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ABSTRACT 

In order to anticipate failures and reduce downtime, 
“predictive diagnostic” aims not only at warning about the 
failure events before they occur but also at identifying the 
causes of degradation leading to such detections. Then, 
based on the results of predictive diagnostic, “prognostic” 
aims at estimating the remaining useful life in order to plan 
a maintenance action before unit performances are affected. 
However, these are complex tasks. To overcome these 
difficulties, the notion of fleet may be very useful. In the 
present paper a fleet is composed of heterogeneous units 
(mainly components but could be systems or sub-systems) 
that are grouped together considering some similarities. The 
fleet can provide capitalized data and information coming 
from other members of the fleet for the 
improvement/development of the diagnostic/prognostic 
models. In order to achieve PHM with a fleet-wide 
dimension, it is thus necessary to manage relevant 
knowledge arising from the fleet taking into account 
heterogeneities and similarities amongst components, 
operational context, behaviours, etc. This paper will focus 
mainly in the formalization of a data-driven prognostic 
model considering a fleet-wide approach. The model is 
based on a prognostic approach of the system health using 
Relevant Vector Machine. The proposed model is based on 
historical data coming from similar units of a fleet. The 
heterogeneity of the monitored data is treated by assessing a 
global health index of the units. The proposed approach is 
shown on a case study. This case study illustrates how the 
fleet dimension facilitates predictive diagnostic and the 
definition of the prognostic model in the marine domain. 

 
Key words: Fleet-wide management, proactive maintenance, 
prognostic, predictive diagnostic, health assessment. 

1. INTRODUCTION  

PHM involves the following processes: monitoring the 
process variables of a current situation, assessing the health 
of the system, prognosticating the Remaining Useful Life 
(RUL) of the system and making decision for maintenance 
action. In that sense, the data coming from the different 
variables of the process is also used for evaluating and 
monitoring a global indicator representative of the health 
state of a unit. The health state allows to supervise easily the 
degradation behaviour and to detect early enough drifts in 
operations (Rizzolo et al., 2011). If the health state is not 
satisfying, then predictive diagnostic could be performed. 
This process allows to identify the causes of a degradation 
before a failure occurs. Based on the potential degradation 
modes producing a drift in operation, the representative 
variables of this degraded component are used to predict the 
degradation trajectory and to assess the remaining time to 
reach a threshold, for instance a specified performance loss 
level. This time is called Remaining Useful Life. Finally the 
results are used for decision-making in order to select the 
maintenance actions to be performed in order to solve the 
drift.  
Implementing a PHM approach at a system level requires 
the consideration of failure rates of different equipment built 
on different technologies (mechanical, electrical, electronic 
or software natures) (Verma et al., 2010) whose behaviour 
can vary all along the different phases of their lifecycle 
(Bonissone and Varma, 2005). Moreover, for predictive 
diagnostic (i.e. diagnostic of drift before failure occurs), 
maintenance operators/engineers need to analyze the alarms 
and the symptoms behavior/evolution to understand which 
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components may have caused the symptoms and the reasons 
for the abnormal behavior of the component. This analysis 
needs to consider the operational context of the symptoms 
in order to understand the abnormal situation since it 
influences the component behavior. Finally, prognostic 
requires some specific model for each degradation, each 
operational condition, and each material part. Such number 
of dimension implies that the efforts (according to the type 
of model, number of data, laboratory tests…) needed for the 
definition of the model have to be important. Moreover, 
prognostic deals with the estimation of the future and thus 
uncertainty appears. However uncertainty could be reduced 
when more efforts are made (Pecht, 2010).  
However to improve PHM processes for large and complex 
systems such as power plants, ships and aircrafts, one 
possible approach is to take advantage of the fleet 
dimension. This dimension can provide knowledge and data 
to improve diagnostic and prognostic models (Medina-Oliva 
et al., 2013). 
A fleet shall be viewed as a set of systems, sub-systems and 
equipment. In this paper, the naval domain is addressed but 
the proposed approach can be broadened to other domains. 
Hence, in the following a unit of a fleet will be considered 
as a system (e.g. ship), a sub-system (e.g. propulsion or 
electric power generation) or equipment (e.g. diesel engine, 
shaft...) depending on the nature of the study. To be in 
accordance with the need of improving PHM at the fleet 
level, an original methodology is proposed in this paper 
wherein individual knowledge (of each unit) is capitalized 
for reuse purpose in order to improve PHM activities such 
as prognostic. To take advantage of the individual 
knowledge at the fleet level, a semantic model is used for 
the PHM activities in the naval domain. Such a semantic 
model enables to reuse particular data, such as maintenance 
history, reliability analysis, failure analysis, data analysis at 
a fleet level in order to provide knowledge. As data become 
available, prognostic process could benefit from more 
contextual information. 

