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A Class of Algorithms for Time-Frequency
Multiplier Estimation

Anaı̈k Olivero, Bruno Torrésani, Senior Member, IEEE, and Richard Kronland-Martinet, Senior Member, IEEE,

Abstract—We propose here a new approach together with a
corresponding class of algorithms for offline estimation of linear
operators mapping input to output signals. The operators are
modelled as multipliers, i.e. linear and diagonal operator in a
frame or Bessel representation of signals (like Gabor, wavelets
...) and characterized by a transfer function. The estimation
problem is formulated as a regularized inverse problem, and
solved using iterative algorithms, based on gradient descent
schemes. Various estimation problems, which differ by a choice
for the regularization function, are studied in the case of
Gabor multipliers. The transfer function actually provides a
meaningful interpretation of the differences between the two
signals or signal classes under consideration, and examples are
discussed. Furthermore, examples of signal transformations with
such Gabor transfer functions are also given.

Index Terms—Analysis/Transformation/Synthesis, Frame Rep-
resentations, Frame Multipliers

I. INTRODUCTION

Analysis/Transformation/Synthesis is a general paradigm
in signal processing, that aims at manipulating or generat-
ing signals for practical applications like signals transfor-
mation, compression, denoising or source separation. Analy-
sis/Transformation/Synthesis is often performed starting from
a parametric signal model (for example the sinusoids+noise
model [1], [2]). The parameters are first estimated, and a new
signal is synthesized from the modified parameters. Analy-
sis/Transformation/Synthesis can also be performed starting
from a linear signal representation [3] (for example a short
time Fourier representation, or a Gabor or wavelet expansion),
by directly modifying the coefficients prior to resynthesis.

In this context, a signal transformation can be constructed
by pointwise multiplication of the analysis coefficients
of the signal representation and a transfer function. Such
transformations are generically called multipliers. Denoting
by σ the transfer function we shall denote by Mσ the
corresponding multiplier. In case of the Fourier representation,
this obviously corresponds to a time-invariant linear filter, i.e.
a convolution operator. Other signal representations defined
in the general context of frames or Bessel sequences also
lead to frame or Bessel multipliers. When time-frequency
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representations are used, such operators give the possibility of
implementing time-varying linear filters [4], [5]. Applications
of such multipliers can also be source separation [6], where
binary Gabor multipliers are used to select a subset of
time-frequency indices in the Gabor domain. Here, we
will exploit such Gabor multipliers in the context of sound
transformations.

The first goal of this paper is to study a general method to
estimate a transfer function between two signals x0 and x1

or families of input-output pairs (x
(k)
0 , x

(k)
1 ), given a signal

representation. In other words, given x0 and x1 (resp. the pairs
(x

(k)
0 , x

(k)
1 )) and a signal representation, how to estimate the

transfer function σ such that Mσx0 is closest to x1 (resp.
Mσx

(k)
0 is closest to x(k)

1 on average) ?

Mσ

?

x
(k)
0 x

(k)
1

This estimation problem has been first addressed in [7] in an
approximated formulation in the case of Gabor frames. Then,
we have proposed in [8] the use of an iterative algorithm
to estimate a Gabor multiplier. The main contribution of
the present paper is to extend the class of algorithms to
estimate multiplier in the more general framework of frames,
and give interpretations and audio examples to emphasize
the relevance of our approach. With suitable choices of the
regularization, the problem is convex and we use (provably
convergent) iterative strategies based on gradient schemes
for its numerical resolution. We also consider some other
choices of regularization of practical interest, which yield non-
convex problems. We also show that our formulation allows
considering more complex models for signal transformations,
such as multiple multipliers, i.e. linear combinations of mul-
tipliers. The problem we address can be cast as an offline
system identification problem, solved in the spirit of [9], [10].
However, we rather focus in this paper on applications to
sound analysis, categorization and synthesis.

A first application of our approach is in the domain of
sound analysis. Sounds categorization can be performed on the
basis of pairwise comparisons. Indeed, an estimated transfer
function can be viewed as a descriptor of the differences
between two signals [11], [7] or two signal classes under con-
sideration (instrument classes in [12], [13]). We have shown
in [12] that such descriptors could yield sensible classifications
within controlled musical signal families. A second important
application of the approach is directly related to the possibility
of synthesizing new sounds given an input sound and an output
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sound. For example, given an estimated mask σ, consider
a one-parameter family of masks στ , τ ∈ [0, 1], such that
σ0 = 1 and σ1 = σ. Acting on the input signal with
multipliers with transfer functions στ yields a one-parameter
family of signals that interpolate between input and output
signals, i.e. a signal morphing. Developing such morphing
schemes is one of the goals of our program [8], [14].

The paper is organized as follows. Section II is devoted to
the general setting in which this work is done, and describes
the basic concepts of signal representation and time-frequency
analysis we shall be working with. Section III describes the
proposed algorithms for multiplier estimation from a (family
of) pair(s) of signals. Numerical results are presented and
discussed in section IV.

