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X-ray coherent diffraction imaging including ptychography provides the nanoscale resolved three-dimensional
description of matter. The combination of these approaches to the Bragg geometry case arouses a strong interest for
its capability to provide information about strain state in crystals. Among the existing approaches, ptychography
is particularly appealing because it allows the investigation of extended or weakly scattering samples. Coherent
diffraction imaging approaches, based on redundancy in the collected diffraction intensity data set, are highly time
consuming and rely on state-of-the-art mechanical setups, both being strong limitations for a general application.
We show here that these can be overcome by regularization-based inversion algorithms introducing a priori
structural knowledge. This method, which can be generalized to other wavelengths or beam sources, opens new
possibilities for the imaging of radiation-sensitive specimens or very large samples.
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I. INTRODUCTION

Properties of nanomaterials are strongly entangled to their
structural behavior at the nanoscale. This is particularly
relevant for crystals where the strain state can be used
to design specific functionalities like the modification of
the energy bands in semiconductors.1 Hence, progress in
nanoscience calls for the development of imaging methods
at this scale. However, mapping the strain fields inside a three-
dimensional (3D) crystal remains challenging. Transmission
electron microscopy offers atomic resolution, but requires the
thinning down of the sample.2 On the other hand, x rays
allow in operando characterization of strain fields: Diffraction
intensity data are collected in the vicinity of a Bragg reflection
and further converted into an image. Scanning diffraction with
a nanofocused beam provides two-dimensional (2D) informa-
tion whose interpretation is based on a structural model.3 On
the contrary, coherent diffraction imaging (CDI) aims at re-
trieving the quantitative 3D information from a set of diffracted
intensities by phasing back the diffracted field with inversion
algorithms and propagating it up to the image space.4,5 When
performed in the vicinity of a Bragg reflection, the retrieved
direct space quantity is a complex-valued function, whose
phase provides information about the crystalline displacement
field. For a sample known to be isolated and smaller than the
beam coherence length, the phase problem is solved through an
oversampling of the diffraction pattern.6 Ptychography over-
comes the limits encountered in finite-support phase-retrieval
approaches. It consists of scanning a sample across a finite-
size illumination and measuring partially redundant coherent
diffraction intensity patterns corresponding to overlapping
illuminated areas.7 Three-dimensional Bragg ptychography
has already been presented in Refs. 8 and 9. One-dimensional
strain fields and 2D polarization maps obtained with 2D
Bragg ptychography are favorably compared with numerical
simulations in Refs. 10 and 11, respectively.

The major difficulty encountered in these approaches
results from the need to acquire a large data set. This
is particularly critical for 3D (Bragg) ptychography, which

requires 3D measurements for each sample position.8,12 This
implies long acquisition time, on the order of several hours.
As a consequence, the application of the technique is limited
by radiation damage and sample positional drift. Furthermore,
the sampling that is necessary in the third direction imposes
the value of the rocking curve angular step on the order of
a millidegree, reaching sometimes the mechanical limits of
the diffractometer. A solution to overcome these problems
is the Bragg projection ptychography, where a 2D projection
of the sample image is reconstructed by collecting 2D (only)
diffraction patterns.10,11,13 However, for samples requiring 3D
imaging, the encountered experimental limits result in a detri-
mental sparsity in the Fourier space. Therefore, solving the 3D
case necessarily goes with the retrieval of that missing Fourier
information. It can be done through the introduction of a priori
information concerning the object to retrieve. According to
Bayesian statistic inference literature, this is equivalent to reg-
ularization. Hence, it is not a surprise that regularization tech-
niques are able to partially compensate for missing information
in the data set. Very similar effects are denoted, for example, in
irregular sampling14 or in medical magnetic resonance image
reconstruction.15

Here, we show that regularization techniques can be
combined to 3D CDI in order to provide a 3D image of
the sample, in spite of missing Fourier information. We
demonstrate the relevance of this approach on numerical and
experimental data, for which the oversampling ratio is limited
to 0.25 in one direction.