2. PROBLEM STATEMENT 

Prognostic process aims at determining the Remaining 
Useful Life (RUL) of a unit on which a degradation is 
running. Some literature review, such as (Byington et al., 
2002; Jardine et al., 2006; Heng et al., 2009), propose an 
overview of this domain and consider classification among 
the prognostic models. (Byington et al., 2002) propose the 
first classification and classify the prognostic model into 
three categories: 

• Model based approach issued from physical laws of the 
degradation, 

• Data based approach issued from data or indicator 
monitored on the system, 

• Experience based approach mainly issued from 
reliability model. 

In this paper the aim is to benefit from the knowledge 
acquired during the operation of every unit of the fleet, i.e. 
events that occurred and have been solved, in order to solve 
the event occurring on the present unit (Medina-Oliva et al., 
2012b). The objective to benefit from the stored knowledge 
is subject to these constraints: 

• Units are heterogeneous (e.g. technically, structure, 
mission, environment…) since in the naval domain 
every ship is highly customized. Moreover, even if 
units are of the same kind (same technical features), the 
mission they have to fulfil as well as the environment in 
which they are evolving have a significant impact on 
the degradation behaviour. 

• Signals are heterogeneous. Indeed, signals are 
heterogeneous in two ways. The first one is for the 
same kind of unit, since they are evolving in different 
environment, with different mission… monitored 
signals show some significant variations. The second 
deals with the technical differences among units. In that 
sense, units could have different number of sensors 
since they are not technically identical. For instance, if 
engines have different number of cylinders hence, the 
monitoring of cylinder temperature means that the 
number of signals is also different. 

• Knowledge about degradation is application/technical 
oriented since it is mainly supported by 
FMECA/HAZOP. Hence in the corresponding 
monitoring databases, the structure of the 
fault/degradation tree might show some differences. 

• The current situation to be prognosticated is partially 
defined. Indeed, predictive diagnosis aims at finding the 
running degradation at its early stage. Hence only 
partial knowledge is available and based on symptoms. 

Moreover, in order to benefit from the latest information, 
since units are on-line monitored the proposed approach 
aims at integrating all the available information as soon as it 
is available through its integration at the fleet level. Such 
integration can be performed almost “on-line” through 
communication channel such as satellite or with some delay 
through USB hard disk for instance. 

The proposed approach is dedicated not to work as a single 
tool but together with some experts of the corresponding 
field. For instance, in (Medina-Oliva et al., 2013), the 
authors show how experts can perform predictive diagnosis 
using the fleet knowledge. For this goal, the experts are 
using an iterative process in order to select a target sub-fleet 
that contains the proper information to solve the case under 
study (Medina-Oliva et al., 2012b). 

Furthermore, one has to consider some constraint arising 
from the industrial context. Those constraints will help in 
the choice of well-fitted tools to support the fleet wide 
approach: 
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• The nature of the monitoring systems embedded in the 
ships. As for industrial systems, there exist several 
systems, which do not share a common conceptual data 
model (Umiliacchi et al., 2011). 

• Monitored data is real data. The signal embeds a part of 
randomness due to, for instance, measurement noise, 
singular behaviour… 

• Due to unique service life of every unit, there exist 
some heterogeneity between the measured signals. 
Hence, the sensor signals of a degradation processes 
can be captured by the probabilistic nature of the 
prognostic tool. 

