = 0.05. For these values we obtain by [START_REF] Gonzalez | Digital Image Processing[END_REF] the following upper estimates:

ψ = φ = θ1 : ∥ u -f ∥∞ ≤ 0.0976, ψ = φ = θ2 : ∥ u -f ∥∞ ≤ 0.0 3.

III. FAST MINIMIZATION AND SORTING ALGORITHM

The function u is a minimizer of

J(•, f ) in (1) if and only if ∇J( u, f ) = 0. This is equivalent to ∇Ψ( u, f ) = -β∇Φ( u). By (2) we have dΨ(u, f ) du[i] = ψ ′ (u[i] -f [i]) and dΦ(u) du[i] = ∑ j∈Ir φ ′ (gju)gj[i]
so that the minimizer u is determined by

ψ ′ ( u[i] -f [i]) = -β ∑ j∈Ir φ ′ (gj u)gj[i], i ∈ In.
With ξ := (ψ ′ ) -1 (•, α1) this can be rewritten as

u[i] = f [i] + ξ ( -β ∑ j∈Ir φ ′ (gj u)gj[i] ) , i ∈ In. (6) 
Using the vector notation

G :=      g1 . . . gr      ∈ R r×n , φ(Gu) := (φ(gju)) r j=1 , and ξ(u) := (ξ(ui)) n i=1
and recalling that ξ is odd, we obtain from (6) the fixed point equation

u = T ( u), T (u) := f -ξ(β G T φ ′ (Gu)). (7) 
We propose to apply a simple fixed point algorithm to compute u:

Minimization Algorithm Initialization: u (0) = f For r = 1, . . . , R compute until a convergence criterion is reached u (r) = T (u (r-1) ). (8) 
As stopping criterion we propose ∥∇J∥∞ ≤ 10 -6 . For the images used in our numerical examples and in many more experiments the required precision was reached in general within less than 35 iterations.

The efficiency of the algorithm relies on two clues:

-By Theorem 2 the vector u (0) = f is very close to the fixed point u and is therefore a good starting point.

-The functions φ ′ and ξ appearing in the algorithm are given explicitly, in our experiments by Table 1.

The following theorem provides a convergence result for our fixed point algorithm. 

Then the sequence {u (r) }r generated by the minimization algorithm converges to the minimizer u of J(•, f ).

Proof. By Ostrowski's theorem [START_REF] Ortega | Iterative Solution of Nonlinear Equations in Several Variables[END_REF] it is enough to prove that the Jacobian matrix ∇T (u) becomes smaller than 1 in some norm on R n for all u ∈ R n . Since

∇T (u) = β diag ( ξ ′ (βG T φ ′ (Gu)) ) G T diag ( φ ′′ (Gu) ) G we obtain ∥∇T (u)∥2 ≤ β ∥diag ( ξ ′ (βG T φ ′ (Gu) ) ∥2 ∥G T ∥2 ∥ diag ( φ ′′ (Gu) ) ∥2 ∥G∥2. Since φ ′′ is monotone decreasing on [0, +∞) we get ∥ diag ( φ ′′ (Gu) ) ∥2 ≤ φ ′′ (0). Further, we have by definition (3) of G that ∥G T ∥2 ∥G∥2 = ∥G T G∥2 < 8.
Note that G T G is a discrete Laplacian with Neumann boundary conditions and that the bound is sharp in the sense that ∥G T G∥2 approaches 8 as n → ∞.

It remains to estimate ξ ′ (βG T φ ′ (Gu)). Regarding that |φ ′ (t)| ≤ 1 for all t ∈ R we conclude ∥G T φ ′ (Gu)∥∞ ≤ ∥G∥1 ≤ 4
where the later follows by [START_REF] Caselles | Shape preserving local histogram modification[END_REF]. Since ξ ′ increases on (0, 1) and 4β < 1 we obtain finally

∥diag ( ξ ′ (βG T φ ′ (Gu) ) ∥2 ≤ ξ ′ (4β).
Multiplying the parts together we obtain the assertion.

If both ψ(•, α1) and φ(•, α2) are equal to θ1, resp. θ2 in Table I, then the left-hand side of (9) becomes θ1 θ2

8β ξ ′ (4β, α1) φ ′′ (0, α2) √ α 1 α 2 8β √ (1-(4β) 2 ) 3 α 1 α 2 8β 1-|4β|
, and in case α1 = α2 condition (9) reads as

β < 0.0976 if ψ = φ = θ1, β < 0.0833 if ψ = φ = θ2, (10) 
In practice, we are not really interested in the minimizer u of J(•, f ), but want to use the sorting of its components to get a meaningful ordering of the original image. Here we observed the following phenomenon:

Observation. The approximation u (r) obtained after r = 6 steps of the minimization algorithm leads nearly to the same ordering as the ordering obtained when the convergence criterion was reached. More precisely, a nearly strict ordering is always possible after these few steps, see Table II. In the histogram inversion experiments, the obtained PSNR values are the same, see Table III and the difference images are not distinguishable for the naked eye, see Fig. 3.

