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Density approach in modelling multi-defaults∗

Nicole El Karoui† Monique Jeanblanc‡ Ying Jiao§

October 24, 2013

Abstract

We apply the default density framework developed in El Karoui et al. [8] to modelling of

multiple defaults, which can be adapted to both top-down and bottom-up models. We present

general pricing results and establish links with the classical intensity approach. Explicit

models are also proposed by using the methods of change of probability measure or dynamic

copula.

1 Introduction

In the credit risk analysis, the dependence of default times is one of the most important issues,

for the portfolio credit derivatives, and also for the contagious credit risks management. In the

literature, the modelling of multiple credit names is diversified in two directions by using the

so-called “bottom-up” and “top-down” models. In the former approach, one first models the

marginal distribution of each default time and then the correlation between them, often using

the copula models. So the individual default information is taken into account in these models.

However, the copula correlation is for a fixed maturity and satisfies no Markovian property.

Furthermore, computations can become complicated when it concerns a large number of credit

names. The latter one is adapted to the modelling of portfolio credit products of large size

and consists of describing directly the cumulative loss process and its dynamics. This approach

provides efficiently tractable models for computations. However marginal distributions of default

times are relatively neglected in the top-down models.

∗This work is partially supported by la chaire Marchés en mutation.
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In this paper, we propose a new method to study credit dependence. Our aim is firstly to

propose a dynamic framework for the portfolio credit derivatives, and secondly to make clear

the impact of one default event on the other ones. The methodology is based on the default

density approach introduced in El Karoui et al. [8] which is suitable for the after-default analysis.

We are interested in successive default events, where the before and after default studies adapt

naturally. Moreover, this viewpoint allows us to include individual default time information and

to obtain pricing formulas for credit portfolio derivatives by using a recursive procedure.

In this context of multiple default times, the market information becomes complicated since

it concerns filtrations associated to different default times, besides the “default-free” reference

filtration F. The pricing problem consists of computing conditional expectations with respect

to this market filtration G, which is the enlarged filtration of F by all the random times, given

different default scenarios. It should be noted that for a portfolio of size n, there exist 2n possible

default events. However, if we consider the ordered set of default times, we can limit ourselves

to n + 1 default scenarios, which reduces largely the computation burden. The main idea is to

apply, in a recursive manner, the “before-default” and “after-default” results developed in [8] to

the ordered default times and to establish the relationship between stochastic processes in the

successive filtrations. This is done under the key hypothesis that the joint conditional survival

probability of ordered default times admits a density given the reference filtration F. We study

the relationship between the intensity processes of default times and their joint density process.

We are also interested in the density under an equivalent change of probability measure. From

these results, we analyze the impact of a default on the succeeding ones such as the conditional

survival probability given the past defaults, and the contagious jump of the intensity at the

default times, etc.

The density framework can also be applied to the non-ordered defaults. By using statistics order,

we have a direct link between the density process of a family of non-ordered random times and

its increasing ordered permutation. The construction of the non-ordered density process is also

closely related to the dynamic copula modelling.

The following of this paper is organized as follows. We present the density framework in Section

2. Section 3 deals with ordered defaults and we explain the relationship with the top-down

approach. In Section 4, we discuss the density under a change of probability measure. Section

5 is devoted to non-ordered defaults and contains some dynamic copula examples. We conclude

in the last section.
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2 Default density framework

In this section, we present the density framework in the credit risk modelling. Let us fix a

probability space (Ω,A,P) and consider a family of random times τ = (τ1, · · · , τn) on (Ω,A,P)

taking values on Rn
+ and representing the default times of n firms on the financial market.

In practice, such as for top-down models, we are often interested in the ordered set of τ for

pricing or risk management purposes. We denote the increasing-ordered permutation of τ by

σ = (σ1, · · · , σn), such that

σ1 ≤ σ2 · · · ≤ σn.

The idea is to work on the n successive sets {t < σ1}, {σ1 ≤ t < σ2}, · · · , {σn ≤ t} and to

update the conditional laws at the arrival of a default: one starts with a filtration F and, at the

first default time σ1, we enlarge it with that new knowledge to obtain G(1). Then, we enlarge

G(1) with the knowledge of the second default σ2 to obtain G(2), and so on. This progressively

arriving information flow will have an impact on the pricing and the risk management problems

of the portfolio derivatives, which is the main focus of this paper. The same methodology works

with non-ordered defaults. However, in the latter case, the number of default scenarios increases

to 2n, making the study less tractable.

2.1 Reminder on single default

We first recall some results in the case of a single default in [8]. Let τ be a positive random

time on the filtered probability space (Ω,A,F,P). We assume that there exists a family of

Ft ⊗ B(R+)-measurable functions (ω, u) → αt(u) such that for any bounded Borel function

f : R+ → R,

E[f(τ)|Ft] =

∫

R+

f(u)αt(u)du, ∀t ≥ 0, P− a.s. (1)

The F-conditional survival probability is given by St(θ) := P(τ > θ|Ft) =
∫∞
θ
αt(u)du for all

t, θ ≥ 0 and we call the F-survival process the super-martingale St := St(t) =
∫∞
t

αt(u)du.

Roughly speaking, αt(u)du = P(τ ∈ du|Ft). So α(u) is the conditional density of τ given the

filtration F. The main idea of our approach is that by using the conditional density α, the study

in the larger filtration can be done in two steps: before the default, i.e., on the set {t < τ} and

after the default, on the set {t ≥ τ}. The filtration F is called the reference filtration. In the

setting with multiple defaults, we shall update this filtration with the successive knowledge of

past defaults.