3. PHM AT THE FLEET LEVEL 

For PHM activities, one of the industrial realities is the lack 
of capitalization of knowledge and model reuse which 
represents high costs and efforts for the enterprises (Weber 
et al., 2012) (Medina-Oliva et al., 2012a). In some fields 
such as the naval one, units are very customized leading to 
heterogeneous units. This fact limits mainly data and 
knowledge capitalization and exploitation.  
To tackle this issue the fleet dimension can provide enough 
information and data to improve/perform PHM activities. In 
that sense, when searching non-identical but similar units a 
higher volume of data becomes available to reduce 
uncertainty (e.g. more confidence on the hypothesis 
generation about the causes producing a drift or more 
information about the degradation trajectory of a unit). 
However, most of the existing fleet-wide approaches treat 
identical units either for the definition of thresholds based 
on the data of the fleet (Patrick et al., 2010), technical 
solution capitalization (Reymonet et al., 2009) or RUL 
estimation based on a similarity-based approach (Wang et 
al., 2008). The fact of comparing similar units has rarely 
been addressed as a whole in the literature. To deal with this 
issue, this paper is based on a methodology that leads to 
search non-identical but similar units. To do it, knowledge 
about different and general characteristics of units was 
formalized within an ontology (Medina-Oliva et al., 2012b), 
(Monnin et al., 2011a). This knowledge allows to group 
heterogeneous units based on shared common 
characteristics that are relevant for a given situation. Indeed, 
an expert determines the criteria (i.e. characteristics) to be 
matched in an iterative process. These criteria depend on the 
partial knowledge of the current situation, the unit under 
study, the goal of the expertise (here, predictive diagnosis 
and prognostic), and the expert itself. 
Regarding the prognostic techniques to be used, it has to be 
defined according the constraints previously defined. First, 
as the units are on-line monitored, time series data of either 
sensors or indicators are available for processing. Hence, 
data-based techniques are well fitted. A review of these 
techniques has been proposed by (Jardine et al., 2006). 
Among them, we chose techniques that process the past 
degradation time series. This choice has been guided since 

the definition of the unit population used to solve the current 
case is iterative, i.e. some units are dynamically removed or 
added. Hence the chosen prognostic model has to be able to 
integrate quickly new information, in our case time series, to 
perform its computation. Two example of such techniques 
are available in (Liu et al., 2007; Wang et al., 2008). (Lui et 
al., 2007) propose to compute match matrixes that are 
images of the fitting between the multidimensional time 
series, the current and the past one, for every past time 
series. Then, in every image, the best similarity indexes are 
selected and an Auto Regressive Moving Average model 
(ARMA) (Box & Jenkins, 1976) predicts the time to failure. 
Finally, the global RUL is computed by combining the 
ARMA models according to their degree of similarity. 
(Wang at al., 2008) propose to compute, first, a health index 
from the multi dimensional current time series in order to 
get a mono-dimensional time series. Then, they use 
Relevance Vector Machine (RVM) and Sparse Bayes 
Learning (SBL) techniques (Tipping, 2001) in order to 
synthetize the mono-dimensional signal in a few numbers of 
kernels. The online prediction process employs the 
background health information for the health prognostic 
using the Similarity Based Interpolation (SBI) technique. 
Moreover, (Wang et al., 2008) mention: “This framework 
also enables the continuous update of the background health 
information through offline Sparse Bayes Learning and 
continuous update of the prognostic results in real-time with 
new sensory signals through SBI… The SBL process can be 
carried out individually for different training unit which 
enables the background health knowledge to be built 
sequentially without complicated retraining process and 
updated as  more offline training units are gradually 
available.” 

