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About the automatic generation of equations
of curvilinear systems

Jean Lerbet

Abstract Following other papers devoted to intrinsic
formulations of curvilinear systems, we develop here
the Maple procedures and some additional calcula-
tions in Lie group of displacements which yield ex-
plicit scalar equations.

Keywords Lie group · Curvilinear system ·
Symbolic calculation

1 Introduction

Using Lie group theory, we have already given the in-
trinsic equations of any curvilinear system (Σ), the
only hypothesis being that (Σ) is a continuous distri-
bution of rigid bodies called sections (see [3, 4]). The
last step for obtaining scalar equations lies in the use of
procedures of symbolic calculations allowing the de-
duction of scalar equations after the parametrization
of displacements. The goal of this paper is to high-
light the necessary elements to do so. The outline of
this paper is as follows: a brief recall of mathematical
tools concerning Lie groups is presented in Sect. 2. In
Sect. 3 the model and the intrinsic equations are re-
called. Section 4 deals with the automatic obtainment
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of equivalent scalar equations. In the last part, the cor-
respondingMaple procedures and explicit scalar equa-
tions are given. Their complexity proves a posteriori
the validity of this approach.

2 Mathematical tools

Let E be the affine space of three dimensions of ordi-
nary Euclidean geometry and E the associated vector
space. To each affine map A : E → E is usually asso-
ciated its linear part A such that:

∀m,p ∈ E A(m) = A(p) +A(−→pm).

Let D be the group of affine mappings A such that A
is an element of the special orthogonal group SO(E).
In other words, D is the group of Euclidean displace-
ments.

Let D also be the six-dimensional vector space of
skew symmetric vector fields X : E → E such that
there exists ωX in E with the well-known following
property:

∀a, b ∈ E X(a) = X(b) + ωX ∧ −→
ba.

In other words, the linear part X of X is the following
linear operator in E:

u �→X(u) = ωX ∧ u

and D shall be identified with the set of screws. The
Lie bracket is defined in D by [X,Y ](a) = ωX ∧
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Y(a) − ωY ∧ X(a) for any a in E . Thus D is a Lie
algebra which is isomorphic to (and identified with)
the classical Lie algebra of D.

The exponential mapping exp :D → D lets a finite
displacement be expressed by its infinitesimal genera-
tor and the adjoint mapping Ad : D → L(D) describes
how a displacement acts on the elements of D. Thanks
to duality, each action on a rigid body shall be de-
scribed by an element of D and the operator allow-
ing this identification is the classical inner product [·|·]
(Klein form in the Lie group theory) defined by:

[X|Y ] = (
ωX|Y(p)

) + (
ωY |X(p)

)
,

the right hand-side being independent of the point p

in E . For a more precise discussion about the opera-
tions defined on D and on D, see [1].

3 The model

3.1 Kinematics

The system is described as follows. The reference
configuration is similar to a distribution σ �→ r(σ ) =
(A(σ );�i1(σ ), �j1(σ ), �k1(σ )) of affine frames where σ

is the curvilinear abscissa of the curve σ �→ A(σ).
A(σ) is for example the inertia center of the section of
abscissa σ and �i1(σ ), �j1(σ ), �k1(σ ) is a basis connected
to the rigid section of abscissa σ (one may choose for
example the Frenet frame of the curve σ �→ A(σ)).
In the following, each rigid section and its associated
frame shall be identified.

On each section r(σ ) and at each time t , an un-
known displacement D(σ, t) acts such that r(σ ) →
ra(σ, t) = D(σ, t) • r(σ ) where ra(σ, t) = (a(σ, t);
�i2(σ, t), �j2(σ, t), �k2(σ, t)). Notice that no hypothe-
sis of perpendicularity of the section with the curve
(σ, t) �→ a(σ, t) is made and • is the natural action of
D on the set of affine frames (in mathematical terms it
is a structure of fiber bundle).

The kinematics of the system is given by:

• The velocity, described by the following field vc :
[0, l] × R

+ → D:

(σ, t) �→ vc(σ, t) =D(σ, t)−1 ◦ ∂D(σ, t)

∂t
.

• The acceleration, described by the following field
v̇c : [0, l] × R

+ → D:

(σ, t) �→ v̇c(σ, t) = ∂vc(σ, t)

∂t
.