Let D = (Dt)t≥0 be the smallest right-continuous and complete filtration which makes τ a

stopping time. The global market information G = (Gt)t≥0 is the smallest right continuous and
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complete filtration which contains Ft ∨ Dt. In what follows, we shall write, with an abuse of

notation, Ft ∨ Dt for the regularized filtration.

The pricing problems are related to the computation of G conditional expectations. Consider a

positive and FT ⊗B(R+)-measurable random variable YT (·), T denoting the maturity, then, for

any t ≤ T ,

E[YT (τ)|Gt] = 11{t<τ}

E
[ ∫∞

t
YT (u)αT (u)du|Ft]

P(τ > t|Ft)
+ 11{τ≤t}

E
[

YT (θ)αT (θ)
∣

∣Ft

]

αt(θ)

∣

∣

θ=τ
, a.s. (2)

There are two parts in the above formula: the before-default one on the set {t < τ} and the

after-default one on the set {t ≥ τ}. The default timing τ has an impact on the after-default

formula, described by the quotient E
[

YT (θ)
αT (θ)
αt(θ)

∣

∣Ft

]

evaluated at θ = τ . The after-default

formula in (2) can also be written as

11{τ≤t}E[YT (τ)|Gt] = 11{τ≤t}EPθ [YT (θ)|Ft]
∣

∣

θ=τ

where
dPθ

dP

∣

∣

FT
=
αT (θ)

α0(θ)

So the impact of default can be interpreted as a change of probability measure.

An explicit relationship exists between the density of τ and the widely-used default in-

tensity. Recall that the G-intensity of τ is the positive G-adapted process λG such that

(11{τ≤t} −
∫ t

0 λ
G
s ds, t ≥ 0) is a G-martingale. The F-intensity of τ is the positive F-adapted

process λF such that (11{τ≤t} −
∫ t∧τ
0 λFsds, t ≥ 0) is a G-martingale and satisfies λFt 11{τ>t} = λGt .

The intensity λFt can be completely deduced from the density by

λFt =
αt(t)

St
, t ≥ 0. (3)

However, from the intensity, we can obtain part of the density

αt(θ) = E[λGθ |Ft] = E[λFθ11{θ<τ}|Ft], t ≤ θ (4)

In classical intensity models, one often assumes that the immersion property holds between F and

G, i.e., that F-martingales remain G-martingales. This condition, also called the H-hypothesis,

is equivalent to P(τ > t|Ft) = P(τ > t|F∞), so that St = exp(−
∫ t

0 λ
F
sds), and the “after-default”

density satisfies

αt(θ) = αθ(θ), t > θ (5)

Hence, from the intensity process, we obtain the whole density family for all positive t and θ

under immersion. Another important consequence of (5) is that the after-default conditional

expectation becomes

E[YT (τ)|Gt]11{τ≤t} = 11{τ≤t}E
[

YT (θ)
∣

∣Ft

]

θ=τ
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2.2 Conditional density for ordered defaults

We consider now a multidefault setting with ordered defaults σ = (σ1, · · · , σn) and extend

the density framework to this case. As we have explained previously, a family of increasingly

enlarged filtrations is associated to the successive default times. We firstly state the density

hypothesis with respect to the reference filtration F, and then consider the filtrations containing

default information.

2.2.1 Density w.r.t. default-free filtration

Let F = (Ft)t≥0 be a reference filtration on (Ω,A,P) satisfying the usual conditions and rep-

resenting the “default free” information. We present firstly the fundamental hypothesis on the

existence of the F-density of the ordered defaults family σ.

Hypothesis 2.1 The conditional distribution of σ = (σ1, · · · , σn) given F admits a density

with respect to the Lebesgue measure1, i.e., there exists a family of Ft ⊗ B(Rn
+)-measurable

functions (ω,u) → αt(u, ω) where u = (u1, · · · , un) ∈ Rn
+, such that for any (bounded) Borel

function f : Rn
+ → R,

E[f(σ)|Ft] =

∫

Rn
+

f(u)αt(u)du, ∀t ≥ 0, P− a.s. (6)

where du denotes du1 · · · dun. We call the family α(u) the F-conditional density (or the density

if no ambiguity) of σ.

In the following of this paper, we always assume this hypothesis. The density hypothesis implies

that there are no simultaneous defaults, that is, σi 6= σj a.s. for all i 6= j. This is a standard

hypothesis for the multiple default times. We note that α(u) is null outside the set {u1 ≤ · · · ≤

un}. For any fixed u ∈ Rn
+, the process (αt(u), t ≥ 0) is an F-martingale. The joint conditional

survival law is given, for any θ = (θ1, · · · , θn) ∈ Rn
+, by

St(θ) := P(σ > θ|Ft) =

∫ ∞

θ1

du1 · · ·

∫ ∞

θn

dun αt(u) =

∫ ∞

θ

αt(u)du

where the notation σ > θ stands for σi > θi for all i ∈ {1, · · · , n}.

In the following, for any u, we use the notation u(k:p) to denote the vector (uk, · · · , up), du(k:p)

to denote duk . . . dup and
∫ ∞

t

f(u(k:n))du(k:n) :=

∫ ∞

t

duk · · ·

∫ ∞

t

dun f(uk, . . . , un)

1This can be generalized to any non-negative non-atomic measure which is invariant by permutation.
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We also use u(p) for u(1:p). Furthermore, u(i:i−1) and u(0) are null vectors.

For the subfamily σ(k) := (σ1, . . . , σk) where k ≤ n, the marginal density α
(k)
t (·) of σ(k) with

respect to Ft is the Ft ⊗ B(Rk
+)-measurable function obtained from the joint density of σ as a

partial integral by

α
(k)
t

(

u(k)

)

=

∫

R
n−k
+

αt(u)du(k+1:n). (7)

We denote α
(k)
t,t (u(k)) :=

∫∞
t
αt(u)du(k+1:n), so that

P(σk+1 > t|Ft) =

∫

Rk
+

α
(k)
t,t (u(k))du(k).

