
HAL Id: hal-00870493
https://hal.science/hal-00870493v1

Submitted on 14 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated service composition with adaptive planning
Sandrine Beauche, Pascal Poizat

To cite this version:
Sandrine Beauche, Pascal Poizat. Automated service composition with adaptive planning. 6th In-
ternational Conference on Service-Oriented Computing (ICSOC ’08), Dec 2008, Sydney, Australia.
pp.530–537, �10.1007/978-3-540-89652-4-42�. �hal-00870493�

https://hal.science/hal-00870493v1
https://hal.archives-ouvertes.fr


Automated Service Composition with Adaptive

Planning⋆

Sandrine Beauche1 and Pascal Poizat1,2

1 INRIA/ARLES project-team, France
{sandrine.beauche,pascal.poizat}@inria.fr

2 IBISC FRE 3910 CNRS – Université d’Évry Val d’Essonne, France

Abstract. Service-Oriented Computing is a cornerstone for the realiza-
tion of user needs through the automatic composition of services from
service descriptions and user tasks, i.e., high-level descriptions of the user
needs. Yet, automatic service composition processes commonly assume
that service descriptions and user tasks share the same abstraction level,
and that services have been pre-designed to integrate. To release these
strong assumptions and to augment the possibilities of composition, we
add adaptation features into the service composition process using se-
mantic descriptions and adaptive extensions to graph planning.
keywords: Services, Task-Oriented Computing, Composition, Software
Adaptation, Planning, Workflow Languages, Tools.

1 Introduction

Task-Oriented Computing (TOC) envisions a user-friendly world where user

tasks would be achieved by the automatic assembly of resources available in
the environment. Service-Oriented Computing (SOC) is a cornerstone towards
the realization of this vision, through the abstraction of heterogeneous resources
as services. Yet, services being elements of composition developed by different
third-parties, their reuse and assembly naturally raises composition mismatch
issues [1]. Moreover, the TOC vision yields a higher description level for the
composition requirements, i.e., the user task(s), as the user only has an abstract
vision of her/his needs which are usually not described at the service level.

To illustrate these issues, we use a running example [2], inspired by [3], which
exposes a set of available services described with a conversation, a capability,
inputs and outputs (Figs. 1 and 2). Conversations describe how to use services,
while capabilities are semantic annotations that enable automatic reasoning for
discovery and composition. In our work, conversations are described with a
generic workflow language, YAWL, for which transformations from/to BPEL
have been defined [4]. The Amazon service can be used to look for an eBook
and provides a capability called BookSearch with a conversation (sequence) over
three operations: login and logout, with a customer identifier (customerId) as

⋆ This work is supported by the project “PERvasive Service cOmposition” (PERSO)
of the French National Agency for Research, ANR-07-JCJC-0155-01.



2 Sandrine Beauche and Pascal Poizat

Begin
(Seq)

receive
login

receive reply receive
(Seq)
End

Begin
(Proc) (Proc)

End

Amazon : BookSearch

customerId
UId:

title
bookTitle:

customerId
UId:

result:
bodySearch

itemSearch itemSearch logout

Fig. 1. Amazon service conversation (YAWL)

reply

Paypal : OnlinePayment

result: autorization

CCInfo: creditCard
orderTotal: orderTotal

doDirectPayment

result: PRC

token: token
MobiPocket : eBookDownload

MPS : OnlinePayment

result: autorization

creditCard
creditCard:

PId: productId
amount: amount

@eBook : eBookStore

cardInfo: creditCard

pproof: token

eBookTitle: title
buyer: customerId

receive
download
reply

download

log
receive reply

debit debit

replyreceive
purchase purchase

receive
doDirectPayment

receive

Fig. 2. Service conversations (communication part, YAWL)

input (in message part UId), and itemSearch with a book title (title) as input
(in message part bookTitle) and a structured information on the search result
(bodySearch) as output (in message part result). Additionally, Paypal and MPS
can be used for payment, while @eBook can be used to search and pay at once.
Finally, MobiPocket can be used to download an eBook in PRC format.

Still, the user knows neither the service capabilities, nor the data that should
be exchanged between them to achieve service composition. The user only has
a high-level view of her/his needs (user task): a capability, the inputs (s)he is
ready to provide and the outputs (s)he expects. In the example, (s)he requires an
eBookRetrieve capability, to provide title, customerId, and creditCard information,
and finally get an eBook in PRC format. There is clearly a (vertical) mismatch
between the user’s needs and the service descriptions.

