Sandrine Beauche
email: sandrine.beauche@inria.fr

Pascal Poizat
email: pascal.poizat@inria.fr

Automated Service Composition with Adaptive Planning ⋆

Keywords: Services, Task-Oriented Computing, Composition, Software Adaptation, Planning, Workflow Languages, Tools

Service-Oriented Computing is a cornerstone for the realization of user needs through the automatic composition of services from service descriptions and user tasks, i.e., high-level descriptions of the user needs. Yet, automatic service composition processes commonly assume that service descriptions and user tasks share the same abstraction level, and that services have been pre-designed to integrate. To release these strong assumptions and to augment the possibilities of composition, we add adaptation features into the service composition process using semantic descriptions and adaptive extensions to graph planning.

Introduction

Task-Oriented Computing (TOC) envisions a user-friendly world where user tasks would be achieved by the automatic assembly of resources available in the environment. Service-Oriented Computing (SOC) is a cornerstone towards the realization of this vision, through the abstraction of heterogeneous resources as services. Yet, services being elements of composition developed by different third-parties, their reuse and assembly naturally raises composition mismatch issues [START_REF] Canal | Model-based Adaptation of Behavioural Mismatching Components[END_REF]. Moreover, the TOC vision yields a higher description level for the composition requirements, i.e., the user task(s), as the user only has an abstract vision of her/his needs which are usually not described at the service level.

To illustrate these issues, we use a running example [START_REF] Beauche | Automated Service Composition with Adaptive Planning (long version)[END_REF], inspired by [START_REF] Marconi | Automated Web Service Composition at Work: the Amazon/MPS Case Study[END_REF], which exposes a set of available services described with a conversation, a capability, inputs and outputs (Figs. 1 and2). Conversations describe how to use services, while capabilities are semantic annotations that enable automatic reasoning for discovery and composition. In our work, conversations are described with a generic workflow language, YAWL, for which transformations from/to BPEL have been defined [START_REF] Brogi | Automated Generation of BPEL Adapters[END_REF]. The Amazon service can be used to look for an eBook and provides a capability called BookSearch with a conversation (sequence) over three operations: login and logout, with a customer identifier (customerId) as input (in message part UId), and itemSearch with a book title (title) as input (in message part bookTitle) and a structured information on the search result (bodySearch) as output (in message part result). Additionally, Paypal and MPS can be used for payment, while @eBook can be used to search and pay at once. Finally, MobiPocket can be used to download an eBook in PRC format. Still, the user knows neither the service capabilities, nor the data that should be exchanged between them to achieve service composition. The user only has a high-level view of her/his needs (user task): a capability, the inputs (s)he is ready to provide and the outputs (s)he expects. In the example, (s)he requires an eBookRetrieve capability, to provide title, customerId, and creditCard information, and finally get an eBook in PRC format. There is clearly a (vertical) mismatch between the user's needs and the service descriptions.

Additionally, the services have been developed by different third-parties. One may expect to compose them, while from the input/output perspective they could not be chained as-is. For example, Amazon should be composed with Paypal or MPS but part of the input data they require (respectively orderTotal and amount+productId) does not correspond to what one gets from a call to Amazon (bodySearch). This illustrates a (horizontal) mismatch.

These two dimensions of interoperability, namely horizontal (communication protocol and data flow between services) and vertical matching (correspondence between an abstract user task and concrete service capabilities) should be supported in the composition process.

The rest of this paper is organized as follow. Section 2 motivates the use of planning and adaptation, and discusses related work. Then, in Section 3, we present the principles of our approach for which more details can be found in [START_REF] Beauche | Automated Service Composition with Adaptive Planning (long version)[END_REF], and we end with conclusions.