II. SIGNALS REPRESENTATIONS

As mentioned above, a multiplier is defined by pointwise
multiplication with a transfer function in a given representation
space. For example, standard linear time-invariant filters are
multipliers associated with the Fourier representation. Let
us start by specifying the signal representations we shall
be using. For the sake of simplicity, we limit the present
discussion to 1D signals, considered as elements in (Hilbert)
signal spaces, generically denoted by H. Examples of interest
are H = CL as well as the infinite-dimensional models
such as H = `2(Z). We are interested in representations in
dictionaries, i.e. complete, parametrized sets of atoms gλ ∈ H.
Given such a dictionary, under some additional conditions
(see below), any signal can be characterized by the family
of its analysis coefficients 〈x, gλ〉. When the dictionary is an
orthonormal basis of H, the signal x expresses as

x =
∑
λ

〈x, gλ〉gλ . (1)

In a more general framework, a signal representation can be
constructed with an overcomplete family of atoms. With such
families, signal representations such as (1) are not unique and
several different sets of synthesis coefficients can generate a
same signal x. For the sake of completeness, we introduce
below the notions of frame and Bessel sequence before turn-
ing to the multiplier estimation problem. The choice of the
decomposition will depend on the applications. In the context
of audio signals, Gabor frames (subsampled version of Short
Time Fourier Systems) are probably the most famous example
of frame and will be studied in details in section IV. In image
processing, wavelet basis [3] are largely used because they give
a sparser representation of the signal. In audio applications,
MDCT [15] is often used for audio coding, whereas Gabor
frames are generally preferred for audio analysis applications.

A. Definitions

We first recall [16] some definitions, and conditions which
leading to generative sequences of a separable Hilbert space
H.
• Let us denote by GΛ = {gλ : λ ∈ Λ} a sequence of

signals (or atoms) labelled by the index set Λ. GΛ is a

Bessel sequence if and only if there exists 0 < B < ∞
such that ∑

λ

|〈x, gλ〉|2 ≤ B‖x‖22 , ∀x ∈ H

For such a Bessel sequence the analysis operator, denoted
by Vg : H → `2(Λ) is well defined, and reads

Vgx[λ] = 〈x, gλ〉 = X[λ]

The synthesis operator is the adjoint of the analysis
operator, denoted by V?g : `2(Λ)→ H, and defined as

V∗gα[l] =
∑
λ

αλgλ[l]

The frame operator is then given by S = V∗g ◦ Vg
• GΛ is a frame if and only if there exist constants 0 <
A ≤ B <∞ such that

A‖x‖22 ≤
∑
λ

|〈x, gλ〉|2 ≤ B‖x‖22 , ∀x ∈ H .

This is equivalent to say that the frame operator is
bounded below by A and above by B. A and B are
respectively called the lower and the upper frame bounds.
A perfect reconstruction of the signal x from the analysis
coefficients is achieved because the frame operator is
invertible, and allows the construction of the canonical
dual frame sequence HΛ = {hλ = S−1gλ : λ ∈ Λ},
which leads to

x =
∑
λ

〈x, gλ〉hλ = V∗h ◦ Vg (2)

The lower and upper frame bounds of the canonical dual
frames are respectively given by 1/B and 1/A.

These operators allow us to switch between the time rep-
resentation of the signal and his transform domain represen-
tation. Note that except in the basis case, this correspondence
is not one to one, and the range of the analysis operator is a
proper closed subspace of `2(Λ).

B. Some signals representations

In the finite-dimensional situation CL, besides the time rep-
resentation, the most familiar representation is provided by the
Fourier basis, the analysis operator being the Discrete Fourier
Transform (DFT). An example of frame is given by oversam-
pled Fourier representations [17] that can be constructed by
evaluating a DFT at M > L frequencies. Let m ∈ {0, ..,M},
an example of redundant Fourier representation of a signal x
is given by

DFTx[m] =

L−1∑
l=0

x[l]e−2iπbml/L ,

where b is an integer. This construction of oversampled DFT
implies that the linear independence between the Fourier atoms
is lost.

Other standard representations which constitute a frame of
signals are the time-frequency representations. The simplest
example is provided by the short time Fourier transform,
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which can be seen as the analysis map of a Gabor frame
representation of the signal, as explained in [18]. A Gabor
frame is an overcomplete family of time-frequency atoms gmn
generated by translation and modulation on a discrete lattice
of a mother window g ∈ CL. These atoms can be defined as
follows:

gmn[l] = e2iπmb(l−na)/Lg[l − na] , (3)

where a and b are two positive integers, such that L is multiple
of both a and b. Here, all operations have to be understood
modulo L. We set M = L/b and N = L/a.

Extensions of Gabor frames are the non-stationary (resp.
variable bandwidth) Gabor frames, which give a way of tuning
the time (resp. frequency) resolution as a function of the
time (resp. frequency) variable (see [19], [20] for details).
Non-stationary Gabor frames are constructed by varying the
window length as a function of the time variable n.