Additionally, the services have been developed by different third-parties. One
may expect to compose them, while from the input/output perspective they
could not be chained as-is. For example, Amazon should be composed with Paypal
or MPS but part of the input data they require (respectively orderTotal and
amount+productId) does not correspond to what one gets from a call to Amazon
(bodySearch). This illustrates a (horizontal) mismatch.

These two dimensions of interoperability, namely horizontal (communication
protocol and data flow between services) and vertical matching (correspondence
between an abstract user task and concrete service capabilities) should be sup-
ported in the composition process.

The rest of this paper is organized as follow. Section 2 motivates the use of
planning and adaptation, and discusses related work. Then, in Section 3, we
present the principles of our approach for which more details can be found in [2],
and we end with conclusions.



Automated Service Composition with Adaptive Planning 3

2 Discussion and Related Work

On the one hand, planning, is increasingly applied in SOC due to its support for
automatic service composition from underspecified requirements [5]. Chaining-
based planning composes services from provided and expected data, while hi-
erarchical planning supports the decomposition of abstract requirements into
concrete sets of tasks. Still, planning is not able to solve horizontal mismatch.
On the other hand, software adaptation [1], is used to augment the possibility
for component reusability and assembly, thanks to the automatic generation of
software pieces, called adaptors, solving mismatch out in a non intrusive way. In
this article we propose to combine planning and adaptation techniques.

Automatic composition is an important issue in SOC and numerous works
have addressed this over the last years [6–13]. Various criteria could be used to
differentiate these works, yet, due to our motivations, we will focus on issues
related to user task requirements, vertical, and horizontal adaptation.

While both data input/output and capability requirements should be sup-
ported to ensure composition is correct wrt. the user needs, only [12, 13] do,
while [7–11] support data only and [6] supports capabilities only. As far as adap-
tation is concerned, [9–12] support a form of horizontal (data) adaptation, using
semantics associated to data; and [7] a form of vertical (capability abstraction)
adaptation, due to its hierarchical planning inheritance. In our proposal, we
combine the two techniques to achieve both adaptation kinds.

Few works explicitly add adaptation features to SOC [4, 14]. They adopt a
different and complementary view wrt. ours since their objective is not to in-
tegrate adaptation within the service composition process in order to increase
the composition possibilities, but rather to tackle protocol adaptation between
clients and services, e.g., to react to service replacement. Indeed, the most ad-
vanced software adaptation works [15, 16, 1] solve protocol mismatch between a
fixed set of components, but tackle neither the discovery of the required compo-
nents nor the composition towards user needs.

More information on planning and related work can be found in [2].

3 Adaptive Planning Composition

The basis of our work is the extension of the GraphHTN hierarchical planning
technique [17] with horizontal adaptation features, and its application for service
composition. Comprehensive information about the extension is given in [2].

We rely on two structures to support adaptation. Horizontal adaptation is
supported by relations in an ontology of data types, in a structure we call Data

Semantic Structure (DSS). It associates a set of concepts with a composition
relation (⊳) – supporting (de)composition of data – and a simulation relation
(⊏) – supporting data replacement. Using the DSS of our example (Fig. 3),
we see that a token could be decomposed into an authorization and a productId
(or the other way round) and that a price could replace an orderTotal as input
for a service. Vertical adaptation is supported by a hierarchical (tree) structure



4 Sandrine Beauche and Pascal Poizat

amount orderTotal price bodySearch

productIdautorization

price

productproductauth
token

Fig. 3. DSS example

+

;

+

//

entertain

eBookRetrieveVideoGame

...

eBookDownload

Subscribe eBookStore

OnlinePaymentBookSearch

(a)

M

//

M

2 MobiPocket

@eBook
1

1

Amazon
1

2

Paypal MPS

;

(b)

Fig. 4. CSS and l-CSS example (marking is used in graphplan building wrt. Fig. 5)

describing relations between capabilities, that we call Capability Semantic Struc-

ture (CSS). It expresses (i) decomposition relations between abstract capabilities
and more concrete ones, and (ii) ordering constraints between capabilities. The
CSS nodes are either capabilities or control structures: sequence (;), choice (+)
and parallel (//). In our example (Fig 4(a)), eBookStore is a capability which
can be performed directly by a service, or that can be decomposed as the parallel
execution of BookSearch and OnlinePayment capabilities.

Given a user task, a set of services, and both a DSS and a CSS, we proceed as
follows. The CSS is first used to select, on the basis of their capabilities, services
that could be used in the composition. Accordingly, the CSS is labelled with
these services (l-CSS). A graph planning structure, named graphplan, is then
computed. It chains services capabilities based on input/output dependencies
and l-CSS constraints. Finally the graphplan is analyzed to retrieve all service
compositions corresponding to the user task (which can be none).