II. REGULARIZATION AND 3D BRAGG COHERENT
DIFFRACTION IMAGING

In the ptychography approach, the sample scattering func-
tion ρ and the illumination function, denoted by Pj at the
j th sample-to-beam position, have to be introduced. These
quantities result in the description of the exit field ψj just after
the sample. ψj is given by the multiplicative approximation
ψj = Pjρ as long as the interaction of x rays with the
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scattering volume is weak. For a noise-free hypothetical
measurement, the diffraction pattern at the j th position is
Ij = |�j |2 = |Fψj |2, where F is the propagation operator
between the sample space and the detector space. When the
far-field approximation applies, this operator reduces to a
simple Fourier transform.

A complete ptychographical data set consists in the
diffraction patterns {Ij } obtained for all sample positions
j ∈ {1, . . . ,J }. Several methods are at hand for inverting such
a set.7,16,17 Here, the scaled gradient algorithm introduced in
Ref. 18 is used to minimize the cost function,

L(ρ) =
∑

j

∥∥I
1/2
j − |Fψj (ρ)|∥∥2

, (1)

with respect to ρ. In order to ensure global convergence to
a local minimizer, the step length between two iterations is
adapted with a backtracking line search.19

In practice, the minimization of L(ρ) is likely to lead
to multiple solutions that can be explored with the use of
different starting estimates. In order to decrease the number of
equivalent solutions, it becomes natural to introduce some a
priori knowledge, forcing the solution to present a specific
(physical) property A. This is the aim of regularization
techniques, among which the most direct method consists
of projecting after each minimization of L the updated
solution on the set of all functions fulfilling A. However, this
method generally stagnates without succeeding in finding an
acceptable solution.20 In order to enlarge the search space, one
can make it possible to accept solutions that do not strictly
satisfy A. This is achieved by adding a term R(ρ) containing
the a priori information to the cost function [Eq. (1) ].21,22 The
expression to minimize (with respect to ρ) then reads

Jμ(ρ) = L(ρ) + μR(ρ), (2)

where the regularization term R(ρ) is minimal if ρ satisfies A.
In Eq. (2), the parameter μ controls the trade-off in the solution
between the data-related and the a priori information. In prac-
tice, it is standard that μ is adjusted so that the contributions
of L and R have the same magnitude.23,24 In the following,
we show that this regularization approach can be used to
compensate for missing information in the data set. This
demonstration is performed in the framework of Bragg CDI.

In Bragg CDI, the 3D image of a crystal is an effective
electron density ρ = |ρ| exp(iφ), where |ρ| is the density
distribution of the crystalline part contributing to the intensity
at a given Bragg vector Ghkl , with indexes (hkl). The
displacement field u is introduced through the phase as
φ = u · Ghkl (Ref. 25). Figure 1 presents the Bragg CDI
measurement geometry, where for simplicity a symmetric
reflection is probed. The intensity is measured as a function
of the wave-vector transfer q = kf − ki , where ki,f are the
incident and exit wave vectors, respectively. The 3D intensity
acquisition results from the stacking of 2D patterns collected
along the rocking curve.26 Because the whole range of incident
angles usually fits in less than a degree, the 2D slices are
assumed to be parallel and equally spaced. This sustains a
detection frame (q1,q2,q3) with q1 and q2 in the detector plane
(q2 being perpendicular to the incidence plane) and q3 along
the rocking curve direction. For i ∈ {1,2,3}, qi is a unitary
vector and the sampling in this direction is denoted by δqi .
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FIG. 1. (Color online) The different bases involved in Bragg CDI.
The sample related basis is (x,y,z); θB denotes the Bragg angle
corresponding to the Bragg vector Ghkl . (Top) The measurement basis
is (q1,q2,q3), with the first two directions along the area detector and
the last one being probed as the sample is tilted along the rocking
curve. (Bottom) The conjugate of this basis is (r1,r2,r3). The blue
frame Wr is the smallest numerical window which still fully contains
the exit field, represented in dark green.

Ni is the number of pixels in the corresponding direction.
The volume of the whole measurement window Wq is then
|Wq| = [(N1δq1q1) × (N2δq2q2)] · (N3δq3q3).