 
Figure 1. A generic framework for structural health 

prognostic (Wang et al., 2008) 

Secondly, the online update of the available knowledge can 
be satisfied. For that purpose, the operator computing the 
health index has to be determined for every unit in the fleet, 
Then, once a new event makes new knowledge available, 
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the RVM learning through SBL make knowledge available 
for prognostic. The resulting information is very sparse and 
does not require too much space to be stored. Moreover, its 
use in the on-line phase does not require a huge amount of 
computing facilities. 
Thirdly, since the considered units are heterogeneous, for 
instance they do not have the same number of cylinder, the 
monitored signals cannot be handle in the multi-dimensional 
signal space. Hence, the match matrix cannot handle this 
aspect. On the contrary, as (Wang et al., 2008) compute a 
mono-dimensional health index from the multidimensional 
time series, it is possible to compare the evolution of 2 
health indexes even if the underlying units have different 
number of signals/indicators. 

4. PROPOSED PHM FLEET-WIDE APPROACH 
The global fleet-wide approach (Figure 2) is performed in 
the same way as classical PHM historical based prognostic 
technics in two stages. The first stage (Figure 2a) consists in 
determining the hypothetical events causing the deviation 
(i.e. predictive diagnosis). The result of this first step is a set 
of solved event that are similar to the actual event under 
investigation. This set of event is then used in the second 
stage of the approach (Figure 2b) as historical data in order 
to performed prognostic. 

4.1. Fleet-wide diagnostic approach 

The proposed fleet-wide approach allowing case-reuse 
could bring benefits to almost all PHM activities (Monnin et 
al., 2011a), (Monnin et al., 2011b), (Medina-Oliva et al., 
2012b). Some of them are: PHM solution engineering 
development/improvement, predictive diagnostic and 
prognostic model definition.  
For the predictive diagnostic, the objective is to identify the 
causes that produce a drift on operations before failure 
occurs. To facilitate this task, information/data of past 
events is capitalized thanks to the semantic model (Monnin 
et al., 2011b), (Medina-Oliva et al., 2012b). This way it is 
possible to reuse all the historic data about the real causes 
producing the abnormal behaviour found among the selected 
population (Figure 3). As a matter of fact, every time an 
abnormal situation is studied the experiences such as the 
alerts detection and the operational context, the real root 
causes and past maintenance actions, could be capitalized 
allowing to establish an improvement feedback loop. In that 
sense feedback about all the individuals composing the 
selected fleet could be used to obtain more representative 
statistics based on fleet-wide past experiences, in order to 
solve a current situation (e.g. alert detection). This approach 
eases the identification of the real causes and reduces the 
downtime for a given situation. 
Furthermore, historic data about the real causes is used in 
order to build what we called a “fleet-wide populated causal 
tree” (Figure 9). This kind of tree shows statistics based on 
the capitalized data found in the fleet. Moreover, the user is 

guided by the thickness of the linking-lines to search of the 
most probable causes that produce an abnormal behaviour 
(e.g. degradation/deviation). The lines that link one 
degradation to another are thicker as the number of 
occurrence of events is higher. This way the user can 
explore different level of causalities in order to identify the 
most probable root-cause of an abnormal behaviour before 
the failure occurs and impacts the systems performances. 
Once the most probable cause has been identified, it is 
possible to identify the set of units that have presented this 
cause in order to reuse this population for prognostic 
purposes.  

4.2. Fleet-wide prognostic approach 
The prognostic process conforms to the one proposed by 
(Wang et al., 2008). We add a selection of the on-line stage 
using population selection according to the fleet wide 
approach. 

4.2.1. Off line stage 

The off line stage is composed (Figure 4) of (a) the 
determination of the aggregation function for health index 
and of (b) Sparse Bayes Learning (SBL) for health time 
series. 

(a) 

 
(b) 

 
Figure 2. PHM fleet wide diagnostic (a) and 
prognostic (b) proposed approach process 
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Figure 3. PHM Monitoring and Fleet-wide Diagnostic simplified process 

 (a) Health Index computation 
Wang et al. use a linear data transformation matrix T such 
that: 

 𝑇 = 𝑄!𝑄 !!𝑄𝑆! (1) 
Where, Q is composed of both faulty (degraded) and 
nominal multi-dimensional signals and SH is a {0,1} matrix 
corresponding to every element of Q according to its state, 
i.e. 0 for degraded and 1 for healthy. T is able to transform 
any set of multi-dimensional signal into a mono dimensional 
signal of health index. 