The equality α
(k)
t (u(k−1), t) = α

(k)
t,t (u(k−1), t) holds for all positive u(k−1) and t.

2.2.2 Density w.r.t. global filtration

For a single default τ , the global information is the progressive enlargement of the filtration F by

the default time τ . In the multidefault case, the information contains the successive enlargements

of filtrations by the ordered defaults. Let us begin by making precise the default filtrations.

The default information arrives progressively with successive defaults. For any i ∈ {1, · · · , n},

we denote by Di = (Di
t)t≥0 the filtration associated with σi, which corresponds to the information

concerning the ith default. So the increasing filtrations D(i) = (D
(i)
t )t≥0 := D1∨· · ·∨Di represent

the cumulative information flow of the first i defaults, notably, whether the first i defaults have

occurred and the timings of the past default events. In other words, at each default, we update

the information by adding the σ-algebra generated by σi.

The global information G(n) := F ∨ D(n) includes both default and default-free information.

For any i, we define the intermediate filtration G(i) = (G
(i)
t )t≥0 := F ∨ D(i) and we set for

convenience G(0) = F. Notice that G(i) coincides with G(n) stopped at the corresponding default,

i.e., G
(i)
t = G

(n)
t∧σi

, t ≥ 0. Any G
(n)
t -measurable random variable X can be written in the form

Xt =

n
∑

i=0

11{σi≤t<σi+1}X
i
t

(

σ(i)

)

where Xi
t(·) is Ft ⊗ B(Ri

+)-measurable, and σ0 = 0, σn+1 = ∞ by convention.

We introduce the G
(n)
t -conditional law of σ defined by:

E[f(σ)|G
(n)
t ] =

∫

Rn
+

f(u)µ
(n)
t (du) (8)
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where

µ
(n)
t (du) =

n
∑

i=0

11{σi≤t<σi+1}

αt(u)du(i+1:n)

α
(i)
t,t (u(i))

δσ(i)
(du(i)) (9)

with δ denoting the Dirac measure. Observe that the conditional law µ(n) admits a regime

change at each default time, on the set {σi ≤ t < σi+1}, it depends on the F-conditional law of

the first i defaults σ(i) and on their timings.

In particular, in the single default case (when n = 1) recalled in Section 2.1,

µ
(1)
t (u)du = 11{t<τ}

αt(u)du
∫∞
t
αt(u)du

+ 11{t≥τ}δτ (du)

and the conditional expectation (2) can be written as

E[YT (τ)|Gt] =

∫

R+

E
[

YT (u)
αT (u)

αt(u)
|Ft

]

µ
(1)
t (du).

We now generalize this result in the multidefault setting, which will be useful in the sequel.

Proposition 2.2 Let YT (·) be a positive FT ⊗B(Rn
+)-measurable function on Ω×Rn

+, then for

any t ≤ T ,

E[YT (σ)|G
(n)
t ] =

∫

Rn
+

EPu

[YT (u)|Ft]µ
(n)
t (du) (10)

where Pu is defined by dPu

dP

∣

∣

FT
= αT (u)

α0(u)
, or equivalently,

E[YT (σ)|G
(n)
t ] =

n
∑

i=0

11{σi≤t<σi+1}

∫∞
t
du(i+1:n) E[YT (u)αT (u)|Ft]

α
(i)
t,t (u(i))

∣

∣

∣

u(i)=σ(i)

, a.s. (11)

Proof: We proceed in a recursive way. Indeed, the formula (2) adapts naturally to the

successive defaults; in particular, applying the before-defaut part of formula (2), on the set

{σi ≤ t < σi+1}, to the subfamily of remaining defaults σ(i+1:n) = (σi+1, · · · , σn) and the

corresponding filtration G
(i)
t (as Ft in (2)) leads to

11{σi≤t<σi+1}E[YT (σ)|G
(n)
t ]

= 11{σi≤t<σi+1}

E[
∫∞
t
YT (u)α

(i+1:n)|i
T (u(i+1:n))du(i+1:n)|G

(i)
t ]

P(σi+1 > t|G
(i)
t )

∣

∣

∣

u(i)=σ(i)

where α(i+1:n)|i denotes the G(i) density of σ(i+1:n) and is given, on the set {σj ≤ t < σj+1} for

any j = 0, · · · , i− 1, by

α
(i+1:n)|i
t (u(i+1:n)) =

∫∞
t
ds(j+1:i)αt(σ(j), s(j+1:i),u(i+1:n))

α
(j)
t,t (σ(j))

(12)
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and on the set {σi ≤ t < σi+1},

α
(i+1:n)|i
t (u(i+1:n)) =

αt(σ(i),u(i+1:n))

α
(i)
t (σ(i))

. (13)

We then use the after-default part of (2) to the default subfamily σ(i) and the reference filtration

Ft to obtain, on the set {σi ≤ t < σi+1},

E[

∫ ∞

t

YT (u)α
(i+1:n)|i
T (u(i+1:n))du(i+1:n)|G

(i)
t ]

∣

∣

u(i)=σ(i)

=
E[α

(i)
T (u(i))

∫∞
t
YT (u)α

(i+1:n)|i
T (u(i+1:n))du(i+1:n)|Ft]

α
(i)
t (u(i))

∣

∣

∣

u(i)=σ(i)

=
E[
∫∞
t
YT (u)αT (u)du(i+1:n)|Ft]

α
(i)
t (u(i))

∣

∣

∣

u(i)=σ(i)

Moreover,

P(σi+1 > t|G
(i)
t ) = 11{σi>t} + 11{σi≤t}

α
(i)
t,t (σ(i))

α
(i)
t (σ(i))

This leads to (11). Finally, we obtain the equivalent equality (10) by using the conditional law

µ
(n)
t given by (9). �

The contagion effect is contained in our model through two aspects. The first one is that the

density α does not factorize, as it would be the case if the default are (conditionally) independent.