Discussion and Related Work

On the one hand, planning, is increasingly applied in SOC due to its support for automatic service composition from underspecified requirements [START_REF] Peer | Web Service Composition as AI Planning -a Survey[END_REF]. Chainingbased planning composes services from provided and expected data, while hierarchical planning supports the decomposition of abstract requirements into concrete sets of tasks. Still, planning is not able to solve horizontal mismatch. On the other hand, software adaptation [START_REF] Canal | Model-based Adaptation of Behavioural Mismatching Components[END_REF], is used to augment the possibility for component reusability and assembly, thanks to the automatic generation of software pieces, called adaptors, solving mismatch out in a non intrusive way. In this article we propose to combine planning and adaptation techniques.

Automatic composition is an important issue in SOC and numerous works have addressed this over the last years [START_REF] Berardi | Synthesis of Underspecified Composite e-Services based on Automated Reasoning[END_REF][START_REF] Klush | Semantic Web Service Composition Planning with OWLS-Xplan[END_REF][START_REF] Brogi | Towards Semi-automated Workflow-based Aggregation of Web Services[END_REF][START_REF] Constantinescu | Service Composition with Directories[END_REF][START_REF] Liu | Modeling Web Services using Semantic Graph Transformation to Aid Automatic Composition[END_REF][START_REF] Benigni | Discovering Service Compositions that Feature a Desired Behaviour[END_REF][START_REF] Ben Mokhtar | COCOA: COnversation-based Service Composition in PervAsive Computing Environments with QoS Support[END_REF][START_REF] Pistore | Automated Synthesis of Composite BPEL4WS Web Services[END_REF]. Various criteria could be used to differentiate these works, yet, due to our motivations, we will focus on issues related to user task requirements, vertical, and horizontal adaptation.

While both data input/output and capability requirements should be supported to ensure composition is correct wrt. the user needs, only [START_REF] Ben Mokhtar | COCOA: COnversation-based Service Composition in PervAsive Computing Environments with QoS Support[END_REF][START_REF] Pistore | Automated Synthesis of Composite BPEL4WS Web Services[END_REF] do, while [START_REF] Klush | Semantic Web Service Composition Planning with OWLS-Xplan[END_REF][START_REF] Brogi | Towards Semi-automated Workflow-based Aggregation of Web Services[END_REF][START_REF] Constantinescu | Service Composition with Directories[END_REF][START_REF] Liu | Modeling Web Services using Semantic Graph Transformation to Aid Automatic Composition[END_REF][START_REF] Benigni | Discovering Service Compositions that Feature a Desired Behaviour[END_REF] support data only and [START_REF] Berardi | Synthesis of Underspecified Composite e-Services based on Automated Reasoning[END_REF] supports capabilities only. As far as adaptation is concerned, [START_REF] Constantinescu | Service Composition with Directories[END_REF][START_REF] Liu | Modeling Web Services using Semantic Graph Transformation to Aid Automatic Composition[END_REF][START_REF] Benigni | Discovering Service Compositions that Feature a Desired Behaviour[END_REF][START_REF] Ben Mokhtar | COCOA: COnversation-based Service Composition in PervAsive Computing Environments with QoS Support[END_REF] support a form of horizontal (data) adaptation, using semantics associated to data; and [START_REF] Klush | Semantic Web Service Composition Planning with OWLS-Xplan[END_REF] a form of vertical (capability abstraction) adaptation, due to its hierarchical planning inheritance. In our proposal, we combine the two techniques to achieve both adaptation kinds.

Few works explicitly add adaptation features to SOC [START_REF] Brogi | Automated Generation of BPEL Adapters[END_REF][START_REF] Motahari-Nezhad | Semi-Automated Adaptation of Service Interactions[END_REF]. They adopt a different and complementary view wrt. ours since their objective is not to integrate adaptation within the service composition process in order to increase the composition possibilities, but rather to tackle protocol adaptation between clients and services, e.g., to react to service replacement. Indeed, the most advanced software adaptation works [START_REF] Inverardi | Deadlock Free Software Architectures for COM/DCOM Applications[END_REF][START_REF] Bracciali | A Formal Approach to Component Adaptation[END_REF][START_REF] Canal | Model-based Adaptation of Behavioural Mismatching Components[END_REF] solve protocol mismatch between a fixed set of components, but tackle neither the discovery of the required components nor the composition towards user needs.