For the purpose of our approach, T has to be determined for 
every unit, event type and operating condition. On one hand, 
the computation of the matrix is not time consuming neither 
required complex data selection (2 sets of data: normal and 
degraded). On the other hand, this job has to be performed 
for every unit and every event type since degradation signals 
changes according to these 2 features. Both of them are 
easily identifiable. Moreover, operational conditions mode 
are influencing degradation signals as well, but are more 
hardly identifiable. Hence, some work is required for such a 
purpose. Then, normal and degraded signal are extracted as 
well as operational mode identification, and T matrixes are 
computed. 

(b) off training scheme with SBL 
For the sake of conciseness, we do not present the SBL. For 
more details, one can refer to (Wang et al. 2008) or to the 
original paper of Tipping (2001). The SBL is a generalized 
linear model in a Bayesian form and it shares the same 
functional form of the Support Vector Machine (SVM). 

Tipping has formulated this generalized linear model in a 
Bayesian form, named the Relevant Vector Machine 
(RVM). It achieves comparable machine learning accuracy 
to the SVM but provides a full predictive distribution with 
substantially fewer kernel functions. 

The RVM is a special case of a sparse linear model: 

 ℎ 𝑡 = 𝜔!𝜙 𝑡, 𝑡!!
!!! + 𝜀 𝑡  (2) 

where 𝜀 𝑡  is the measurement noise, 𝜔 = 𝜔!,𝜔!,⋯ ,𝜔!  
a weight vector and basis functions are formed of kernel 
functions 𝜙 𝑡, 𝑡!  centered at the training point 𝑡! . The 
sparseness property enables the automatic selection of a 
proper kernel at each location by pruning all irrelevant 
kernels. A sparse weight prior distribution can be assigned, 
in such a way that a different variance parameter is assigned 
to each weight. Moreover, SBL allows to integrate the 
uncertainty contained in the health index time series by 
using the statistics of the coefficients 𝜔 of the RVs. 

 
Figure 4. Off line stages of prognostics process 

In the fleet repository, the degradation time series, 
associated to a solved event, are summarized by the 
Gaussian kernels and the weight vectors (mean and 
covariance matrix). It represents available knowledge for 
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has been solved and a degradation time series has to be 
integrated.  

4.2.2. On-line stage 

The on line stage (Figure 5) is split into 3 steps: (a) Actual 
health time series computation, (b) initial health condition 
and (c) Similarity Based Interpolation 

 
Figure 5. On line stages of prognostics process for one 

learned time series 

(a) Actual health time series computation 
Based on the transformation matrix T (see eq. 1), the actual 
multi-dimensional time series is transformed into mono-
dimension health time series ℎ. 

(b) Initial health condition determination 
Lets consider ℎ a time series of health degradation from 
learned units with a length of 𝑙. ℎ and ℎ the current one 
transformed using T with a length of 𝑙. Then, if both series 
represents the same degradation, first 𝑙 < 𝑙 and second we 
supposed that ℎ can be found in ℎ. Indeed, as (Wang et al. 
2008) explained ℎ and ℎ may have different initial health 
index at the beginning of the time series due for instance to 
manufacturing variability or different service life. Hence the 
RUL estimation (see Figure 6), according to that single ℎ, 
is: 

 𝑅𝑈𝐿 =    𝑙 − 𝑙 − 𝑇!  (3) 
with 𝑇!  the initial time of matching between ℎ  and ℎ 
determined as: 

 𝑇! = 𝑚𝑖𝑛!!∈ !,!!! ℎ 𝑡! − ℎ 𝑇! + 𝑡!
!