• The strain, described by the following field ec :
[0, l] × R

+ →D:

(σ, t) �→ ec(σ, t) =D(σ, t)−1 ◦ ∂D(σ, t)

∂σ
.

One may notice that the field σ �→ ec(σ, t) is un-
changed by superposition of a rigid motion.

Remark 1 ∂D(σ,t)
∂t

and ∂D(σ,t)
∂σ

belong to TD(σ,t)D. So
vc(σ, t) and ec(σ, t) belong TIdD that is identified with
D as previously remarked.

3.2 Kinetics and dynamics

According to the chosen model, we suppose that (at
each time t and on each section ra(σ, t)) there are:

• A distribution (σ, t) �→ T (σ, t) of moment fields
describing the external actions.

• A distribution (σ, t) �→ Θ(σ, t) of moment fields
describing the internal actions, i.e., the action of the
right-hand side on the left one (according to the ab-
scissa σ ).

• Two concentrated strengths at the ends T0(t),Tl (t)

(in some cases, one could consider a family Tk(t)

at σk for k = 1, . . . , n which would introduce a dis-
continuity of σ �→ Θ(σ, t) and we should use what
follows on each [σk, σk+1]).

• A distribution σ �→ Hra (σ, t) of operators of D
describing the inertial force and torque. As a La-
grangian formulation is used, we need the distrib-
ution σ �→ Hr(σ ) of linear operators of inertia in
the reference configuration. The following relation
between Hr and Hra holds:

Ad
(
D(σ, t)

) ◦ Hr(σ ) ◦ Ad−1(D(σ, t)
) = Hra (σ, t)

(for a more precise connection between the opera-
tors of inertia Hr and Hra and the inertial strength
according to the Lagrangian and Eulerian points of
view, see [2], for example).

• A distribution σ �→ ρ0 = ρ0(σ ) of mass density in
the reference configuration.
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3.3 The general equations

Proposition 1 The equations of the system (Σ ) are
expressed in terms of the Lagrangian (the functions of
σ and of t are omitted):

T c = ρ0Hr(v̇
c) + [

vc, ρ0Hr(v
c)

] − [
ec,Θc

] − ∂Θc

∂σ
,

T c
0 = Θc(0), (1)

T c
l = −Θc(l)

where for each object U = U(σ, t) attached to (Σ ),
Uc = Ad(D(σ, t)−1)U is the Lagrangian expression
of U . (See [3] or [4].)

Remark 2 It is clear that this equation, derived from
the balance of momentum, is not sufficient for a com-
plete solution of practical problems. A constitutive law
must be added to set up a complete system of equa-
tions. It is not the subject of the present paper, but we
may suppose that, according to the present formula-
tion, such laws in the framework of elasticity or visco-
elasticity, for example, should add relations as:

Θc =F
(
ec, ėc

)
.

A future paper shall be devoted to this problem.

4 Automatic derivation of scalar equations: some
elements

There are several possible representations of a dis-
placement. In order to obtain the scalar equations and
to solve them numerically we have to choose one of
these representations. Similar remarks may be done
for the reference configuration r(σ ) of the system. Let
us now go over the main elements of this program.

1. There are two parameters noted generically by
w: curvilinear abscissa σ time t .

2. Three bases of D have been introduced remem-
bering that to each frame R = (A;�i, �j, �k) of affine
space E is associated a basis B = (i, j,k, ξ, η, ζ ) of
D as follows. To do so, for any m in E , we put:

i(m) = �i, j(m) = �j, k(m) = �k,

ξ(m) = �i ∧ −→
Am, η(m) = �j ∧ −→

Am,

ζ(m) = �k ∧ −→
Am.

The three bases B0,B1,B2 are associated to the three
fields of affine frames:

• R0 = (A0;�i0, �j0, �k0) fixed frame.
• R1 = R1(σ ) = (A1;�i1, �j1, �k1) = (Dr(σ )(A0);

Dr (σ )(�i0),Dr (σ )( �j0),Dr (σ )(�k0)) defines the con-
figuration of reference r(σ ).

• R2 = R2(σ, t) = (D(σ, t)(A1); D(σ, t)(�i1),
D(σ, t)( �j1),D(σ, t)(�k1)) defines the actual config-
uration at time t .