The second one is that the conditional densities given the global information depend explicitly

on the past defaults. There are very few papers where this last effect is taken into account. In

literature, the intensity changes after the occurrence of default taking into account the number

of defaults, but does not keep in memory the timing of each past default (as it is the case in the

papers of Arnsdorff and Halperin [1], Laurent et al. [16], Herbertsson [14], etc.). This allows

these models to be Markovian, which is not the case in our paper.

We are interested in the law of the kth default, or the joint law of the the first k defaults in the

portfolio. Firstly, the marginal survival law of σk is given by (8) as

P(σk > T |G
(n)
t ) =

∫

Rn
+

11{uk>T}µ
(n)
t (du)

=

∫

Rn
+

11{uk>T}

k−1
∑

i=0

11{σi≤t<σi+1}

αt(u)du(i+1:n)

α
(i)
t,t (u(i))

δσ(i)
(du(i))

(14)

More generally, by the fact G
(k)
t = G

(n)
t∧σk

, the marginal conditional law of σ(k) given G
(k)
t and

given G
(n)
t coincide on {t < σk}. Denoting by µk the G(k) conditional law of σ(k), defined as

8



E[f(σ(k))|G
(k)
t ] =

∫

Rn
+
f(u)µ

(k)
t (du), we see that it differs from the partial sum of µ(n) (summands

from i = 0 to k in (9)) only on the last set {σk ≤ t}, more precisely

µ
(k)
t (du) =

k−1
∑

i=0

11{σi≤t<σi+1}

αt(u)du(i+1:n)

α
(i)
t,t (u(i))

δσ(i)
(du(i))+11{σk≤t}

αt(u)du(k+1:n)

α
(k)
t,t (u(k))

δσ(k)
(du(k)) (15)

and we have P(σk > T |G
(n)
t ) =

∫

Rn
+
11{uk>T}µ

(k)
t (du).

3 Successive defaults and top-down models

In this section, we investigate the links between successive defaults and the top-down models.

Recall that τ are a family of random times and σ are the associated ordered sequence.

3.1 Default information — ordered defaults and cumulative loss

The information of the ordered default times can also be given by the knowledge of the default

counting process

Nt :=

n
∑

i=1

11{τi≤t}

which also equals Nt =
∑n

i=1 11{σi≤t}. At a given time t ≥ 0, the information generated by the

random variable Nt, i.e. σ(Nt) gives the number of defaults up to time t; and the filtration

DN = (DN
t )t≥0 generated by the counting process N , i.e. DN

t = σ(Ns, s ≤ t) gives the number

of past defaults together with their timings. In addition, DN coincides with the information

flow generated by the ordered default times, i.e., D
(n)
t = DN

t . Clearly, the global information

GN = (GN
t )t≥0 including F and DN coincides with G(n) and satisfies GN

t∧σi
= G

(i)
t . In literature,

the counting process N is often supposed to be Markovian. This assumption appears to be

convenient in some cases. Nevertheless, our objective in this paper is to analyze the impact of

past defaults in more detail, so we take into account the timing of default events.

A useful observation gives the link between the ordered defaults and the counting process N :

for any k = 1, · · · , n and any t ≥ 0,

{Nt < k} = {σk > t}.

By the marginal law of ordered defaults and the fact that GN and G(n) coincide, we obtain the

conditional loss distribution for t ≤ T ,

Pk(t, T ) := P(NT ≤ k|GN
t ) = P(σk+1 > T |GN

t ) =

∫

Rn
+

11{uk+1>T}µ
(k+1)
t (du) (16)

9



where µ(k) is the G(k) conditional law of σ(k) given by (15). Obviously P(NT = k|GN
t ) =

Pk(t, T ) − Pk−1(t, T ). Note that the loss distribution (16) depends not only on the number of

defaults, but also on the occurrence timing of each default.

In particular, letting k = 1 leads to the following familiar result for the first default:

P(σ1 > T |GN
t ) = 11{σ1>t}

P(σ1 > T |Ft)

P(σ1 > t|Ft)
= 11{σ1>t}

∫∞
T
duαt(u)

∫∞
t
duαt(u)

.

For a CDO tranche pricing, the standard hypothesis on the market is the identical and constant

recovery rate R (equal to 40% in practice). So LT = (1 − R)NT . Then using the equality

(NT −K)+ =
∫∞
K

11{NT>u}du and (16) allow to obtain E[(NT −K)+|GN
t ], which is the key term

for the CDO pricing.

3.2 Links with intensity approach

Most top-down models in the literature follow the intensity approach. In this section, we estab-

lish the link between density and intensity: the F-density of σ will give the full knowledge of

the intensity of the loss process, the reverse is not always true unless under the H-hypothesis.

The loss intensity is the GN -adapted process λN such that (Nt −
∫ t

0 λ
N
s ds, t ≥ 0) is a GN -

martingale. This quantity is often used in the top-down models to characterize the loss distribu-

tion. In the following, we show that the loss intensity equals the sum of all the ordered default

intensities.