!
!!!   (4) 

 

 
Figure 6. Initial health condition determination 

(c) Similarity based interpolation 
Indeed, the computation of the RUL using step (a) is 
performed for every degradation time series selected using 
the fleet wide capability, i.e. ℎ! . Similarity based 
interpolation aims at combining these several RULs. 
Obviously, ℎ does not match every ℎ! with the same level 
of similarity. Hence, the combination of the RUL depends 
on the degree of matching. For a single unit u, its weight is 
issued from the matching step: 

 𝑊! = ℎ 𝑡𝑖 − ℎ 𝑇0
𝑢 + 𝑡𝑖

2𝑙
𝑖=1

−1
  (5) 

The final RUL is computed as: 

 𝑅𝑈𝐿 = !
!

𝑊!𝑅𝑈𝐿!!         𝑤ℎ𝑒𝑟𝑒  𝑊 = 𝑊!!   (6) 

4.2.3. Uncertainty management 

As explained earlier, the RVM approach allows to capture 
uncertainty contained in the data by means of the vector 𝜔 
and the associated covariance matrix. Hence, for every unit 
u, instead of having only one ℎ!, for instance the mean 
curve, one has several ℎ!!  corresponding to random 
realization of the weight 𝜔!. Hence eqs. (3) and (4) have to 
be computed for all the random realizations of the weight 
𝜔!. 

Finally, eq. (6) is re-written as: 

 𝑅𝑈𝐿 = !
!

!
!!

𝑊!
!𝑅𝑈𝐿!!!!  

 𝑤ℎ𝑒𝑟𝑒  𝑊 = 𝑊!! , 𝑎𝑛𝑑  𝑊! = 𝑊!
!

!   (7) 

5. CASE-STUDY 
To illustrate the feasibility of the proposed approach as well 
as the added-value, a scenario was developed. This scenario 
shows how the fleet-wide approach is useful for experts 
during the decision making process for diagnosis and 
prognostic purposes. The scenario is developed using an 
ontology-based fleet-wide software application (Medina-
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Oliva et al., 2012 & 2013) and KASEM® (Knowledge and 
Advanced Service for E-Monitoring) e-maintenance 
software platform. 
We consider first the predictive diagnosis of Volvo Penta 
D16 MG diesel engine. This engine presents one symptom: 
higher temperature of the turbo-compressor exhaust outlet 
gas. This symptom points out a degradation on the air-intake 
system.  

5.1. Predictive diagnostic of a diesel engine 

The air-intake system of this machine is a turbocharged 
system. A turbo-compressor consists of a turbine and a 
compressor connected by a shaft. The compressor draws in 
ambient air and compresses it. The compressor is connected 
to the turbine by a shaft and its outlet is routed to the engine 
cylinder air intake. Exhaust gas from the engine cylinders 
enters the turbine and expands, performing work on the 
turbine. The turbine spins the shaft connected to the 
compressor (Figure 7). 

 
Figure 7. Turbo-charge system 

The objective is first to help an expert to extract/retrieve 
data coming from the fleet in order to solve the diagnostic of 
this situation. In that sense, the expert should identify which 
are the most probable root-causes of degradation in the air-
intake system (Figure 8) either internal or external causes to 
the turbo-compressor (Muller et al., 2008).  

 
Figure 8. Causality tree about the possible causes of 

degradation of the air-intake system 
For the purpose of this example, the fleet is limited to diesel 
engines. Two hundred eighteen (218) events that occurred 
on diesel engines (Table 1) are considered. Table 1 presents 
an extract of the engine units of fleets and their technical 
features. It is possible to notice that units are heterogeneous, 
meaning they have different technical features. The 
ontology-based application aims at helping the expert in the 
research of similar cases among a heterogeneous fleet of 
engines that allows the identification of the root-causes. 
This way, to search the causes of the degradation the 
application guides the user and proposes different criteria 
such as the properties or technical features of units. For 
instance, since there is a degradation on the air-intake 
system for a turbo-charged engine, the embedded 
knowledge in the ontology (i.e. classification of engines) 
allows to select only turbo-charged engines. This criterion is 
essential to analyze the same type of degradation, for this 
reason it is necessary to integrate this criterion in the query. 
This kind of cluster could be relevant for the user since this 
criterion allows the definition of common and similar 
characteristics of engines behavior even though they are not 
identical.  
Once an ontology-based query is performed among the fleet, 
the user might be able to investigate the past events that 
have occurred in the fleet in order to reuse this information 
for example for predictive diagnostic purposes.  
 