In a phase-retrieval approach, the field is propagated back
and forth between the detection space and the sample space, us-
ing a Fourier-transform-based propagator. Practically, the use
of a discrete Fourier transform requires, in the sample space,
the introduction of Wr, the conjugate of Wq. The associated
direct space frame, (r1,r2,r3), is obtained by the conjugation
relations ri = 2π (Njδqj qj ) × (Nkδqkqk)/|Wq|, where (i,j,k)
is one of the three circular permutations of (1,2,3). The
sampling in Wr is given by

δri = |ri | = 2π |qj × qk|
Niδqi[(qj × qk) · qi]

. (3)

In particular, the size of Wr along r3 is given by N3δr3 =
2π/[δq3 cos(θB)], where θB denotes the Bragg angle. In order
to avoid aliasing in the reconstructed image, the exit field ψj

has to be fully contained into Wr, as shown in Fig. 1. It results
in a strong constraint onto δq3. In the following, we show that
our regularization technique is able to compensate for a highly
sparse sampling along the q3 direction.

III. NUMERICAL DEMONSTRATION

Figures 2(a) and 2(b) present the sample designed for
the numerical demonstration of the regularization test. We
chose a set of two lines, one being infinite and the other one
truncated. Their edges are slightly inclined. The thickness
and width of the lines are 0.18 and 0.95 μm, respectively
and the edge-to-edge distance is 2 μm. Furthermore, as the
lines are strain free, their respective phases are set to zero.
The probe, shown in Fig. 4(a), corresponds to the one used
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FIG. 2. (Color online) Numerical sample. (a) Three-dimensional
view of the numerical object. The axis black lines are 0.4 μm long.
(b1),(b2) Modulus of the test object shown in the (y,z) and (x,y)
planes, indicated in color in (a) (in arbitrary units). (b3) Phase (in
radians) shown in the (x,y) plane. (b4),(b5) Diffraction patterns in
(q1,q2) at q3 = −2δq3 and q3 = 0, respectively. (c) Photon shot noise
corrupted diffraction intensity patterns taken along the rocking curve
with the beam centered between the lines (in photons). S+ is the full
data set while S− extracts one over four diffraction patterns from S+.
The arrow length represents 50 μm−1.

in the experiment described further. The field has a typical
central spot size of about 3 × 1 μm2 (horizontal × vertical).
The scanning of the sample with regard to the beam position
corresponds as well to the experimental conditions: It consists
of 11 steps along the r2 direction, irregularly spaced on a total
range of 4.3 μm. Two sets of data are defined, namely S+ and
S− [Fig. 2(c)]. S+ corresponds to an oversampling ratio along
q3 equal to 1. Hence, Wr contains fully but tightly the exit
field. On the contrary, S− corresponds to a strong decrease,
by a factor of 4, of the sampling along q3, resulting in an
undersampled data set. Practically,S− is obtained by extracting
only one of four diffraction planes from the S+ data set. Finally,
all generated diffraction patterns are corrupted with Poisson
shot noise, where a maximum of 800 photons per pixel is
considered, according to the experimental observations. The
whole set of data, either S+ or S−, is used for the inversion in
order to reconstruct the sample electron density. The initial
sample guess is designed with a correct thickness but an
underestimated width (0.75 μm) and no truncation. Each
result presented herein was obtained after 500 iterations.

The result obtained with S+ is shown in Fig. 3(a). As ex-
pected, the truncation and the correct width are reconstructed.
The retrieved intensity patterns are in good agreement with
the measurements. This reconstruction stands as our reference
reconstruction. Figure 3(b) presents the result obtained with
the undersampled data set S−. To avoid aliasing, the three
over four unmeasured patterns are let free to float. The
retrieved solution is of poor quality: The truncation is not
retrieved and the linewidth remains equal to the initial one.
One observes a high discontinuity between the known and the
interpolated diffraction patterns. In particular, one can note that
the interference fringes retrieved in the nonmeasured plane are
too large. This test shows that the method proposed in Ref. 27
cannot compensate for the missing data along the rocking

FIG. 3. (Color online) Regularization on numerical data. (a) Same
as Fig. 2(b) for the reconstructed object obtained from the S+ data
set. (b) Same as (a) for the reconstructed object obtained from
the undersampled data set S−. (c) Same as (b) introducing the
regularization based on the support of the sample.

curve. The present case is arguably more demanding: The
signal-over-noise ratio is rather low and, more importantly,
the beam is not scanned along the undersampled direction.