3. The chosen basis or projection basis for obtain-
ing the scalar equations is B1. It is a function of σ but
we omit to explicit the dependency. Moreover, to rep-
resent the element D(σ, t), we denote (ρi

1)i=1,2,3 three
vectors chosen from the family (ξ1, η1, ζ1) and write:

D(σ, t) = exp
(
u(σ, t)

) ◦ exp(ψ1ρ
1
1

) ◦ exp(ψ2ρ
2
1

)

◦ exp(ψ3ρ
3
1

)
(2)

where u(σ, t) = xi1 + yj1 + zk1 is a constant field
such that exp(u(σ, t)) represents the part of transla-
tional motion of D(σ, t) and exp(ψiρ

i
1) describes the

rotation of angle ψi with respect to the axis of ρi
1

for i = 1,2,3. The choice of the family (ρi
1)i=1,2,3 is

free but must represent a whole rotation. The scalar
unknowns of the problem are (x, y, z,ψ1,ψ2,ψ3),
which are functions of t and σ . For applications, we
have chosen ρ1

1 = ξ1, ρ2
1 = η1 and ρ3

1 = ζ1.
4. The elements of D appear only through the

adjoint representation. Because it is a morphism of
groups, it is sufficient to express Ad(expX) only for
X ∈ B1 and to give its matrix in B1.

• If

u =

⎛

⎜
⎜⎜⎜⎜
⎜
⎝

a

b

c

0
0
0

⎞

⎟
⎟⎟⎟⎟
⎟
⎠

is a constant field given in B1, then:

Ad(expu) =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

1 0 0 0 c −b

0 1 0 −c 0 a

0 0 1 b −a 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟⎟⎟
⎟
⎠

.
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• If

u = ξ1 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0
0
0
1
0
0

⎞

⎟⎟⎟⎟⎟⎟
⎠

then:

Ad(exp αu)

=

⎛

⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 cos(α) − sin(α) 0 0 0
0 sin(α) cos(α) 1 0 0
0 0 0 1 0 0
0 0 0 0 cos(α) − sin(α)
0 0 0 0 sin(α) cos(α)

⎞

⎟⎟⎟⎟
⎠

.

• If

u = η1 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
0
0
0
1
0

⎞

⎟⎟⎟⎟⎟
⎟
⎠

then:

Ad(exp αu)

=

⎛

⎜⎜⎜⎜
⎝

cos(α) 0 sin(α) 0 0 0
0 1 0 0 0 0

− sin(α) 0 cos(α) 0 0 0
0 0 0 cos(α) 0 − sin(α)
0 0 0 0 1 0
0 0 0 − sin(α) 0 cos(α)

⎞

⎟⎟⎟⎟
⎠

.

• If

u = ζ1 =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟
⎟
⎠

then:

Ad(exp αu)

=

⎛

⎜⎜
⎜⎜
⎝

cos(α) − sin(α) 0 0 0 0
sin(α) cos(α) 1 0 0 0

0 0 1 0 0 0
0 0 0 cos(α) − sin(α) 0
0 0 0 sin(α) cos(α) 0
0 0 0 0 0 1

⎞

⎟⎟
⎟⎟
⎠

.

5. For the Lie bracket, the matrix of the brackets is
the following:

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 ξ1 −η1 0 k1 −j1
−ζ1 0 ξ1 −k1 0 i1
η1 −ξ1 0 j1 −i1 0
0 k1 −j1 0 0 0

−k1 0 i1 0 0 0
j1 −i1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

and the rest is deduced by bilinearity.
6. Concerning differentiations, if v(t, σ ) =

(vi(t, σ ))i=1,...,6 is a vector of D given in B1, we ob-
tain:

∂v(t, σ )

∂t
=

(
∂vi(t, σ )

∂t

)

i=1,...,6
,

∂v(t, σ )

∂σ
=

(
∂vi(t, σ )

∂σ

)

i=1,...,6
+ ([ω,v])

i=1,...,6

where the vector ω belongs to the data of the problem
and is function of Dr(σ ) defining the configuration of
reference of the system. Here with the choice of a rec-
tilinear configuration of reference, the matrix in B1 of
the operator v �→ [ω,v] is given by:
⎛

⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

7. To generate a vector vc(σ, t) as function of the
unknowns and their derivatives, it is necessary to dif-
ferentiate relation (2). We get:

vc = Ad
(
exp

(
ψ1ρ

1
1

) ◦ exp(ψ2ρ
2
1

) ◦ exp(ψ3ρ
3
1

))−1

× (ẋi1 + ẏj1 + żk1)

+ Ad
(
exp

(
ψ2ρ

2
1

) ◦ exp(ψ3ρ
3
1

))−1
ψ̇1ρ

1
1

+ Ad
(
exp

(
ψ3ρ

3
1

))−1
ψ̇2ρ

2
1 + ψ̇3ρ

3
1 (3)

without forgetting that for elementary motions (for
example, if X is a basis vector as used here),
Ad(exp(αX))−1 = Ad(exp(−αX)), that Ad(A ◦ B) =
Ad(A) ◦ Ad(B) and that (A ◦ B)−1 = B−1 ◦ A−1.

8. To generate the vector ec(σ, t) is similar but a lit-
tle more complicated than previously because vectors
of B1 are functions of σ , too. More precisely, we have

4



to calculate the derivative of exp(q(σ )X(σ)) with re-
spect to σ . Its general expression is:

γ T
exp(q(σ )X(σ))−1

d(exp(q(σ )X(σ)))

dσ

=
(

dq

dσ
X +

∞∑

m=0

qm+1 (−1)m

(m + 1)!adm(X)

(
dX

dσ

))

.

(4)

This sum can not always be calculated. Here, consider-
ing the rectilinear configuration of reference, we have
dX
dσ

= 0 for X = ξ, i, j,k, dη
dσ

= k and dζ
dσ

= −j. These
results let us calculate the right-hand side of (4).

As a result,

ad2p(η)(k) = (−1)pk,

ad2p+1(η)(k) = (−1)pi,

ad2p(ζ )(−j) = (−1)p(−j),

ad2p+1(ζ )(k) = (−1)pi.

From these equalities, we deduce:

γ T
exp(q(σ )η(σ ))−1

d(exp(q(σ )η(σ )))

dσ

= dq

dσ
η + sin(q)k+ (cos(q) − 1)i, (5)

γ T
exp(q(σ )ζ(σ ))−1

d(exp(q(σ )ζ(σ )))

dσ

= dq

dσ
ζ − sin(q)j+ (cos(q) − 1)i. (6)

Equation (3) giving vc has to be modified in the fol-
lowing way:

ec = Ad
(
exp

(
ψ1ρ

1
1

) ◦ exp(ψ2ρ
2
1

) ◦ exp(ψ3ρ
3
1

))−1

× (x′i1 + y′j1 + z′k1)

+ Ad
(
exp

(
ψ2ρ

2
1

) ◦ exp(ψ3ρ
3
1

))−1(
ψ1

′ρ1
1

)

+ Ad
(
exp

(
ψ3ρ

3
1

))−1(
ψ2

′ρ2
1 + sin(ψ2)k

+ (
cos(ψ2) − 1

)
i
) + ψ3

′ρ3
1 − sin(ψ3)j

+ (
cos(ψ3) − 1

)
i. (7)

9. The matrix Hr of the inertia operator Hr in the
basis B1 depends on the data of the problem. Let G1

be the inertia center at the configuration of reference.
Suppose the matrix of the inertia operator at A1 in the

basis (�i1, �j1, �k1) is J3, then (Id3 the identity matrix
3× 3):

Hr =
(−−−→

A1G1
∧

J3

Id3 −−−−→
A1G1

∧

)

.

10. The coordinates θi of Θc in B1 constitute the
dynamic unknowns of the system.

We give now the corresponding Maple procedures.