This fact led us to propose the following efficient ordering algorithm for R ≪ 35:

Ordering Algorithm

Initialization: u (0) = f 1. For r = 1, . . . , R compute u (r) = T (u (r-1)
).

Order the values in

In according to the corresponding ascending entries of u (r) .

Note that step 1 of this algorithm is a nonlinear filtering of f .

Applying the same technique as in [2, Theorems 1] we can prove the following corollary.

Corollary 1: (Distance of u (r) from f : upper bound) Let ψ and φ fulfill H1. Then, for β < 1 4 , all iterates u (r) generated by the fixed point algorithm satisfy

∥u (r) -f ∥∞ ≤ (ψ ′ ) -1 ( 4β, α1 ) = ξ ( 4β, α1
) .

Proof. By ( 7), ( 8) and H1 we can estimate

∥u (r) -f ∥∞ ≤ (ψ ′ ) -1 ( β∥h (r-1) ∥∞ ) ,
where

h[i] (r-1) := ∑ j∈Ir φ ′ (gju (r-1) )gj[i], i ∈ In.

Using |φ ′ (t)| ≤ 1 and the definition of the gj[i] we obtain |h[i]

(r-1) | ≤ ∑ j∈Ir gj[i] ≤ 4 and since (ψ ′ ) -1 is increasing on [-1, 1] for β < 1 4 finally ∥u (r) -f ∥∞ ≤ (ψ ′ ) -1 ( 4β, α1
) .

The corollary has two important consequences: first, since for β < 1 4 the sequence of iterates {u (r) } r∈N is bounded, it has a convergent subsequence. Convergence of the whole sequence is ensured under the more restrictive conditions posed in Theorem 3. Second, for appropriately chosen parameters β and α1 as those in our numerical experiments all iterates fulfill again the important property |f

[i] -u (r) [i]| < 0.5, i ∈ In. This means if f [i] < f [j], f [i] ∈ Z, then also u (r) [i] < u (r) [j],
so that the pixel ordering in all iterates always respects the pixel ordering in the original image.

IV. NUMERICAL COMPARISON OF SORTING ALGORITHMS

From Table I one sees that the main ingredients of the fixed point algorithm [START_REF] Han | A novel 3-D color histogram equalization method with uniform 1-D gray scale histogram[END_REF], namely ξ and φ ′ involve much easier arithmetical operations for θ2 than for θ1. So we can expect that using θ2 would give rise to a faster algorithm than using θ1.

In this section we demonstrate that our variational approach together with the proposed sorting algorithm for the functions ψ = φ = θ2 is actually the best way (in terms of speed and quality) to order the pixels in digital images. Note that extensive qualitative comparisons of the variational ordering method with a slower algorithm were done in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF]. These experiments have always shown that the variational method clearly outperforms other state-of-the-art algorithms as LM [START_REF] Coltuc | Exact histogram specification[END_REF] and WA [START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF] concerning quality. Here we want to demonstrate that our new sorting algorithm ensures nearly the same quality, in particular a faithful strict ordering, but is much faster than the previous implementations. All algorithms are implemented in MATLAB and executed on a computer with an Intel Core i7-870 Processor (8M Cache, 2.93 GHz) and 8 GB physical memory, 64 Bit Linux.

The performance was done for the 24 digital 8-bit images in Fig. 2, where the first six images have size 256 × 256, the next six images 512 × 512, then 1024 × 1024 and finally size 2048 × 2048. The tables give the average computation time of 50 runs of the algorithms, respectively.

We compare the ordering methods: a) LM: local mean ordering [START_REF] Coltuc | Exact histogram specification[END_REF] with parameter K = 6, b) WA: wavelet-based ordering [START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF] with parameter K = 9, with our variational approach (VA) with parameters (β, α1, α2) = (0.1, 0.05, 0.05) and c) VA-PR: the Polak-Ribiére algorithm and θ1, stop if ∥∇J∥∞ < 10 -6 but at most 35 iterations as proposed in [START_REF] Nikolova | Exact histogram specification for digital images using a variational approach[END_REF], d) VA-θ1: our fixed point sorting algorithm with R = 35 steps and function θ1 proposed in [START_REF] Nikolova | A fast algorithm for exact histogram specification. Simple extension to color images, Scale Space and Variational Methods in Computer Vision[END_REF], e) VA-θ2: our fixed point sorting algorithm with R = 35 steps and function θ2, f) VA-θ2f : our fast fixed point sorting algorithm with R = 6 steps and function θ2.