Recall that the G(i)-intensity of σi is the positive G(i)-adapted process λi such that (M i
t :=

11{σi≤t} −
∫ t

0 λ
i
sds, t ≥ 0) is a G(i)-martingale. It is well known that M i is stopped at σi and the

intensity satisfies λit = 0 on {t ≥ σi}. The following lemma shows that the G(i)-intensity of σi

coincides with its GN -intensity.

Lemma 3.1 For i = 1, · · · , n, any G(i)-martingale stopped at σi is a GN -martingale.

Proof: We prove that any G(1)-martingale stopped at σ1 is a G(2)-martingale. The result will

follow. Let M be a G(1)-martingale stopped at σ1, i.e. Mt =Mt∧σ1 for any t ≥ 0. For s < t,

E[Mt∧σ1 |G
(2)
s ] = 11{σ2≤s}Mσ1 + 11{s<σ2}

E[Mt∧σ111{s<σ2}|G
(1)
s ]

P(s < σ2|G
(1)
s )

It remains to note that

E[Mt∧σ111{s<σ2}|G
(1)
s ] = 11{s<σ1}E[Mt∧σ1 |G

(1)
s ] + 11{σ1≤s}E[Mσ111{s<σ2}|G

(1)
s ] .

10



The martingale property of M yields to

11{s<σ1}E[Mt∧σ1 |G
(1)
s ] = 11{s<σ1}Ms∧σ1

It is obvious that

11{σ1≤s}E[Mσ111{s<σ2}|G
(1)
s ] = 11{σ1≤s}Mσ1P(s < σ2|G

(1)
s ).

Since σ2 > s on {σ1 > s}, we obtain 11{s<σ1}P(s < σ2|G
(1)
s ) = 11{s<σ1}. The result follows. �

Proposition 3.2 The loss intensity equals the sum of G(i)-intensities of all ordered defaults,

i.e., for any t ≥ 0,

λNt =

n
∑

i=1

λit, a.s. (17)

where

λit = 11{σi−1≤t<σi}

α
(i)
t,t (u(i))

α
(i−1)
t,t (u(i−1))

∣

∣

∣u(i−1)=σ(i−1)
ui=t

, a.s. (18)

Remark 3.3 The intensity of the ith default depends on the “after default” part of the density,

or more precisely, on the density αt(u) after (i − 1)th default with ui−1 < t ≤ ui, and also on

the first i− 1 defaults σ(i−1).

Proof: Since (11{σi≤t}−
∫ t

0 λ
i
sds, t ≥ 0) is a G(i)-martingale stopped at σi, it is a GN -martingale.

The sum (Nt −
∫ t

0

∑n
i=1 λ

i
sds, t ≥ 0) is a GN -martingale. So λN =

∑n
i=1 λ

i. For (18), we use a

recursive method with G(i) = Di ∨G(i−1). As a consequence of (3),

λit = 11{t<σi}
α
i|i−1
t (t)

S
i|i−1
t

,

where S
i|i−1
t = P(σi > t|G

(i−1)
t ) =

∫∞
t
α
i|i−1
t (u)du. Using (12) and (13), we obtain that the

G(i−1)-density of σi satisfies 11{t<σi−1}α
i|i−1
t (t) = 0 and on the set {σi−1 ≤ t},

α
i|i−1
t (t) =

α
(i)
t,t (u(i))

α
(i−1)
t (u(i−1))

∣

∣

∣u(i−1)=σ(i−1)

ui=t

In addition

S
i|i−1
t = 11{t<σi−1} + 11{σi−1≤t}

α
(i−1)
t,t (u(i−1))

α
(i−1)
t (u(i−1))

∣

∣

∣

u(i−1)=σ(i−1)

so the result follows. �

We note that the G(i)-intensity of σi is given in the form

λit = 11{σi−1≤t<σi}λ
i,F
t

(

σ(i−1)

)

(19)
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where λi,Ft (·) is Ft ⊗ B(Ri−1
+ )-measurable. Without loss of generality, we can suppose that

λ
i,F
t

(

u(i−1)

)

= 0 if u(i−1) is outside the set {u1 ≤ · · · ≤ ui−1} or if t < ui−1 or t > ui.

Some explicit models of loss intensity have been proposed in literature where λN is supposed to

be a function of N (e.g. Brigo et al. [3], Cont and Minca [4], Filipović et al. [10] and Sidenius

et al. [17]). For example, λN depends on an auxiliary Markov chain in Frey and Backhaus [12],

and on some contagion factors in Arnsdorf and Halperin [1], (but not on the default timings in

these models). In Errais et al. [7], the loss intensity depends on the timing of defaults using

Hawkes processes.

3.3 Successive defaults and immersion

For the successive defaults, the immersion holds between all the successive filtrations, that is,

between G(i) and G(i+1) for any i = 0, · · · , n− 1 if and only if F is immersed in GN (see Ehlers

and Schönbucher [6]). We characterize the immersion property in the density framework for

ordered defaults.

Proposition 3.4 The immersion property between F and GN is equivalent to the following

conditions: for any i = 1, · · · , n and any u ∈ Rn
+ such that u1 ≤ · · · ≤ un, it holds

α
(i)
t (u(i)) = α(i)

ui
(u(i)), ∀t > ui (20)

where α(i) is the F-density of σ(i) given by (7).

Proof: The result holds for n = 1. We shall prove for n = 2 and the general result follows by

recurrence. In fact, it’s easy to verify that under the conditions (20), we have α
1|0
t (u) = α

1|0
u (u)

and α
2|1
t (u) = α

2|1
u (u) for t ≥ u, which are equivalent to the immersion between F and G(1) and

between G(1) and G(2) respectively and hence to the immersion between F and G(2). �

Using the intensity approach, we can construct a family of ordered random times satisfying the

immersion property. Let λi be a family of positive Gi-adapted intensity processes and assume

that
∫∞
0 λisds = +∞ , then an immediate recurrence establishes that F is immersed in GN if

σi = inf{t ≥ 0 :

∫ t

0
λisds ≥ ηi}

where ηi is independent of F∨G(i−1), hence of η1, . . . , ηi−1. Note that, since the intensity of the

ith default σi is null before σi−1, using the notation in (19), we get

σi = inf{t ≥ σi−1 :

∫ t

σi−1

λi,Fs (σ(i−1))ds ≥ ηi}.