Service discovery and l-CSS computation. The CSS is first restricted to
the subtree with the user task capability as root. An abstract capability node
is replaced by a method node (M) which denotes a choice: it can be either in-
stantiated directly by some service or its definition (i.e., its subtree) can. In
Figure 4(a), eBookStore may be either obtained by calling @eBook or by com-
posing in parallel Amazon (capability BookSearch) and Paypal or MPS (capability
OnlinePayment). A capability node is replaced by the service that supports it (or
siblings under a M node if several services apply, as for OnlinePayment). Finally,
branches without service instances are discarded and control nodes with only
one child are simplified. The l-CSS for our example is presented in Figure 4(b).

Graphplan building with vertical adaptation. The graphplan is a struc-
ture with alternating fact (data) and action (service calls) layers. Dependencies



Automated Service Composition with Adaptive Planning 5

Amazon

MobiPocket

Amazon Amazon

@eBook@eBook

customerId

bodySearch

customerId

token

bodySearch

title

creditCard

customerId

token

bodySearch

customerId

PRC
exclusion

title

creditCard

step 1 step 2 step 3

identity operation
MobiPocket

@eBook token

title

creditCard

PRC

title

creditCard

Fig. 5. Adaptive graphplan building (no data adaptation)

between data and services are represented with arcs. The initial data layer corre-
sponds to the user-provided inputs. The graphplan is then built (Fig. 5) chaining
services (i) if their input data is available and (ii) following the orderings imposed
by the l-CSS. Once a service is selected, it is tagged in the l-CSS (Fig. 4(b)) and
its outputs are added to the next data layer. Identity operations are used to keep
data from one data layer to the next one. As an example, the chaining of @eBook
at step 1 enables the chaining of MobiPocket at step 2 (see Figs. 4(b) and 5).
This would yield a correct composition, still, that should not contain Amazon
that has been chained at step 1. To deal with such cases, exclusion relations are
used to prevent services with exclusive capabilities in the l-CSS to appear in
the same solution. Exclusions are propagated all along the graphplan. Since our
objective is to generate all possible compositions, we stop the building when the
maximum solution length, calculated with the l-CSS (here, 3), is reached.

Adding horizontal adaptation to the picture. Let us now suppose we
are after step 1 of Figure 5 and continue in Figure 6. According to the l-CSS
(Fig. 4(b)), Paypal should be applicable. Yet, it is not, as it requires the un-
available orderTotal data. However, looking at the DSS (Fig. 3), we see that
this can be obtained from price which in turn can be obtained using decompo-
sition of bodySearch, which is available. The idea for horizontal adaptation is
to add such data transformations in the graphplan building process. Supported
transformations are the DSS ones: decomp(d,D) if D = {di | d ⊳ di}) (decompo-
sition), comp(D,d) if D = {di | d⊳di}) (composition), and cast(d1,d2) if d1 ⊏ d2

(cast). Interestingly, one can have a task vision of these, e.g., task cast above has

@eBook

@eBook

MobiPocket

MPS

Amazon
customerId

cast

title

token

cast

creditCard

price

productId

token

title

bodySearch

customerId customerId

bodySearch

title

productId

price

token

orderTotal
amount

customerId

bodySearch

title

productId

token

step 2step 1

Paypal

Amazon bodySearch

creditCard

price

creditCard orderTotal

creditCardexclusion

identity operation

decomp.

Fig. 6. Adaptive graphplan building (with data adaptation, principle)



6 Sandrine Beauche and Pascal Poizat

Begin
(Proc)

Begin
(Seq)

eBookRetrieve
receive

eBookRetrieve
reply

(Seq)
End

(Proc)
End

assignassignassign assign

Amazon Paypal assign assign MobiPocketassignassign assign

In

OuttitlecustomerId

In.customerId In.title

creditCard

In.creditCard

Out.PRC

PRC

see Fig. 8

autorization

token. token.

productId

productauth

price
bodySearch.

product
bodySearch.

price productId orderTotal

price

decomp cast comp

Fig. 7. A composition for user task (eBookRetrieve, {title, customerId, creditCard},
{PRC}) (YAWL)

assign invoke
login

assign
itemSearch
invoke assign assign invoke

logout

customerId

UId

title

AloginIn.