C. Frame Multipliers

Let us consider a pair of frames (resp. Bessel sequences)
{gλ, λ ∈ Λ} and {hλ, λ ∈ Λ} in the Hilbert space H. A Frame
Multiplier (resp. Bessel Multiplier [21]) is an operator Mσ;g,h

which acts on signals x ∈ H by pointwise multiplication in
the transform domain with a given symbol denoted by σ, i.e.
a sequence σ = {σ[λ], λ ∈ Λ}. Denoting by Υσ the linear
operator of pointwise multiplication with a sequence σ, we
write

Mσ;g,h = V∗h ◦Υσ ◦ Vg : H → H , (4)

where ◦ denotes the composition operator. In other words

Mσ;g,hx =
∑
λ

σ[λ]〈x, gλ〉hλ . (5)

σ is called the Frame mask (or the upper symbol in the math-
ematics literature) and can be viewed as a transfer function
in the considered signal representation domain. Mσ;g,h is a
linear operator on the space of signals and is diagonal in the
signal representation Gλ.

When the Fourier basis is used for signal representation,
multipliers coincide the standard convolution operator and the
symbol associated is the transfer function in the frequency
domain of a linear time-invariant system. In the case of a time-
frequency representation of signals, multipliers can be used to
implement time-varying systems [4], [5]. A more theoretical
approach in the case of Gabor Multiplier can be found in [22]
in the context of Gabor analysis. It can be shown [23] [24] that
underspread operators (i.e. operators that don’t involve large
time-frequency shifts) can be well approximated by Gabor
multipliers, provided the window is suitably chosen.

In the following, we shall be concerned below with a
different problem, namely the problem of estimating the mask
of a Gabor multiplier, given input and output signals. The
multiplier estimation problem which we shall address below
is formulated in the frame language. While only Bessel
sequences are needed in what follows, it is generally more
convenient in applications to work with frames.

III. MULTIPLIERS ESTIMATION

We now address the following problem: given input or
output signals, and analysis and synthesis atoms, estimate the
transfer function of the optimal multiplier that (approximately)
maps the input to the output signals. Here, optimality is defined
in terms of minimization of a functional, which takes the
form of a regularized quadratic error. The estimation problem
is posed as a regularized least square problem, which is re-
formulated as a linear inverse problem. We also address at the
end of this section some generalizations, including multiple
multipliers, i.e. linear combinations of multipliers.

A. Formulation of the problem

Let x(k)
0 and x

(k)
1 denote respectively input and output

signals, labelled by k = 1, .., κ. We assume the following
model

x
(k)
1 = Mσ;g,hx

(k)
0 + ε(k) ,

where the ε(k) represent perturbations, modeled as indepen-
dent realizations of an additive Gaussian noise, and σ is an
unknown Gabor mask, which we aim at estimating, and g
and h are dual windows. A possible solution is obviously
σ =

∑
kX

(k)
1 /

∑
kX

(k)
0 , where X(k)

i denote the Gabor trans-
form of x(k)

i with window g. However, such a solution is not
bounded in general, because nothing prevents the denominator
from vanishing or becoming very small. In worst cases, for
example when the source and the target are two pure-tones
signals with different frequencies, such a Gabor mask doesn’t
exist. Then, seeking for a Gabor mask as the solution of a
regularized inverse problem provides the existence and the
uniqueness of the solution (assuming the regularization term
d (see below) is a convex function). More precisely, we seek
σ ∈ CM×N which minimizes the expression

Φ[σ] =

κ∑
k=1

‖x(k)
1 −Mσ;g,hx

(k)
0 ‖2 + µ d[σ], (6)

where d[σ] is a regularization term, whose influence on
solution is controlled by the parameter µ. The role of µ is
to control the balance between the reconstruction properties
of the Gabor mask and the regularization function which adds
an a priori knowledge of the solution.

Noticing that given x0, Mσ;g,hx0 can be seen as a linear
operator acting on σ, we introduce the linear operators A(k)

defined by

A(k) = V∗h ◦Υ
X

(k)
0

: σ → A(k)σ = V∗h
(
σVgx(k)

0

)
, (7)

Then we have
Mσ;g,hx

(k)
0 = A(k)σ ,

which leads to the following reformulation of the problem.
The adjoint of the A(k) reads

A(k)∗ = Υ
X

(k)
0

◦ Vh . (8)

For classical choices of d (more precisely, for d with invertible
gradient), the solutions of the minimization problem leads to
a (generally non-linear) problem. For example, in the finite-
dimensional situation H = CL, if d(σ) = ‖σ‖22, then
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A =

A(1)

...