 
 

Table 1. Extract of engine fleet technical features stored in the data bases 

 

Turbocharger 
Oil inlet 

Compressor 
Wheel 

Ambient 
Air inlet 

Engine 
Cylinder 

Charge Air 
Cooler 

Compressor Air Flow 

Oil Oulet 
Watergate 

Compressor Turbine 
Wheel 

Exhaust 
Gas 

Discharge 

Higher	  temperature	   of	  the	  
turbo-‐compressor	  exhaust	  

outlet	  gas

Turbocompressor:	  
Degraded

Higher	  temperature	   of	  
the	  turbo-‐compressor	  
exhaust	  inlet	  gas

First	  level -‐
Internal Causes

First	  level -‐
External Causes

Engine Ref Output 
power (kW)

Nb. of 
Cylinder

Configuratio
n

Engine 
Speed (rpm)

Tag related 
to the 

ontology
Engine cycle Air admission Total Installation

Wärtsilä 12V38 8700 12 V 600 Fuel engine 4 Turbocharged 2 Propulsion engine
Wärtsilä RT-flex50 13960 8 L 124 Fuel oil 2 Turbocharged 2 Propulsion engine

Wärtsilä RT-FLEX82T 40680 9 L 80 Fuel oil 2 Turbocharged 1 Propulsion engine
Baudouin 12M26P1FR 357,94 12 V 1800 Fuel engine 4 Naturally-Aspirated 5 Generator engine

Wärtsilä 16V38 11600 16 V 600 Fuel engine 4 Turbocharged 3 Propulsion engine
Wärtsilä 9L38 6525 9 L 600 Fuel engine 4 Turbocharged 1 Propulsion engine
Wärtsilä 8L38 5800 8 L 600 Fuel engine 4 Turbocharged 1 Propulsion engine

Volvo Penta D16C – AMG 500 6 Ligne 1800 Fuel engine 4 Turbocharged 2 Generator engine
ABC 12VDZC 2652 12 V 1000 Fuel engine 4 Turbocharged 2 Propulsion engine

Baudouin 6 M26 SR P1 331 6 Ligne 1800 Fuel engine 4 Turbocharged 3 Generator engine
Baudouin 12 M26 SR 662 12 V 1800 4 Turbocharged 2 Propulsion engine



Annual Conference of the Prognostic and Health Management Society 2013 
 

8 

This way, information/data of past events is capitalized. The 
application allows to reuse all the historic data about the real 
causes producing the abnormal behavior found among the 
selected population. Furthermore, historical data about the 
real causes is used in order to build a “fleet-wide populated 
causal tree” (Figure 9). When exploring this tree which is 
based on statistics of fleet-wide past events (not on the 
signal of the events), it is possible to notice that the most 
probable cause producing the symptom is a degradation on 
the poppet valve of the outtake gas, which is delayed to 
open. Hence, the user can perform a predictive diagnostic 
guided by an ontology-based application that embeds useful 
knowledge about the marine domain and that allows the 
capitalization of data/knowledge within a fleet composed of 
heterogeneous units.  
Then, based on the results of predictive diagnostic, a 
prognostic will be performed using the health state 
trajectory of the resulting 74 events that are presenting a 
problem with the poppet valve. This way it will be possible 
to estimate the remaining useful life of the Volvo Penta D16 
MG diesel engine in order to plan a maintenance action 
before the engine performances are affected.  

 
Figure 9. Fleet-wide populated causal tree 

5.2. Prognostic based on the obtained fleet-wide 
population  

The on-line prognostic process in performed on the Volvo 
Penta D16 MG diesel engine. The first step is to compute 
the health time series of the engine.  

The second step is the computation of the RULs for every 
event time series. This part requires to get their degradation 
background knowledge, i.e. kernel vector, weights and 
covariance matrix. Then, several ℎ!! curves are generated. 