More information on planning and related work can be found in [START_REF] Beauche | Automated Service Composition with Adaptive Planning (long version)[END_REF].

Adaptive Planning Composition

The basis of our work is the extension of the GraphHTN hierarchical planning technique [START_REF] Lotem | Using Planning Graphs for Solving HTN Planning Problems[END_REF] with horizontal adaptation features, and its application for service composition. Comprehensive information about the extension is given in [START_REF] Beauche | Automated Service Composition with Adaptive Planning (long version)[END_REF].

We rely on two structures to support adaptation. Horizontal adaptation is supported by relations in an ontology of data types, in a structure we call Data Semantic Structure (DSS). It associates a set of concepts with a composition relation (⊳) -supporting (de)composition of data -and a simulation relation (⊏) -supporting data replacement. Using the DSS of our example (Fig. 3), we see that a token could be decomposed into an authorization and a productId (or the other way round) and that a price could replace an orderTotal as input for a service. Vertical adaptation is supported by a hierarchical (tree) structure describing relations between capabilities, that we call Capability Semantic Structure (CSS). It expresses (i) decomposition relations between abstract capabilities and more concrete ones, and (ii) ordering constraints between capabilities. The CSS nodes are either capabilities or control structures: sequence (;), choice (+) and parallel (//). In our example (Fig 4(a)), eBookStore is a capability which can be performed directly by a service, or that can be decomposed as the parallel execution of BookSearch and OnlinePayment capabilities. Given a user task, a set of services, and both a DSS and a CSS, we proceed as follows. The CSS is first used to select, on the basis of their capabilities, services that could be used in the composition. Accordingly, the CSS is labelled with these services (l-CSS). A graph planning structure, named graphplan, is then computed. It chains services capabilities based on input/output dependencies and l-CSS constraints. Finally the graphplan is analyzed to retrieve all service compositions corresponding to the user task (which can be none).

Service discovery and l-CSS computation. The CSS is first restricted to the subtree with the user task capability as root. An abstract capability node is replaced by a method node (M) which denotes a choice: it can be either instantiated directly by some service or its definition (i.e., its subtree) can. In Figure 4(a), eBookStore may be either obtained by calling @eBook or by composing in parallel Amazon (capability BookSearch) and Paypal or MPS (capability OnlinePayment). A capability node is replaced by the service that supports it (or siblings under a M node if several services apply, as for OnlinePayment). Finally, branches without service instances are discarded and control nodes with only one child are simplified. The l-CSS for our example is presented in Figure 4(b).

Graphplan building with vertical adaptation. The graphplan is a structure with alternating fact (data) and action (service calls) layers. Dependencies between data and services are represented with arcs. The initial data layer corresponds to the user-provided inputs. The graphplan is then built (Fig. 5) chaining services (i) if their input data is available and (ii) following the orderings imposed by the l-CSS. Once a service is selected, it is tagged in the l-CSS (Fig. 4(b)) and its outputs are added to the next data layer. Identity operations are used to keep data from one data layer to the next one. As an example, the chaining of @eBook at step 1 enables the chaining of MobiPocket at step 2 (see Figs. 4(b) and5). This would yield a correct composition, still, that should not contain Amazon that has been chained at step 1. To deal with such cases, exclusion relations are used to prevent services with exclusive capabilities in the l-CSS to appear in the same solution. Exclusions are propagated all along the graphplan. Since our objective is to generate all possible compositions, we stop the building when the maximum solution length, calculated with the l-CSS (here, 3), is reached.