12



The case where (η1, · · · , ηn) is a family of mutually independent uni-exponential random vari-

ables corresponds to the successive Cox model described in [6].

The loss distribution Pk(t, T ) whose general form is given in (16) has a more familiar form under

immersion. The following result generalizes a well-known result in the single default case. Note

that under immersion, the probability of having less than k defaults in the portfolio depends

only on λk+1,F(σk), that is, the intensity of σk+1 or equivalently, the loss intensity restricted to

the set {σk ≤ t < σk+1}.

Proposition 3.5 We assume the H-hypothesis between F and GN . Then the loss distribution

is given by

Pk(t, T ) = 11{t<σk+1}E

[

exp
{

−

∫ T

t

λk+1,F
s

(

σ(k)

)

ds
}

|G
(k)
t

]

. (21)

Proof: By the H-hypothesis and a recursive argument,

Pk(t, T ) = E[11{σk+1>T}|G
N
t ] = E[11{σk+1>T}|G

(k+1)
t ] = 11{σk+1>t}

E[S
k+1|k
T |G

(k)
t ]

S
k+1|k
t

where S
k+1|k
t = P(σk+1 > t|G

(k)
t ). Since the immersion property holds between G(k) and G(k+1)

by [6], S
k+1|k
t = exp(−

∫ t

0 λ
k+1
s (σ(k))ds), the result follows. �

The following proposition gives the density of σ in terms of the marginal intensities. We shall

revisit it by using the change of probability viewpoint in the next section.

Proposition 3.6 If the immersion property between F and GN , then

αt(u) =







E[αun(u)|Ft], 0 ≤ t ≤ un

αun(u), t > un

where

αun(u) =

n
∏

i=1

λi,Fui

(

u(i−1)

)

exp
{

−

∫ ui

ui−1

λi,Fs
(

u(i−1)

)

ds
}

. (22)

Proof: The case where n = 1 holds. We shall prove the proposition for n = 2 and the general

result follows. Considering σ2 by recurrence leads

α
2|1
t (u2) = E[λ2,Fu2

(σ1) exp
(

−

∫ u2

0
λ2,Fs (σ1)ds

)

|G
(1)
t ]

Identifying both sides of the equality on the set {t < σ1} by (12) and (2) implies
∫ ∞

t

du1αt(u1, u2) = E[11{σ1>t}λ
2,F
u2

(σ1) exp(−

∫ u2

0
λ2,Fs (σ1)ds)|Ft]

= E[

∫ ∞

t

du1α
1|0
u2

(u1)λ
2,F
u2

(u1) exp(−

∫ u2

0
λ2,Fu (u1)du)|Ft]

13



Under immersion between F and G(1), α
1|0
u2 (u1) = α

1|0
u1 (u1) = λ

1,F
u1 exp(−

∫ u1

0 λ
1,F
s ds), which

concludes the proof. �

4 Change of probability measure

We have explored in [8] and [9] the close relationship between the density family and the method-

ology of change of probability. On the one hand, the density is affected by a change of probability;

on the other hand, we can construct density processes using a change of probability measure.

4.1 Density under a change of probability

We begin from a probability space (Ω,A,P) where the immersion holds between F and G(n) and

σ has the F-density α(·). We are interested in the density process of σ under an equivalent

probability measure where the immersion property holds no longer.

Let W be an F-Brownian motion and hence a G(n)-Brownian motion. Let Q be a positive

G(n)-martingale with expectation 1, the solution of the SDE

dQt = Qt−(ΨtdWt +

n
∑

i=1

Φi
tdM

i
t ), Z0 = 1

where (M i
t = 11{σi≤t} −

∫ t∧σi

0 λ
i,F
s

(

σ(i−1)

)

ds, t ≥ 0) are G(n)-martingales of pure jump, Ψ and Φi

are G(n)-predictable processes which can be written in the form Ψt =
∑n

i=0 11{σi<t≤σi+1}ψ
i
t

(

σ(i)

)

and Φi
t =

∑i−1
k=0 11{σk<t≤σk+1}φ

i,k
t

(

σ(k)

)

with φi,k > −1. Then

Qt =

n
∑

i=0

11{σi≤t<σi+1}q
i
t

(

σ(i)

)

where for i = 1, · · · , n− 1 and t > ui,

qit
(

u(i)

)

= qiui

(

u(i)

)

·

exp
(

∫ t

ui

ψi
s

(

u(i)

)

dWs −
1

2

∫ t

ui

ψi
s

(

u(i)

)2
ds−

∫ t

ui

φi+1,i
s

(

u(i)

)

λi+1,F
s

(

u(i)

)

ds
)

and for t > un,

qnt
(

u
)

= qnun

(

u
)

exp
(

∫ t

un

ψn
s

(

u
)

dWs −
1

2

∫ t

un

ψn
s

(

u
)2
ds
)

,

with initial values

q00 = 1, and qiui

(

u(i)

)

= qi−1
ui

(

u(i−1)

)(

1 + φi,i−1
ui

(

u(i−1)

))

, i = 1, · · · n.
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Let Q be the probability measure defined by

dQ

dP
= Qt on G

(n)
t .