A(κ)

and A∗ = A(1)∗ ... A(κ)∗

Figure 1: Concatenation of matrices for the inverse problem
with multiple input and multiple output

∇σd(σ) = σ, where σ denotes the complex conjugate of
σ. The problem becomes also linear and σ is the solution of
the (generally huge) matrix problem(∑

k

A(k)∗A(k) + µI

)
σ =

∑
k

A(k)∗x
(k)
1 (9)

We now limit to the finite-dimensional situation, and turn to
matrix notations. Organizing the signals x(k) ∈ CL as column
vectors, we formulate the estimation problem as an inverse
problem. Introduce the vectors X1 ∈ CκL defined by vertical
concatenation of signals x(k)

1 , and matrices A ∈ CκL×MN de-
fined by vertical concatenation of matrices A(k) as illustrated
on Figure 1, equation (6) can be rephrased as

Φ[σ] = ‖X1 −Aσ‖22 + µ d(σ) . (10)

Notice that the operator A depends on the source signals.
As illustrated on Figure 1, its adjoint is given by horizontal
concatenation of the adjoint operators A(k)∗ defined in (8).
Even in simple situations like d(σ) = ‖σ‖22, where a closed
form expression for the solution of (10) exists, the latter can
hardly be exploited practically, as the problem (9) involves
huge matrix calculus. To fix the ideas, for κ = 8 signals with
L = 215 (approximately 727 msec at sampling rate fs =
44100 Hz), and Gabor frame parameters chosen M = 1024
and a = 128, the size of matrix A is κL×MN ≈ 218× 218.
In such cases, as well as cases where no closed form solution
exist, we rather rely on dedicated numerical algorithms.

A quick approximate solution of the inverse problem can
also be obtained by replacing the A(k)∗A(k) by their diagonal
(see section III-B below). This can lead to simple closed-form
solutions which may sometimes be of acceptable quality in
experiments on audio signals, and easy to evaluate. However,
we here propose to use iterative algorithms [25], [26] that
converge to the exact solution of the initial problem.

B. The diagonal approximation

When the dictionary differs from a orthonormal basis, the
formulation (10) involves non diagonal matrices A(k)∗A(k),
where the non diagonal terms arise from the correlations
between the atoms of the representation. A first approach [7]
is to formulate the problem directly in the transform domain,
which amounts to a reduction of the A(k) to their diagonal :

Φ̃[σ] =
∑
k

‖X(k)
1 −X(k)

0 σ‖22 + µ d(σ), (11)

For well chosen d, explicit solutions exist. For example, for
the quadratic regularization d(σ) = ‖σ − σ(r)‖22 and some
fixed reference mask σ(r), the regularized solution resulting
from the corresponding variational equations reads

σ̃ =

∑
kX

(k)
0 X

(k)
1 + µσ(r)∑

k |X
(k)
0 |2 + µ

. (12)

When a tight frame with frame bounds A = B = 1 is used and
the reference mask is chosen as σ(r) = 1, the penalizations for
σ tend to favor Gabor multipliers close to the identity operator.
Similarly, for a frame and its dual, multipliers closed to the
identity are favored when σ(r) = 1.

Other choices for the regularization function will be guided
by the applications. For example, a regularization function
d(σ) = ‖σ − σ(r)‖1 will promote sparsity between the
coefficients of the solution [27]. This choice leads to a solution

σ̃ =

{
|X0||X1−σ(r)X0|−µ/2

|X0|2
eiϕσ + σ(r) if |X0||X1 − σ(r)X0| > µ/2

σ(r) else

where we choose κ = 1 for the sake of simplicity
and the phase of the Gabor mask is given by ϕσ =
arg
(
X0(X1 − σ(r)X0

)
.

C. Iterative shrinkage algorithms

We present in this section a general method to estimate
the mask of a multiplier, given input and output signals. The
formulation given in (10) for our problem, together with the
choice of regularization allows us to use iterated shrinkage
algorithms similar to those described in [28], [29] to which
we refer for more details and proofs. Those algorithms can
also be formulated in the language of proximal algorithms
(see [26] for a review), but we limit the discussion here to
Landweber-type approaches.

Our problem, as explained previously, is written as follows.
We consider a tight frame (we shall see later on that a Bessel
sequence would be enough for the convergence), and seek
solutions of

minσ Φ(σ) , with Φ(σ) = ‖X1 −Aσ‖2 + µd(σ) (13)

It is known that for d(σ) = ‖σ‖pp with p > 1, this functional
is convex and then has a unique minimizer. However, the latter
is generally hard to compute in large dimensions, and one has
to resort to appropriate numerical algorithms. The solution
that was proposed in [28], which converges to the solution
with minimal assumptions on A, is based upon surrogate
functionals. AssumingA is bounded, we can pick a constant C
such that ‖A∗A‖Op < C (with ‖−‖Op the operator norm, here
the largest singular value of A). In the considered situation,
‖A∗A‖Op can be estimated explicitly and reads

‖A∗A‖Op 6
κ

A
maxk‖X(k)

0 ‖2∞ (14)

where ‖−‖∞ gives the maximum value of the modulus of the
frame coefficients. The details of this calculation have been
reported in the appendix. The evaluation of ‖A∗A‖Op can
also be done numerically using a power iteration algorithm as
proposed in [30].
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Remark 1: Following [31], the derivation of real valued
functions of several complex variables are made with real data
methods by considering (σ,σ) as two independent variables.
In this context, the gradient are evaluated with respect to the
variable σ.