We show some curves in order to show different level of 
uncertainties capture by the RVs for k in {1…100} (Figure 
11). 

For every event u and ℎ!!  curves, a 𝑅𝑈𝐿!!  is computed. 
Figure 12 shows the histograms RULs for k in 
{1,…,10000}. One can notice that the relative dispersion of 
the histograms do not always correspond to a larger 
uncertainty in ℎ!!. For instance, for event 41, ℎ!!"’s show 
some uncertainty (Figure 11c) while the 𝑅𝑈𝐿!!"’s do not 
since a single value has been found. In the same way, 𝑅𝑈𝐿!!" 
and 𝑅𝑈𝐿!!!  (Figure 12b and d) exhibit the same dispersion 
while ℎ!!" and ℎ!!! (Figure 11 b and d) do not. Moreover, the 
contribution of every 𝑅𝑈𝐿!!  in the final RUL through the 
weight 𝑊!

!, eq. (7), allows to draw histograms for every 
event as well (Figure 13). 

 
Figure 10: Health time series of the Volvo Penta D16 

MG diesel engine with ill-defined running degradation 

 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 11: Several health curves for event 74 (a), 26 (b), 

41 (c), 33 (d). 

 

151

67

135

16

96

Turbo&compressor,
exhaust,outlet,gas,
Higher,Temperature,

69,42%,
Turbo&compressor,
exhaust,inlet,gas:,

Higher,Temperature,

30,58%,
Turbo&

compressor:,
Degraded,

0%,
…:…,

54,55%,
Poppet,valve,
ouFake,gas:,

Delayed,toopen,

10,71%,
Exhaust,inlet,

turbo&compressor,
gas,circuit:,
ObstrucMon,

0%,
…:…,

45,45%,
Poppet,valve,
intake,air:,

Delayed,to,close,

0%,
…:…,

89,29%,
Cylinder,exhaust,
outlet,gas:,Higher,
Temperature,
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 12: Histograms of 𝑹𝑼𝑳𝒌𝒖 for the event 74 (a), 

26 (b), 41 (c), 33 (d). 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 13: Histograms of 𝑾𝒌

𝒖 for the event 74 (a), 26 (b), 
41 (c), 33 (d). 

Over all the events, only 68 gave a proper result to be used 
in the computation of the overall RUL. In such application, 
the computation of a single RUL does not seem of great 
relevance. Instead, the analysis of the histograms of the 
𝑅𝑈𝐿! would give better information. Such analysis could be 
performed with different number of histogram class (Figure 
14). We take 4 numbers of class, N, between 6 and 13. One 
can notice between only one mode (Figure 14 b) for N=6, 
three modes ((Figure 14 a and c) for N=8 and 11 or even 
four modes ((Figure 14d) for N=13. Such differences could 
be further investigated by going down the cause-tree, 
investigating the population homogeneity according their 
service life, mission… and with the help of engine experts. 

6. CONCLUSION 

In this paper we proposed an approach taking advantage of 
all available knowledge at a fleet level for predictive 
diagnosis and prognosis. The originality of this work lies in 
the ability to make prognosis even if the degradation 
occurring is ill-defined, i.e. only partial knowledge about the 
degradation is available. Obviously, such a tool is clearly 
not self-sufficient. It is meant to work with experts whose 
knowledge helps to focus on how to solve a situation. 

Despite the presented case study belongs to the naval 
domain, the proposed approach is general and can be 
applied to fields such as wind turbine farms, vehicle fleets… 

The presented work is a first step in that direction. Further 
steps can improve the usefulness of the proposed approach 
in several directions such as the computation of the units 
health which has to be homogenous over the entire fleet. An 
investigation on the operators to be used could be 
performed. The computation of the histograms of the 𝑅𝑈𝐿! 
could be performed at every stage of the cause-tree. 

 
 
 
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 14: Histogram of the 𝑹𝑼𝑳𝒖 of the Volvo Penta 

D16 MG diesel engine with ill-defined running 
degradation with different numbers of class: 8 (a), 6 (b), 

11 (c) and 13 (d). 
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