5 Maple procedures

> ξ :=Vector([0,0,0,1,0,0]);
η := Vector([0,0,0,0,1,0]);
ζ := Vector([0,0,0,0,0,1]);
ic :=Vector([1,0,0,0,0,0]);
jc :=Vector([0,1,0,0,0,0]);
kc :=Vector([0,0,1,0,0,0]);
� vectors setting up the basis B1

> cl := proc(X,Y )� procedure giving in B1 the Lie
bracket of two vectors X, Y given in B1 too
> eval((X[1] ∗ Y [5] − X[5] ∗ Y [1]) ∗ kc + (X[1] ∗
Y [6] − X[6] ∗ Y [1]) ∗ (−jc) + (X[2] ∗ Y [4] − X[4] ∗
Y [2]) ∗ (−kc) + (X[2] ∗ Y [6] − X[6] ∗ Y [2]) ∗ ic +
(X[3] ∗ Y [4] − X[4] ∗ Y [3]) ∗ jc + (X[3] ∗ Y [5] −
X[5] ∗ Y [3]) ∗ (−ic) + (X[4] ∗ Y [5] − X[5] ∗ Y [4]) ∗
ζ + (X[4] ∗ Y [6] − X[6] ∗ Y [4]) ∗ (−η) + (X[5] ∗
Y [6] − X[6] ∗ Y [5]) ∗ ξ);
> end proc;

> Adel := proc(a,X)� procedure providing in B1

matrices of adjoint mappings Ad(exp(aX)) for vectors
of bais B1

> if eval(X) = eval(ic) then Matrix([[1,0,0,0,0,0],
[0,1,0,0,0, a], [0,0,1,0,−a,0], [0,0,0,1,0,0],
[0,0,0,0,1,0], [0,0,0,0,0,1]]);
> elifX = jc then Matrix([[1,0,0,0,0,−a],
[0,1,0,0,0,0], [0,0,1, a,0,0], [0,0,0,1,0,0],
[0,0,0,0,1,0], [0,0,0,0,0,1]]);
> elifX = kc then Matrix([[1,0,0,0, a,0],
[0,1,0,−a,0,0], [0,0,1,0,0,0], [0,0,0,1,0,0],
[0,0,0,0,1,0], [0,0,0,0,0,1]]);
> elifX = ξ thenMatrix([[1,0,0,0,0,0],
[0, cos(a),− sin(a),0,0,0],
[0, sin(a), cos(a),0,0,0],
[0,0,0,1,0,0], [0,0,0,0, cos(a),− sin(a)],
[0,0,0,0, sin(a), cos(a)]]);
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> elifX = η then Matrix([[cos(a),0, sin(a),0,0,0],
[0,1,0,0,0,0], [− sin(a),0, cos(a),0,0,0],
[0,0,0, cos(a),0, sin(a)], [0,0,0,0,1,0],
[0,0,0,− sin(a),0, cos(a)]]);
> elifX = ζ then
Matrix([[cos(a),− sin(a),0,0,0,0],
[sin(a), cos(a),0,0,0,0], [0,0,1,0,0,0],
[0,0,0,0, cos(a),− sin(a)],
[0,0,0,0, sin(a), cos(a)], [0,0,0,0,0,1]]);
> end if;
> end proc;

> Hr := proc(B,λ,μ, ν)� procedure giving the
matrix of Hr in B1 where B is the matrix of inertia
at the origin in B1 and λ,μ, ν the coordinates of the
center of inertia in R1

>Matrix([[0, ν,−μ,B[1,1],B[1,2],B[1,3]],
[−ν,0, λ,B[2,1],B[2,2],B[2,3]],
[μ,−λ,0,B[3,1],B[3,2],B[3,3]],
[1,0,0,0,−ν,μ], [0,1,0, ν,0,−λ],
[0,0,1,−μ,λ,0]])
> end proc;

> Diffe := proc(X, var)� procedure giving the
derivation with respect to the variable var of a vec-
tor X given in B1

> local M;
> if var = s thenM := Matrix([[0,0,0,0,0,0],
[0,0,0,0,0,−1], [0,0,0,0,1,0], [0,0,0,0,0,0],
[0,0,0,0,0,0], [0,0,0,0,0,0]])
> elseM =Matrix([[0,0,0,0,0,0], [0,0,0,0,0,0],
[0,0,0,0,0,0], [0,0,0,0,0,0],
[0,0,0,0,0,0], [0,0,0,0,0,0]])end if;
> eval(Vector([diff(X[1], var),diff(X[2], var),
diff(X[3], var),diff(X[4], var),
diff(X[5], var),diff(X[6], var)])+
MatrixVectorMultiply(M,X));
> end proc;