Given these notations, fix α ∈ CMN , and introduce the
surrogate functional

ΦSUR(σ;α) = Φ(σ)− ‖Aσ −Aα‖22 +C‖σ −α‖22 . (15)

The latter is still convex for any α ∈ CMN , and has the
advantage to admit a closed form expression for its unique
minimizer. Starting from some initial guess α = σ0 ∈ CM×N ,
the idea is then to iteratively determine the minimizer of (15)
for α = σn−1. This therefore yields the iterative method
summarized in Algorithm 1.

Algorithm 1 ISTA

Require: σ0

while The relative error is bigger than a threshold : do
σn = argminσ{ΦSUR(σ;σn−1), σ ∈ CM×N}

end while

For the sake of clarity let us set the gradient scheme applied
on the first term of our problem (10)

βn−1 = σn−1 −
1

C
A∗(X1 −Aσn−1) ,

where 1/C plays the role of a gradient step. The following
choices for the regularization terms are of interest.
• d(σ) = ‖σ−σ(r)‖22. This choice leads to a simple gradi-

ent algorithm, which is a damped version of Landweber
iterative method (corresponding to the case µ = 0) and
expressed as

σ0 ∈ CM×N , σn =
βn−1 + σ(r)µ/C

1 + µ/C

This algorithm is also called an iterative shrinkage al-
gorithm as it adds some weighted adjustments on the
gradient to βn−1. The case σ(r) = 0 corresponds to the
Tikhonov regularization.

• d(σ) = ‖σ−σ(r)‖1. This choice leads to a thresholding
iterative algorithm expressed as

σ0 ∈ CM×N , σn = Sµ/C(βn − σ(r)) + σ(r)

where Sµ is a thresholding operator defined componen-
twise: for β = {β[m,n]} ∈ CMN , (Sµ(β))[m,n] =
Sµ(β[m,n]), with

Sµ(z) =

{
(|z| − µ) e

iarg(z)

2 if |z| > µ
0 if 0 6 |z| 6 µ

Technically speaking, the algorithms described above be-
long to the class of first order methods and therefore converge
as O(1/n). The authors in [32] proposed a second order
algorithm that converge as O(1/n2) without important in-
creased complexity in the iterations. This approach is outlined
in Algorithm 2. Numerical results are displayed in Figure 3,
and discussed in Section IV below.

Algorithm 2 FISTA

Require: s1 = σ0, t1 = 1
while The relative error is bigger than a threshold : do
σn = argmin{ΦSUR(s; sn) : s ∈ CM×N}
tn+1 =

1+
√

1+4t2n
2

sn+1 = σn + tn−1
tn+1

(σn − σn−1)
end while

Notice that FISTA does not ensure monotone decay of
the objective function. In situations where this behavior is
observed, a monotone version of FISTA called MFISTA,
proposed in [26], can be used.

As we will see with audio examples in section IV, to avoid
creating phase distortions, it is also interesting to consider
other cases like

d(σ) = ‖|σ| − 1‖22 , (16)

or
d(σ) = ‖|σ| − log |σ| − 1‖1 .

In such cases, the usual convergence analysis unfortunately
does not apply straightforwardly. Indeed, these regularization
terms d(σ) are not convex and the uniqueness of the solution
in general situations is lost. However, these penalization terms
are actually convex with respect to the modulus of σ, which
make us believe that convergence could be provable in the
context of proximal algorithm where the uniqueness of the
proximal gradient is preserved. Furthermore, it can be shown
in such cases [26] that the cost function decreases at each
iteration of ISTA. Numerical experiments presented hereafter
on Figure 3 illustrate the behavior of the cost function for both
ISTA and FISTA in the convex and the non convex case.

Independently of convergence considerations, the blind ap-
plication of the above approach to the situation (16) yields the
following update rule : given some initialization σ0 ∈ CM×N ,
iterate

σn =
|βn−1|+ µ/C

1 + µ/C
ei arg(βn−1) .

The algorithm itself is still easily implemented, and shows
good experimental convergence properties when suitably
initialized. In particular, for audio applications, this approach
has the advantage of avoiding artifacts caused by an inaccurate
phase estimation for large values of µ. More details about
convergence and behavior of the solutions in such cases are
provided below in audio examples.

D. Gabor Multipliers

We have shown above a general situation for the frame
multiplier estimation problem, combined with the use
of efficient algorithms. In the following, we will also
concentrate on Gabor frames, which are the most relevant
framework to deal with audio signals in the context of
Analysis/Transformation/Synthesis. In addition, the general
estimation problem we present in the section III-A, III-B
and III-C can be applied with any frame and Bessel sequence.
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When Gabor frames are used to represent signals, the
corresponding multipliers (called Gabor Multipliers) have been
studied by several authors (see [22], [23] and references
therein). A Gabor Multiplier (GM for short) Mσ;g,h : x →
Mσx is defined by

Mσ;g,hx =
∑
m,n

σ[m,n]Vgx[m,n]hmn . (17)

σ is called Gabor mask (or the upper symbol in the mathemat-
ics literature) and can be viewed as a time-frequency transfer
function (so that Mσ is seen as a time-varying filter). Then,
a Gabor Multiplier acts on a representation and influence the
relation between the coefficients of the representation.