AloginIn

bookTitle

AitemSearchIn

AitemSearchOutAitemSearchIn.

result
AitemSearchOut.

bodySearch

customerId

AlogoutIn.
UId

AlogoutIn

Fig. 8. Amazon conversation integration (YAWL)

precondition d1 and postcondition d2. Data adaptation planning steps are per-
formed at the end of the basic planning steps and are directed toward the set of
data missing for applicable services (here, {orderTotal} for Paypal and {amount,
productId} for MPS).

Plan extraction and orchestration generation. Plan extraction is achieved
backtracking the graphplan from the user task output data. The l-CSS is used
for filtering at extraction time and to ensure that extracted plans respect the
CSS constraints. Three plans are generated for our example:

– @eBook;MobiPocket (in bold in Fig. 5),
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);Paypal;

comp({autorization,productId},token);MobiPocket (in bold in Fig. 6), and
– Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);

cast(orderTotal,amount);MPS;comp({autorization,productId},token);MobiPocket.

Plans are then transformed into YAWL orchestrators, as demonstrated for
the second plan in Figure 7. Orchestrators have a single operation, named ac-
cording to the user task capability. Variables are used for semantic data types
(e.g., title) and for messages (e.g., AmazonloginIn, or AloginIn in Fig. 8). Plan con-
trol structures are expressed using sequence and flow. Conversations of selected
services are integrated reversing them, a receive/reply couple being replaced by
an invoke. Finally, assignments are used to encode cast, comp, and decomp tasks.

4 Conclusion

In this paper we have proposed a technique that integrates adaptation features in
the service composition process. We support both horizontal and vertical adapta-
tion, which has been achieved combining semantic descriptions and hierarchical



Automated Service Composition with Adaptive Planning 7

planning. We are also able to generate different composition solutions to the user
task requirements, while ensuring they are correct from both data and seman-
tics points of view. Our technique is fully automated thanks to GraphAdaptor, a
prototype tool which takes as input a set of description files for user task, ser-
vice and semantic structures, and outputs a YAWL file for each possible service
composition. The main perspective of this work is the extension of our service
model with conversations over capabilities and security features.

References

1. Canal, C., Poizat, P., Salaün, G.: Model-based Adaptation of Behavioural Mis-
matching Components. IEEE Transactions on Software Engineering 34(4) (2008)
546–563

2. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning
(long version). in P. Poizat Web page

3. Marconi, A., Pistore, M., Poccianti, P., Traverso, P.: Automated Web Service
Composition at Work: the Amazon/MPS Case Study. In: Proc. of ICWS’07. (2007)

4. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Proc. of
ICSOC’06. (2006)

5. Peer, J.: Web Service Composition as AI Planning – a Survey. Technical report,
University of St.Gallen (March 2005)

6. Berardi, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Calvanese, D.: Synthesis
of Underspecified Composite e-Services based on Automated Reasoning. In: Proc.
of ICSOC’04. (2004)

7. Klush, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning
with OWLS-Xplan. In: Proc. of the AAAI Fall Symposium on Agents and the
Semantic Web. (2005)

8. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-based Aggregation of
Web Services. In: Proc. of ICSOC’05. (2005)

9. Constantinescu, I., Binder, W., Faltings, B.: Service Composition with Directories.
In: Proc. of SC’06. (2006)

10. Liu, Z., Ranganathan, A., Riabov, A.: Modeling Web Services using Semantic
Graph Transformation to Aid Automatic Composition. In: Proc. of ICWS’07.
(2007)

11. Benigni, F., Brogi, A., Corfini, S.: Discovering Service Compositions that Feature
a Desired Behaviour. In: Proc. of ICSOC’07. (2007)

12. Ben Mokhtar, S., Georgantas, N., Issarny, V.: COCOA: COnversation-based Ser-
vice Composition in PervAsive Computing Environments with QoS Support. Jour-
nal of Systems and Software 80(12) (2007) 1941–1955

13. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated Synthesis of Com-
posite BPEL4WS Web Services. In: Proc. of ICWS’06. (2006)

14. Motahari-Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
Automated Adaptation of Service Interactions. In: Proc. of WWW’07. (2007)

15. Inverardi, P., Tivoli, M.: Deadlock Free Software Architectures for COM/DCOM
Applications. Journal of Systems and Software 65(3) (2003) 173–183

16. Bracciali, A., Brogi, A., Canal, C.: A Formal Approach to Component Adaptation.
Journal of Systems and Software 74(1) (2005) 45–54

17. Lotem, A., Nau, D.S., Hendler, J.A.: Using Planning Graphs for Solving HTN
Planning Problems. In: Proc. of AAAI/IAAI’99. (1999)