The regularization term is now introduced, based on the
a priori knowledge of the sample thickness. The proposed
constraint acts as a soft penalization on the reconstructed
density inside T , where T is the support complementary to
the planar film containing the sample. Hence, the chosen
regularization term is

R(ρ) =
∑

n∈T

|ρn|2, (4)

where n is the pixel index in Wr. This condition is particularly
efficient in the Bragg CDI geometry: As seen in Fig. 1,
r1 and r3 are not orthogonal, and thus using a constraint
along the sample thickness provides a constraint along r3

as well. The result obtained with S− together with the
regularization term (μ = 104) leads to the reconstruction
shown in Fig. 3(c). The retrieved density is in good agreement
with our reference solution obtained with S+ [Fig. 3(a)]. In
addition, the regularization clearly improves the width of the
sample in the y direction though the a priori information is
fully independent of that direction. The retrieved phase field,
which holds the displacement field information, if any, is
almost constant as expected. Small fluctuations on the order of
±0.03 radian are observed. This value expresses the sensitivity
of the proposed approach with regard to the displacement field
reconstruction capability. In the measured as well as in the
unmeasured planes, the retrieved intensity patterns are in good
agreement with the original measurements. This last result
shows that the regularization techniques are able to compensate
for missing information in case of undersampled data.
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FIG. 4. (Color online) Regularization on undersampled experi-
mental data. (a) The illumination function P in the focal plane. The
brightness represents |P | on a logarithmic scale, whereas the color
represents its phase. (b) A scanning electron microscopy top view of
the two Si lines. The green and pink dots represent two beam positions.
(c) and (d) Measured diffraction pattern at the center of the rocking
curve, with beam at the green-dot and pink-dot positions, respectively.
The arrow length is 30 μm−1. (e) Three-dimensional isosurface of |ρ|
retrieved from the under-sampled data set using regularization. The
axis black lines are 0.4 μm long. (f) Two-dimensional cross section
showing the retrieved displacement field component.

IV. EXPERIMENTAL DEMONSTRATION

This approach is further tested onto experimental data,
obtained at CRISTAL beamline (Soleil). A monochromatic
beam, with an energy of 8.5 keV, is focused at the sample
position using a Fresnel zone plate (FZP) with a focal length
of 0.2 m. In order to ensure beam full coherence, a set of
slits, positioned off axis and located 0.135 m upstream of
the FZP, is used. Its aperture matches the coherence length
[20 × 60 μm2, along the horizontal (H) and vertical (V) direc-
tions, respectively]. Prior to the ptychography experiment, the
illumination function complex-valued wave field is retrieved
using the Fresnel-CDI methods described in Refs. 28 and
29 [Fig. 4(a)]. Data for this reconstruction are obtained by
measuring the probe diffraction patterns with a 1.45-μm-pixel
SOLEIL custom-made camera30 located 2 m downstream the
FZP focus position. This small pixel size is needed in order to
finely sample the Fresnel diffraction pattern produced by the
scattering from the entrance slit.

The sample is positioned in Bragg condition onto a
diffractometer, while its accurate positioning with regard to the
beam spot is performed with a piezo stage (Physik Instrumente,
PI). The sample diffraction patterns are recorded with a second
detector with bigger active area, an Andor charge-coupled-
device detector located 2 m from the sample. The 1024 × 1024
pixels have a size of 13 × 13 μm2. The sample consists of a
lithographically fabricated Si-on-insulator set of two parallel
lines [Fig. 4(b)]. The Si(110) upper layer, whose thickness is
0.18 μm, is of different orientation from the Si(001) substrate.
The width of the lines and the edge-to-edge distance are
1 and 2 μm, respectively. On average, the patterned lines
are expected to be strain free. A ptychographical data set is
obtained, in the vicinity of the 220 upper layer Bragg reflection
(θB = 22.32◦), by scanning the sample perpendicularly across
the lines. A total of 11 positions is used with a step size of
about 0.5 μm. The exposure time is 50 s for each diffraction
pattern. The chosen angular step of 0.01◦ together with the 8
steps along the rocking curve result in a total angular range
of 0.09◦. A cross section of two different 3D diffraction
patterns is presented in Figs. 4(c) and 4(d). These experimental
conditions correspond to an undersampled data set. Precisely,
the sampling ratio along the q3 is only 0.25.