Gabor coefficients provide a time-frequency representation
from which synthesis can be done efficiently. It is a standard
practice in many aplications to perform partial resynthesis
from a subset of Gabor coefficients [6], [33], and we would
like to point out that such actions actually correspond to
simple instances of Gabor multipliers, using a binary mask σ.
Estimation of a Gabor mask from input and output signals can
also be seen as a particular case of offline system identification,
performed directly in the time-frequency domain, in the spirit
of [9], [10]. The type of applications we shall be interested
in section IV below are more concerned with audio signal
categorization, timbre characterization and sound morphing.
For the first two applications, our main point is that the
estimated masks contain highly relevant information, that can
be used for categorization and characterization. The morphing
application uses the synthesis capability of Gabor frames.

E. Generalizations

The simple “input-output” model x(k)
0 → x

(k)
1 = Mσx

(k)
0 +

ε(k) is not always accurate enough to properly characterize
the differences between two signal classes x0 and x1. Further
transformations, such as time and/or frequency shifts, are
poorly described by time-frequency multipliers. We now show
that the generic scheme described above can also handle more
complex situations.

• Multiple Gabor Multipliers (MGM). Given an analysis
window g, a Multiple Gabor Multiplier (MGM) is de-
fined as a linear combination of Gabor multipliers using
different synthesis windows:

Mσx =
∑
λ∈Λ

∑
m,n

σλ[m,n]〈x, gm,n〉(hλ)m,n

where hλ, λ ∈ Λ is a family of synthesis windows, and σ
is a corresponding family of masks. In order to ensure that
such a MGM be well defined, one can for instance assume
that

∑
λ supm,n|σλ[m,n]| <∞ and maxλ ‖hλ‖2 <∞.

In particular, the synthesis windows can be chosen as
a family of time-frequency shifted copies of a given
synthesis window h, by taking λ = (k, `) and hk,`[n] =
e2iπ`ν1[n−kb1]h[n−kb1], for some lattice constants b1, ν1.
More generally [34], for any frames, Multiple Multipliers
can well approximate any bounded operators.

Given a pair of input and output signals (x0, x1) as before
the corresponding estimation problem

min
σλ,λ∈Λ

1

2

∥∥∥∥∥x1 −
∑
λ∈Λ

Mσλx0

∥∥∥∥∥
2

+ d[σλ]


can again be rephrased as a linear inverse problem by a
suitable rearrangement of the terms. However, much care
is required in this context for designing the regularization
terms d[σλ]. We will not discuss further these issues in
the current paper.

• GM perturbation of a stationary system. Gabor multi-
pliers are essentially local transformations in the time-
frequency domain. In some situations, the transformation
can be modelled as the composition of a stationary (trans-
lation invariant) system and such a local transformation.
The model thus becomes

x
(k)
1 = F (k)Mσx

(k)
0 + ε(k) ,

where F (k) represent known convolution operators,
which have been applied on each source signal. The
algorithms described above can again be adapted to such
a situation, and the matrix A now depends both on the
source x(k)

0 and the filters F (k).

IV. COMPUTATIONAL EXPERIMENTS

We show in this section numerical experiments that illustrate
the convergence of the proposed algorithms, in the context of
time-frequency analysis of audio signals with Gabor frame.
We also give a few examples of Gabor masks estimated
from real audio signals, in order to discuss the role of the
regularization term and the estimation method. Finally, we
discuss in more details potential applications of Gabor masks
between audio signals. We consider a clarinet and a trumpet
from the IOWA database [35] of L = 215 samples, with
fundamental frequency f0 =196 Hz (G3). We also consider
violin and piano sound signals of from the RWC database [36]
of L = 217 samples, with fundamental frequency f0 = 261
Hz (C4). Their time-frequency representations are shown in
Figure 2. Clarinet and trumpet signals were obtained using
a tight Gabor frame, obtained from an Hann window and
parameter values M = 1024, a = 256. Violin and piano
signals were obtained using a tight Gabor frame, obtained from
an Hann window and parameter values M = 2048, a = 512.
Here, we also consider h = g and a tight Gabor frames with
frame bounds A = B = 1. These sounds show significant
differences, which can be interpreted physically, and which
will be captured by the estimated Gabor masks. All signals
exhibit a harmonic structure, with the following most striking
differences, regarding their time-frequency behavior (time
evolution of the harmonics, duration of the attack, frequency
repartition, ...). We also estimate Gabor masks between the
clarinet and the trumpet and between the piano and the violin,
with the different configurations of the problem explained in
section III, in order to reveal the role of the regularization
function and the role of the Gabor mask estimation method.
On all figures, amplitudes are represented with a logarithmic
scale.
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(a) Clarinet (b) Trumpet

(c) Violin (d) Piano

Figure 2: Spectrograms of audio signals used in the experiment

Remark 2: Gabor mask will be sensible to small time-shifts
between source and target signals. Prior to mask estimation,
the signals have therefore been readjust by hand, such that
their onsets coincide.