Then the density of σ under Q is given by

αQ
t (u) =











1
QF

t

E

[

qn−1
un

(

u(n−1)

)(

1 + φ
n,n−1
un

(

u(n−1)

))

αun

(

u(n)

)

|Ft

]

, t ≤ un

1
QF

t

qnt (u)αt(u), t > un

(23)

where QF is the restriction of Q on F, i.e. QF
t := E[Qt|Ft].

4.2 Dynamic copula

We can also start from the unconditional law of σ and construct a conditional density in a

dynamic way. This gives a dynamic copula viewpoint: we shall diffuse the initial dependence

structure of defaults. The following results are extensions to [9, Section 5] and appeals to the

change of probability measure.

Let us begin from the elementary case where σ is independent of the filtration F and admits

a probability density α0 : Rn
+ → R+, that is, P(σ > θ|Ft) = P(σ > θ) =

∫∞
θ
α0(u)du. We

consider the following change of probability. Let (βt(u), t ≥ 0) be a family of F-martingales

with β0(u) = 1 for all u ∈ Rn
+. Then (βt(σ), t ≥ 0) is a martingale w.r.t. the filtration

Gσ = F ∨ σ(σ) and defines a new probability measure Q by

dQ

dP

∣

∣

Gσ

t

= βt(σ).

The density of σ under Q is given by

αQ
t (u) =

1

m
β
t

βt(u)α0(u)

where mβ
t =

∫∞
0 βt(u)α0(u)du. In particular, we have Q(σ > θ) = P(σ > θ), the unconditional

law of σ remains unchanged under the two probability measures.

At the time t = 0, the density function α0 represents the initial correlation between the default

times σ, which can be modelled for example by using a copula function. The dynamic depen-

dence is introduced through the change of probability measure under the new probability Q,

using the normalized Q-martingale βt(u)

m
β
t

. We can view βt(u)α0(u) as a non-normalized den-

sity under Q, obtained by a linear transformation from the initial density under P. Then the

normalization factor mβ
t introduces a nonlinear dependence of αQ

t (u) with respect to the initial

density. We need here a family of F-martingales instead of a G(n)-martingale as in Section 4.1.
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A change of probability as above allows us to construct a sequence of successive defaults σ with

given density αt(u) or intensities λ = (λ1, · · · , λn). More precisely, we start from a family of

random times σ on (Ω,A,Gτ ,P) which is independent of F, so its F-density α(u) coincides with

its initial value α0(u). Define the new probability measure Q on (Ω,Gτ ) by

dQ

dP

∣

∣

Gσ

t

=
αt(σ)

α0(σ)
,

then σ admits under Q the density αt(u). If we are given instead a family of intensity processes

of the form λit = λ
i,F
t (σ(i−1)), then it is possible to construct a family of ordered default times

σ = (σ1, · · · , σn) with intensity λi for σi. We define

αt(u) = E
[

n
∏

i=1

λi,Fui

(

u(i−1)

)

exp
{

−

∫ ui

ui−1

λi,Fs
(

u(i−1)

)

ds
}

|Ft

]

a.s. (24)

and dQ
dP

∣

∣

Gσ

t

= αt(σ)
α0(σ) , then σ admits λ as intensities and α(u) as density under Q. In addition,

the immersion property holds between F and G(n) under Q. In the case where λ do not depend

on the past defaults, the construction can be done as in [13]. In our case, the situation is more

complex since the change of probability measure will be affected by the timing of the defaults.

5 Bottom-up models and density framework

In the bottom-up models, we are interested in the individual credit names where the density

framework can also be adapted.

5.1 Non-ordered default times

Let us consider the family of non-ordered default times τ = (τ1, . . . , τn) and assume the density

hypothesis of τ w.r.t. F. That is, there exists a family of positive F-martingales β(θ) such that

for any bounded Borel function f : Rn
+ → R+,

E[f(τ )|Ft] =

∫

Rn
+

f(θ)βt(θ)dθ, t ≥ 0.

Consider the ordered defaults σ to be the increasing permutation of τ . Then there exists an

explicit relationship between β(·) and the density α(·) of σ by using the statistics order. For

any u ∈ Rn
+ such that u1 ≤ · · · ≤ un and any t ≥ 0,

αt(u1, · · · , un) = 11{u1≤···≤un}

∑

Π

βt
(

uΠ(1), · · · , uΠ(n)

)

(25)
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where (Π(1), · · · ,Π(n)) is a permutation of (1, · · · , n). The equality (25) allows us to incorporate

the individual default information into the density of the ordered default vector. In particular,

if τ is exchangeable, that is (see e.g. Frey and McNeil [11]), if (τ1, · · · , τn)
d
= (τΠ(1), · · · , τΠ(n))

for any permutation where
d
= signifies the equality in distribution, then

αt(u1, · · · , un) = 11{u1≤···≤un} n! βt(u1, · · · , un).

This implies that all subfamilies of τ with the same cardinal has the same distribution. In other

words, the portfolio is homogeneous.

The density approach can also be applied directly to the non-ordered defaults in a similar way

as for the ordered ones. However, it is necessary to consider 2n possible default scenarios and

the recursive before-default and after-default methodology no longer adapts.

5.2 Density models and dynamic copula

In this subsection, we give several explicit models for the conditional probability Gt(θ) := P(τ >

θ|Ft) of non-ordered defaults τ , with which we can deduce the density.

The following example is a backward one based on the Cox-process model. The correlation struc-

ture is fixed for the final time by a copula function and Gt(θ) is obtained by taking conditional

expectation.