The whole 4D data set is inverted using the function Jμ

with the regularization term given by Eq. (4) and μ = 103.
The reconstructed object is presented in Figs. 4(e) and 4(f).
The two lines are clearly identified, with width and separation
in good accordance with the SEM image. We note, however,
that the line at large y has a better defined shape. This likely
results from the values chosen for determining the scan center
and extent during the ptychography acquisition. Indeed, this
scan was centered onto the line located at large y. Hence,
the reconstruction is spatially of different quality, according
to the amount of information collected for each sample area.
The displacement field image shows that the two lines are
vertically shifted by about 0.4 Å, which could result from
the presence of a waviness at the interface between the upper
layer and the substrate as observed in Ref. 31. The resolution
along y is roughly estimated on the order of 0.08 μm. This
value is in good agreement with the resolution obtained during
the numerical study presented in Fig. 3(a1), using the full
data set. One can note that the resolution should improve
if a strongly scattering material (like a metallic crystal5) is
investigated, as long as the mechanical instabilities of the setup
remain negligible. Along the other directions, the experimental
estimation of the resolution is not relevant: The object does
not present any edge or fine structure along the x axis, which
would be needed to quantify the resolution. Along the z axis,
the resolution measured at the surface edge depends on the a
priori information and on the regularization.

V. DISCUSSION AND CONCLUSIONS

The use of a ptychography approach is not only appealing
for tackling the case of extended samples. It allows in addition
the use of a highly focused beam, with an extent smaller
than the sample. It increases thereby the coherent flux at the
sample position and, consequently, the signal-to-noise ratio
in the diffraction pattern. Considering the weak scattering
power of silicon, one can foresee that the 3D imaging of
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a silicon crystalline structure like the one presented here is
hard to obtain with plane-wave illumination and support-based
CDI approaches. However, the development of ptychography
suffers from encountered mechanical difficulties and extensive
acquisition time. Here we have shown that the regularization
techniques within Bragg ptychography are able to compensate
for an undersampled data set.

The knowledge of the support along the direction r1 is
particularly well suited in the present case. This favorable
situation results from the combination of the two following
points. First, the direction q1 is very well sampled. Hence,
introducing the regularization results in a constraint which
applies onto a large number of pixels in the direct space.
In addition, the direction r1 cannot be scanned during the
ptychography acquisition, due to a lack of diversity of the probe
along the beam propagation direction. Therefore, the support
constraint, which holds onto the direction r1, brings the needed
information about the sample position, which is indeed not
contained into the data set. It prevents the presence of echoes
which are likely to appear along the r1 direction. Moreover,
the Bragg angle is sufficiently large for this constraint to have
a pronounced effect on the information recovery along q3.
For thicker objects or smaller Bragg angles, other constraints
are to be applied. Indeed, any kind of a priori information
can be used: a low-resolution sample image, a specific
physical property. The regularization approach can thus be
generalized to other phase-retrieval-based lensless microscopy

methods like transmission ptychography or support-based
algorithms. In order to draw the limits of the method and
investigate, for instance, the use of loose support, further work
is needed. As well, the possibility to apply this approach to
the investigation of strain field in crystals deserves specific
extended investigation. However, the perspectives opened by
the present work are of wide impact because it makes it
possible to overcome several problems encountered usually in
CDI. One can mention the possibility to adapt the geometry of
the illumination function with regard to an eventual anisotropic
sample shape: This improvement was so far limited by the
symmetric sampling imposed in the detector area by the square
shape of the camera pixels. Moreover, it makes it possible to
get rid of the mechanical limits imposed by the instrument,
when extended exit fields are considered. Finally, the strong
reduction of the total illumination time opens the way to
the imaging of radiation-sensitive samples like biological
specimens.

For all these reasons, we believe that regularization tech-
niques will constitute a clear breakthrough in the development
of 3D nanoscale imaging.
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