Sounds examples and Matlab code can be found on www.

lma.cnrs-mrs.fr/˜kronland/olivero/ieee2012/ieee2012.html

A. Audio applications: Sounds timbre transformation

In the context of audio signals analysis, a lot of applications
involve the evaluation of a time-varying transfer function
between two signals. The information present in the Gabor
masks was shown in [12], [13] to be relevant for audio signals
analysis, in a categorization context. Dissimilarity measures
extracted directly from masks were shown to yield good
classifications of single note signals from four different classes
of musical instruments, which proves that the Gabor mask
captures a sensible information in the time-frequency domain.

From a synthesis point of view, the transfer functions
obtained as proposed here can be used for performing sound
morphing between a pair of sounds, or more generally for
sound synthesis. Sound morphing covers a wide variety
of techniques whose aim is to “interpolate” between two
sound signals, with perceptually relevant characteristics.
A detailed review of most of existing approaches can be
found in [37]. We presented in [8], [14] a morphing strategy
based on Gabor Multipliers. Our approach exploits a Gabor
representation as low level representation, from which Gabor
masks are estimated as above. The regularization parameter
µ is then used as a control (tuning) parameter, allowing
interpolation between source (large µ) and target (small µ).
We also show in [14] that, with the regularization function

d(σ) = ‖|σ| − 1‖22, the set of µ values used to construct a
sound morphing clearly depends on the energy contained in
the sounds used as source and target of the morphing process.
Small and large value of µ can also be estimated from the
source and target signals.

B. Behavior of the algorithms

(a) Convex (b) Non convex

Figure 3: Convergence of ISTA and FISTA: objective function
(see (10)) as a function of the iteration index, for κ = 1

We used the algorithms described above from the clarinet
to the trumpet signal. The algorithm convergence is illustrated
in Figure 3, where the cost function is plotted as a function of
the number of iterations, for both ISTA and FISTA. For that
particular experiment, we set µ = 10−3 and the regularization
term was d(σ) = ‖σ − 1‖22. It is known that such algorithms
are faster for large value of µ and benefit from the use of
a good initialization. The latter can be chosen as the explicit
solution of the approximation problem given by equation (11),
or as a (converged) solution obtained for a bigger value of
µ. We choose the one which gives the lower value of the
current cost function, over the set of Gabor masks evaluated
previously by the algorithm with lower values for µ and
evaluated by diagonal approximation with the current value
for µ. We observe in practice a similar behavior when other
values for the parameter µ are chosen.

Remark 3: The multiplier estimated by our approach are
far from being invertible [38], as they intrinsically depend on
the sounds used as input and output signals. Then, inverting
the role of the input and output signals will lead to different
sounds.

C. Qualitative analysis of the estimated Gabor masks : influ-
ence of the regularization function

We used the algorithms described above from the clarinet to
the trumpet signal. First, let us compare the iterative methods
with the diagonal approximations, using the convex regulariza-
tion term d(σ) = ‖σ−1‖22, and a moderate value of the regu-
larization parameter µ, which leads to in ”intermediate” sound
whose timbre can be heard between the timber of the source
and target sounds. These two estimated Gabor masks are
presented in Figure 4, for µ = 10−3. The comparison shows
that the iterative method tends to provide clearer harmonic

www.lma.cnrs-mrs.fr/~kronland/olivero/ieee2012/ieee2012.html
www.lma.cnrs-mrs.fr/~kronland/olivero/ieee2012/ieee2012.html
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components for the Gabor mask. The increased computational
cost induced by the iterative approach is therefore justified.

However, a closer examination reveals the presence of
spurious oscillations in the estimated Gabor mask. These
oscillations turn out to result from the inappropriate choice
of the regularization term d(σ) = ‖σ − 1‖2. The latter
constrains the argument of the mask and therefore does not
account properly for relative phase behaviors of input and
output signals. For the diagonal approximation (see equation
(12) with κ = 1 and σ(r) = 1), we can show how these
phase artefacts appear in the Gabor mask, when a time-
frequency point [m,n] present a phase difference equal to π
between the source X0[m,n] and target X1[m,n], and when
|X0[m,n]|2 = µ, the Gabor mask at this point is given by

σ̃ =
X0X1 + µ

|X0|2 + µ
=
|X0|2eiπ + µ

|X0|2 + µ
=
eiπ + 1

2
= 0

where we omitted the index [m,n] for the sake of clarity. At
this time-frequency point, the Gabor mask vanishes. As µ is a
global value applied on all the time-frequency coefficients, the
presence of zeros in the Gabor mask artificially creates am-
plitude modulation in the Gabor mask as observe in Figure 4.

(a) Diagonal approximation (b) FISTA

Figure 4: Gabor masks obtained for µ = 10−3, d = ‖σ−1‖22.

This motivated us to turn to the non convex constraint
d(σ) = ‖|σ| − 1‖22. These two estimated Gabor masks are
presented in Figure 4, for µ = 10−3, where we can clearly
see that the artificial amplitude modulation are not present any
more in the Gabor mask estimated by diagonal approximation
and FISTA. This behavior of the Gabor mask clearly shows
the importance of the phase in the Gabor domain, and how a
bad estimation of the Gabor mask phase can provide spurious
artifacts. Again, the solution found by the algorithm is quite
different from the diagonal approximation, and significantly
sparser. Finally, the choice d(σ) = ‖|σ| − 1‖22 clearly outper-
forms d(σ) = ‖σ − 1‖22, and we can reasonably argue that
regularization functions acting on the modulus of the Gabor
masks should to be systematically used with audio data.