Adding horizontal adaptation to the picture. Let us now suppose we are after step 1 of Figure 5 and continue in Figure 6. According to the l-CSS (Fig. 4(b)), Paypal should be applicable. Yet, it is not, as it requires the unavailable orderTotal data. However, looking at the DSS (Fig. 3), we see that this can be obtained from price which in turn can be obtained using decomposition of bodySearch, which is available. The idea for horizontal adaptation is to add such data transformations in the graphplan building process. Supported transformations are the DSS ones: Plan extraction and orchestration generation. Plan extraction is achieved backtracking the graphplan from the user task output data. The l-CSS is used for filtering at extraction time and to ensure that extracted plans respect the CSS constraints. Three plans are generated for our example:

decomp(d,D) if D = {d i | d ⊳ d i }) (decompo- sition), comp(D,d) if D = {d i | d ⊳ d i }) (composition),
-@eBook;MobiPocket (in bold in Fig. 5), -Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal);Paypal; comp({autorization,productId},token);MobiPocket (in bold in Fig. 6), and -Amazon;decomp(bodySearch,{productId,price});cast(price,orderTotal); cast(orderTotal,amount);MPS;comp({autorization,productId},token);MobiPocket.

Plans are then transformed into YAWL orchestrators, as demonstrated for the second plan in Figure 7. Orchestrators have a single operation, named according to the user task capability. Variables are used for semantic data types (e.g., title) and for messages (e.g., AmazonloginIn, or AloginIn in Fig. 8). Plan control structures are expressed using sequence and flow. Conversations of selected services are integrated reversing them, a receive/reply couple being replaced by an invoke. Finally, assignments are used to encode cast, comp, and decomp tasks.

Conclusion

In this paper we have proposed a technique that integrates adaptation features in the service composition process. We support both horizontal and vertical adaptation, which has been achieved combining semantic descriptions and hierarchical planning. We are also able to generate different composition solutions to the user task requirements, while ensuring they are correct from both data and semantics points of view. Our technique is fully automated thanks to GraphAdaptor, a prototype tool which takes as input a set of description files for user task, service and semantic structures, and outputs a YAWL file for each possible service composition. The main perspective of this work is the extension of our service model with conversations over capabilities and security features.

Fig. 1 .Fig. 2 .

 12 Fig. 1. Amazon service conversation (YAWL)

Fig. 4 .

 4 Fig. 3. DSS example

Fig. 5 .

 5 Fig. 5. Adaptive graphplan building (no data adaptation)

 and cast(d1,d2) if d 1 ⊏ d 2 (cast). Interestingly, one can have a task vision of these, e.g., task cast above has Amazon conversation integration (YAWL) precondition d 1 and postcondition d 2 . Data adaptation planning steps are performed at the end of the basic planning steps and are directed toward the set of data missing for applicable services (here, {orderTotal} for Paypal and {amount, productId} for MPS).

					Begin		Begin		End	End
					(Proc)		(Seq)		(Seq)	(Proc)
	In.creditCard	In.customerId	In.title			In	PRC
	assign		assign	assign		receive	reply	assign
							eBookRetrieve	eBookRetrieve
	creditCard	customerId	title				Out	Out.PRC
			decomp		cast		comp
		price bodySearch.	product bodySearch.	price		autorization	productId
	Amazon	assign	assign		assign	Paypal	assign	assign	MobiPocket
	see Fig. 8		price	productId	orderTotal		token. auth	token. product
	Fig. 7. A composition for user task (eBookRetrieve, {title, customerId, creditCard},
	{PRC}) (YAWL)					
	customerId	AloginIn	title	AitemSearchIn	result AitemSearchOut.	customerId	AlogoutIn
	assign	invoke	assign	invoke	assign	assign	invoke
			login			itemSearch	logout
	AloginIn.		AitemSearchIn.	AitemSearchOut	bodySearch	AlogoutIn.
	UId				bookTitle			UId
			Fig. 8.				
						customerId		customerId	customerId
	Amazon	customerId title bodySearch	decomp.	bodySearch title productId price		bodySearch title productId price	bodySearch title price productId	Amazon @eBook MobiPocket
	@eBook		token			token			token	token
		creditCard exclusion		creditCard	cast	orderTotal creditCard	cast	orderTotal amount creditCard	MPS Paypal
			identity operation			
					step 1			step 2
	Fig. 6. Adaptive graphplan building (with data adaptation, principle)

⋆ This work is supported by the project "PERvasive Service cOmposition" (PERSO) of the French National Agency for Research, ANR-07-JCJC-0155-01.