> Vc := proc(a, b, c, d, e, f )� procedure providing
velocity vc in B1

> local A,V 1,V 2,V 3;
> A := Adel(−f, ζ );
> V 1 :=MatrixVectorMultiply(A,η);
> A := A.Adel(−e, eta);
> V 2 :=MatrixVectorMultiply(A, ξ);
> A := A.Adel(−d, xi);
> V 3 := diff(a, t)∗ic+diff(b, t)∗jc+diff(c, t)∗kc;
> MatrixVectorMultiply(A,V 3) + diff(d, t) ∗ V 2 +

diff(e, t) ∗ V 1+ diff(f, t) ∗ ζ ;
> end proc;

> Ec := proc(a, b, c, d, e, f )� procedure providing
strain ec in B1

> localA,U1,U2,U3,U4;
> A := Adel(−f, ζ );
> U1 :=MatrixVectorMultiply(A,η);
> U4 := MatrixVectorMultiply(A, sin(e) ∗ kc +
(cos(e) − 1) ∗ ic);
> A := A.Adel(−e, η);
> U2 :=MatrixVectorMultiply(A, ξ);
> A := A.Adel(−d, ξ);
> U3 := diff(a, s) ∗ ic + diff(b, s) ∗ jc + diff(c, s) ∗
kc;
> MatrixVectorMultiply(A,U3) + diff(d, s) ∗ U2 +
diff(e, s) ∗ U1 + U4 + diff(f, s) ∗ ζ − sin(f ) ∗ kc +
(cos(f ) − 1) ∗ ic;
> end proc;

> EQ := proc(r, IC,xG,yG,zG,X,T i, T e)�

procedure providing equations where r is linear den-
sity of mass, IC central matrix of inertia of section
in R1, xG,yG,zG coordinates of G in R1, X vector
kinematic unknowns, T i Lagrangian vector of inter-
nal strengths in B1, T e Lagrangian vector of external
strengths in B1

> local T ,Theta, ec, vc, ac,M,H,K,D, i, eq;
> ec := Ec(X[1],X[2],X[3],X[4],X[5],X[6]);
> vc := V c(X[1],X[2],X[3],X[4],X[5],X[6]);
> ac :=Diffe(vc, t);
> T := T e;
> Theta := T i;
> M := eval(Hr(IC,xG,yG,zG));
> H := eval(MatrixVectorMultiply(M,vc));
> K := eval(MatrixVectorMultiply(M,vc) +
cl(H,vc));
> D := eval(Diffe(Theta, s) + cl(Theta, ec));
> eq := −r ∗ K + r ∗ T + D;
> end proc;

6 An example

To conclude and to illustrate the previous section, one
of the six equations is given (see Fig. 1).

> Incin := (s, t)− > Vector([u(s, t), v[1](s, t),
v[2](s, t), θ(s, t), φ[1](s, t), φ[2](s, t)]); � vector of
kinematic unknowns
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Fig. 1 Equation (1)

> Indyn := (s, t)− > Vector([N(s, t), T [1](s, t),
T [2](s, t),C(s, t),M[1](s, t),M[2](s, t)]); � vector

of internal unknowns

> Efext := (s, t)− > Vector([ν(s, t), τ [1](s, t),
τ [2](s, t),Γ (s, t),C[1](s, t),C[2](s, t)]); � vector of

external strengths

In := Matrix([[I,0,0], [0, J,0], [0,0,K]]); � ma-

trix of Inertia operator

equations := EQ(rho, In,0,0,0, Incin(s, t),

Indyn(s, t),Efext(s, t)); � equations of curvilinear sys-
tem. Center of inertia is the origin of frame.

7 Conclusion

From previous papers that contain the intrinsic formu-
lation of the dynamics of curvilinear systems by using
calculations in Lie groups, we have developed here the
steps for the automatic obtainment of explicit scalar
equations. First, the main points are specified and nec-
essary additional formulae and calculations in the Lie
group of Euclidean displacements are made. Second,
the corresponding Maple procedures are given. The
complexity of these derived equations lead us to think
that a “handmade” method would be inconceivable. It
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should also be noted here that such an approach leads
to an easy numerical treatment (for example directly
with Maple), under reserve to add a constitutive law as
previously remarked.
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