The morphed sounds obtained using FISTA and the diagonal
approximation appear to be quite close to each other in
this example, as confirmed by informal listening tests to the
corresponding sounds. This originates from the fact that, even
though the masks are significantly different, the synthesis
operator compensates from these differences. Other sounds
examples have been reported on the url linked to the paper.

(a) Diagonal approximation (b) FISTA

Figure 5: Gabor masks obtained for µ = 10−3, d = ‖|σ|−1‖22.

D. Qualitative analysis of the estimated Gabor masks : influ-
ence of the estimation method

We estimate here the Gabor masks from the violin to
the piano. This case is a more difficult one, as the two
sounds features different harmonic structure across time. The
high frequencies in the piano damp faster than those of the
violin, which features frequency modulation caused by the
vibrato. Estimated Gabor masks are shown in Figure 6 and
the reconstructed signals are shown in Figure 7. We first
notice that the estimated Gabor masks behave differently with
regards to the estimation method. The Gabor mask modulus
obtained with FISTA tends to be closer to 1 during the first 0.5
seconds. However, it is interesting to notice that the Gabor mak
obtained by FISTA generates a signal with a smoother attack,
although the modulus of the Gabor mask equals to 1 during
the attack. Once again, this experiment shows the importance
of the Gabor mask phase, which is responsible here for the
transformation of the attack between these two particular
sounds. In addition, we can hear that sounds generated using
the diagonal approximation are of low perceptual quality :
they feature unexpected artifacts, and are hardly perceived
as “intermediate sounds” between violin and piano. When
morphed sounds are generated using FISTA, the perceived
quality improves significantly.

These preliminary results, to be confirmed by more sys-
tematic perceptive evaluations, tend to show that the iterative
method combined with a penalization of the mask modulus,
can provide a valuable approach for the considered sounds
morphing problem.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed and developed an iterative
scheme for the estimation of a linear transformation modelled
as a (multiple) frame multiplier, and illustrated it with a
few examples in the context of audio signal processing.
While multiplier estimation can be performed by simpler
techniques (such as the diagonal approximation described in
Section III-B) our results show that estimates provided by our
approach yield transfer functions with a neater structure. This
turns out to be relevant in morphing applications, in situations
where the input and output signals are different enough. These
findings remain to be confirmed by more thorough experiments
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(a) Diagonal approximation (b) FISTA

Figure 6: Gabor masks obtained for µ = 10−2, d = ‖|σ|−1‖22.

(a) Diagonal approximation (b) FISTA

Figure 7: Reconstructed signals obtained for µ = 10−2, d =
‖|σ| − 1‖22.

using larger sound databases. In addition, our approach is
easily extended to more complex settings such as multiple
multipliers.

This work is a part of a program which aims at exploiting
Gabor multipliers and related techniques for audio signal anal-
ysis, including categorization problems, and sound morphing.
In this respect, we plan to investigate further extensions of
this work including constrained versions of the estimation
problem we have been considering here. Questions regarding
convergence properties of our scheme in situations where
non convex regularization terms are used are also of interest.
Applications to audio morphing, in the spirit of our previous
work in [8] are under progress.
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APPENDIX

Proof of the equation (14) :

‖A∗Aσ‖22
=

∥∥∥∥∑
k
A(k)∗A(k)σ

∥∥∥∥2
2

=
∑
m,n

∣∣∣∣∑
k
X

(k)
0 [m,n] · VhV∗h(X

(k)
0 σ)[m,n]

∣∣∣∣2
6
∑
m,n

(∑
k |X

(k)
0 [m,n]|2

)
·
(∑
k

∣∣∣VhV∗h(X(k)
0 σ)[m,n]

∣∣∣2)
6 κ maxk‖X

(k)
0 ‖2∞ ·

∑
m,n

∑
k

∣∣∣VhV∗h(X(k)
0 σ)[m,n]

∣∣∣2
= κ maxk‖X

(k)
0 ‖2∞ ·

∑
k
‖VhV∗h(X

(k)
0 σ)‖22

6 κ maxk‖X
(k)
0 ‖2∞ ·

1
A2

∑
k
‖X(k)

0 σ‖22

6 κ2

A2 maxk‖X
(k)
0 ‖4∞‖σ‖22
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IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. ??, NO. ??, ??? 2012 10

[17] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing (2nd Ed.). Englewood Cliffs, NJ: Prentice-Hall, 1989.

[18] T. Strohmer, Gabor Analysis and Algorithms - Theory and Applications,
ch. Numerical Algorithms for Discrete Gabor Expansions, pp. 267–294.
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Théorique, Marseille, France, and is now professor
in Mathematics at Université d’Aix-Marseille, and
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