We want to mention that the estimate in Theorem 3, see [START_REF] Nikolova | A fast algorithm for exact histogram specification. Simple extension to color images, Scale Space and Variational Methods in Computer Vision[END_REF] is too restrictive and we have chosen β slightly larger which still provides a convergent iteration scheme.

Concerning the speed of WA and LM we like to emphasize the following: In our present implementation we have to keep for the LM method six images of the size of the original image into the storage and for the WA method nine images. These 6, resp. 9 images were ordered at once to achieve the fast speed commented in the tables. For larger images, e.g., of size 5616 × 3744 taken by usual commercial cameras, both the LM and WA algorithms do not work in the present form due to storage problems while our algorithm performs fine.

First we compare how faithful the algorithms can order natural images and the corresponding computational time. The results are reported in Tab. II. Here Fail% gives the percentage of image pixels which cannot be faithfully ordered. All VA algorithms clearly outperform the LM and WA algorithms also if only a reduced number of 6 iterations was applied.

Concerning computational time the VA with the fixed point algorithm and θ2 is the fastest and VA-θ2f clearly outperforms LM and WA.

Next we compare the performance of the several algorithms for histogram equalization inversion: First the original 8-bit image f with histogram h f is mapped to an 8-bit image g which histogram resembles a uniform distribution. This requires the first application of an ordering algorithm. Then g is transformed to an 8-bit image f with histogram h f which requires a second time an ordering algorithm. Tab. III shows the PSNR 20 log 10 (255M • N/∥f -f ∥2), the percentage of pixels Fail% which cannot be faithfully ordered averaged over the two applied ordering procedures and the computational time of the whole histogram equalization inversion process. Since VA-PR and VA-θ1 give qualitatively, in terms of PSNR and FAIL, the same results as VA-θ2 but VA-θ2 is faster, we consider only VA-θ2 and its faster variant VA-θ2f . The VA-algorithms outperform LM and WA wrt PSNR and FAIL. Moreover, VA-θ2f is the fastest algorithm. The quality of our VA algorithms is emphasized by Fig. 3 Third row: WA method. Fourth row: variational method e). Fifth row: variational method f). The variational methods (VA) contain much less errors than those achieved by LM and WA. Moreover there is no visual difference between the VA with 35 iterations and its faster variant with only 6 iterations.

H 2 :

 2 For fixed t > 0, the function α → θ(t, α) is strictly decreasing on (0, +∞) with lim α→0 θ ′ (t, α) = 1 and lim α→∞ θ ′ (t, α) = 0 .

Theorem 3 :

 3 (Convergence of Fixed Point Algorithm) Let ψ and φ fulfill H1. Let α1, α2 > 0 and β > 0 be chosen such that β <1 4 and 8β ξ ′ (4β, α1) φ ′′ (0, α2) < 1.

Fig. 2 .

 2 Fig. 2. All 24 digital 8-bit images with their histograms used for our comparison. The size of the images ranges from 256 × 256 in the first row to 2048 × 2048 in the fourth row.

Fig. 3 .

 3 Fig. 3. Comparison of ordering methods for histogram equalization inversion. First row: true images or parts of them. The following rows show the difference images between the original one and those obtained after histogram equalization inversion Second row: LM method.

TABLE III COMPARISON

 III OF HISTOGRAM EQUALIZATION INVERSION ALGORITHMS.
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The upper bound on θ ′ is set to 1 just for definiteness.[START_REF] Wan | Joint exact histogram specification and image enhancement through the wavelet transform[END_REF] DRAFT

An almost everywhere true property requires only that K n is dense in R n . But K n may not contain open subsets. There are many examples. For instance, K := [0, 1] \ {x ∈ [0, 1] : x is rational} is dense in [0, 1] and K does not contain open subsets. October 7, 2013 DRAFT
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Then the target histogram can almost never be satisfied exactly. Histogram specification is an ill-posed problem for digital images. The Matlab function histeq is expected to produce HE; see Fig. 1 and the comments in the caption. Additional effort should be paid to improve the specification as e.g. in [START_REF] Bassiou | Color image histogram equalization by absolute discounting back-off[END_REF], where the appearing gaps in the target histogram of the HE were circumvented by so-called "probability smoothing".

In this paper we focus on exact histogram specification to a target histogram h = ( h 1 , . . . , h L ) for the gray values P = {0, . . . , L -1}. If the pixels values of our image are pairwise different so that they can be strictly ascending ordered, exact histogram specification can be easily done by dividing the corresponding ordered list of indices into L groups and assigning gray value 0 to the first h 1 pixels, gray value 1 to the second h 2 pixels and so on until gray value L -1 to the last h L pixels. However, this simple procedure requires a meaningful strict ordering of all pixels in the input image. Fig. optimization and operation research", and by the support to this program from EDF.