Example 5.1 Let τi, i ∈ {1, . . . , n} be defined as in the Cox process model in Lando [15]. That

is, τi = inf{t : Φi
t ≥ ξi} where Φi is an F-adapted increasing process satisfying Φi

0 = 0 and

limt→∞Φi
t = +∞, ξi is a A-measurable random variable of exponential law with parameter 1

and is independent of F∞. In this model, the marginal survival process is given by Gi
t = P(τi >

t|F∞) = e−Φi
t . So the H-hypothesis holds between F and F ∨Hi. Let the correlation of defaults

be represented by a copula function C : Rn
+ → R+ such that P(τ > θ|F∞) = C(G1

θ1
, . . . , Gn

θn
).

Then

Gt(θ) = E
[

C(G1
θ1
, . . . , Gn

θn
)|Ft

]

.

By choosing different copula functions, we obtain a large family of joint densities.

The Gaussian copula model is the standard market model for the CDO pricing, where the

correlation between defaults is described by a standard gaussian random variable representing

the common market factor. We now generalize the Gaussian copula model in a dynamic way.

In the following, the first example is a backward one where the factor is a CIR process and the

second one is a forward constructive model (see also Crépey et al. [5]).
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Example 5.2 Consider a family of processes X = (X1, · · · ,Xn) where Xi = Y 0 + Y i (i =

1, · · · , n) is a fundamental process of the ith firm depending on two factors: the process Y 0 can

be interpreted as a common factor of the market and Y i is the individual factor of each firm

which are independent Cox-Ingersoll-Ross processes

dY i
t = κi(µi − Y i

t )dt+ σi

√

Y i
t dB

i
t , Y

i
0 > 0, i = 0, 1 · · · , n.

We assume moreover that 2κiµi > σ2i so that Y
i does not vanish. Let the filtration F be generated

by the multi-dimensional Brownian motion B = (B0, B1, · · · , Bn). Let T ≥ 0 be a terminal time.

We define the conditional survival probability for 0 ≤ t < T and θ = (θ1, · · · , θn) ∈ Rn
+ by

Gt(θ) = P(τ > θ|Ft) = E[e−θ·XT |Ft] = E[e−
∑n

i=0 θiY
i
T |Ft]

where u0 = u1 + · · ·+ un. Then classical results on affine processes yield

Gt(θ) = exp
(

−

n
∑

i=0

ϕi(T − t, θi)Y
i
t −

n
∑

i=0

ψi(T − t, θi)
)

.

with ϕi and ψi being functions R+ × R+ → R given explicitly by

ϕi(s, v) =
2κiv

(2κi + σ2i v)e
κis − σ2i v

, ψi(s, v) =
2κiµi
σ2i

(

ln
(2κi + σ2i v)e

κis − σ2i v

2κi
− κis

)

.

The correlation between default times is characterized by the process Y 0. The case Y 0 = 0

provides an example where the default times are independent. Moreover, given the process Y 0,

the default times satisfy the standard conditional independence condition.

In particular, for an homogeneous portfolio, κi = κ, µi = µ and σi = σ for i = 0, · · · , n. So the

functions satisfy ϕi = ϕ and ψi = ψ and

Gt(θ) = exp
(

−
n
∑

i=0

ϕ(T − t, θi)Y
i
t −

n
∑

i=0

ψ(T − t, θi)
)

.

Example 5.3 Let hi be a family of increasing functions mapping R+ into R, B = (Bi, i =

1, . . . , n) an n-dimensional standard Brownian motion and Y a random variable independent of

F. We set

τi = (hi)
−1(

√

1− ρ2i

∫ ∞

0
fi(s)dB

i
s + ρiY )

for ρi ∈ (−1, 1) and fi a family of deterministic square-integrable functions. An immediate

extension of the Gaussian model leads to

P(τ > θ|Ft ∨ σ(Y )) =

n
∏

i=1

Φ





1

σi(t)



mi
t −

hi(θi)− ρiY
√

1− ρ2i
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where mi
t =

∫ t

0 fi(s)dB
i
s and σ2i (t) =

∫∞
t
f2i (s)ds. It follows that

P(τ > θ|Ft) =

∫ ∞

−∞

n
∏

i=1

Φ





1

σi(t)



mi
t −

hi(θi)− ρiy
√

1− ρ2i







 fY (y)dy

where fY denotes the probability density function of Y . Note that, in this setting, the random

times τ are conditionally independent given the factor Y , similar as in the standard Gaussian

copula model. In the particular case t = 0, choosing fi so that σi(0) = 1, and Y with a standard

Gaussian law, we obtain

P (τ i > θ) =

∫ ∞

−∞

n
∏

i=1

Φ



−
hi(θi)− ρiy
√

1− ρ2i



ϕ(y)dy

which corresponds, by construction, to the standard Gaussian copula (hi(τi) =
√

1− ρ2iXi+ρiY ,

where Xi, Y are independent standard Gaussian variables).

Relaxing the independence condition on the components of the process B leads to more sophis-

ticated examples.

6 Conclusion

In this paper, we have applied the density approach to multiple default events. Under the

hypothesis on the existence of joint density process with respect to the reference filtration F, we

have deduced dynamics of pricing processes for credit portfolio products.

The study is based on the before-default and after-default analysis and allows us to examine

in detail the impact of one default event on the remaining credit names such as the contagious

jump of the default intensity. Furthermore, the pricing formulas are given on different default

scenarios and hence make clear the instantaneous change of a financial product due to the default

events.

The dependence structures between default times are represented by their F conditional density

process and we have proposed several modelling methods. The idea is to diffuse a static corre-

lation structure at the initial time to achieve a “dynamic correlation”. The density approach

provides a new vision on the default dependence problems. Under this theoretical framework,

some explicit models of joint density process may be studied in more detail for further practical

use.
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