Fabrice Gamboa 
email: gamboa@math.univ-toulouse.fr
  
Paul Sabatier 
  
Alain Rouault 
email: alain.rouault@uvsq.fr
  
Operator-valued spectral measures and large deviations

Let H be a Hilbert space, let U be a unitary operator on H and let K be a cyclic subspace for U . The spectral measure of the pair (U, K) is an operator-valued measure µ K on the unit circle T such that

where P K and ↾ K are the projection and restriction on K, respectively. When K is one dimensional, µ is a scalar probability measure. In this case, if U is picked at random from the unitary group U(N ) under the Haar measure, then any fixed K is almost surely cyclic for U . Let µ (N ) be the random spectral (scalar) measure of (U, K). The sequence (µ (N ) ) was studied extensively, in the regime of large N . It converges to the Haar measure λ on T and satisfies the Large Deviation Principle at scale N with a good rate function which is the reverse Kullback information with respect to λ ([21]). The purpose of the present paper is to give an extension of this result for general K (of fixed finite dimension p) and eventually to offer a projective statement (all p simultaneously), at the level of operator-valued spectral measures in infinite dimensional spaces.

on moment problems. The first one is the book of Krein and Nudel'man [START_REF] Krein | Ideas and problems of P. L. Chebyshev and A. A. Markov and their further development[END_REF] dealing mainly with the Markov moment problem. The second one is the book of Karlin and Studden [START_REF] Karlin | Tchebycheff systems: With applications in analysis and statistics[END_REF] that offers a beautiful journey inside the continent of T -systems properties. The reading of these two books has whetted our interest for the literature on moment problems and by the middle of the nineties we came across a very interesting paper of Chang, Kempermann and Studden [START_REF] Chang | A normal limit theorem for moment sequences[END_REF] on the asymptotic behaviour of randomized moment sequences. This seminal paper gives a very nice Borel Poincaré like theorem for moment sequences of probability measures on the unit interval and has been quite motivating for at least the ten last years of our researches. The probabilized moment space frame developed therein led to many papers written by many authors (see for example [START_REF] Gupta | Completely monotone multisequences, symmetric probabilities and a normal limit theorem[END_REF], [START_REF] Gamboa | Large deviations for random power moment problem[END_REF], [START_REF] Lozada-Chang | Large deviations on moment spaces[END_REF], [START_REF] Dette | Asymptotic properties of the algebraic moment range process[END_REF], [START_REF] Dette | Matrix measures, random moments, and Gaussian ensembles[END_REF], [START_REF] Gamboa | Large deviations for random matricial moment problems[END_REF] ). One of the main ingredient tool for the study of probabilized moment spaces is the parametrization of these spaces by the canonical moments. Roughly speaking, under natural probability measures these parameters have a joint product law with beta marginal distributions.

They are also very intriguing nice mathematical objects with a lot of properties that we learned from the excellent book of Dette and Studden [START_REF] Dette | The theory of canonical moments with applications in statistics, probability, and analysis[END_REF]. Moreover, studying the exhaustive books of Simon ([34]), we realized that canonical moments, also called Verblunsky coefficients, are quite important objects in complex analysis and spectral theory. At this time the second author of the present paper was working on the asymptotic properties of the determinant of classical random matrix ensembles ( [START_REF] Rouault | Asymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles[END_REF]). Surprisingly, by the Bartlett formula, the distribution of these random determinants involves product of independent beta random variables having similar parameters as those found in the randomized moment problem. Observing this analogy, we discovered a connection between random moments and spectral measures of classical random matrix ensembles ( [START_REF] Gamboa | Canonical moments and random spectral measures[END_REF], [START_REF] Gamboa | Large deviations for random spectral measures and sum rules[END_REF]). The present paper is a matricial extension of the asymptotic studies conducted in the latter papers dealing with scalar random spectral measures. This extension has been possible thanks to two significant contributions of Dette and Studden in the field of matricial moment problems (see [START_REF] Dette | Matrix measures, moment spaces and Favard's theorem for the interval [0,1] and [0,∞)[END_REF], and [START_REF] Dette | Quadrature formulas for matrix measures-a geometric approach[END_REF]).

We never had the opportunity to meet W.J. Studden but we wish to pay here a tribute to this creative mathematician that had often enlighten the paths of our researches.

Introduction to this paper

To capture the asymptotic behavior of large dimensional unitary random matrices, the usual statistic is the empirical spectral distribution, providing equal weights to all eigenvalues

µ u = 1 N N k=1 δ λ k .
More recently, some authors used another random probability measure based on eigenvalues and eigenvectors ( [START_REF] Killip | Matrix models for circular ensembles[END_REF], [START_REF] Bai | On asymptotics of eigenvectors of large sample covariance matrix[END_REF], [START_REF] Gamboa | Canonical moments and random spectral measures[END_REF]). If U is a unitary matrix and e is a fixed vector (assumed to be cyclic), the so-called spectral measure µ w,1 of the pair (U, e) may be defined through its algebraic moments. Indeed, for all n ∈ Z e, U n e = T z n dµ w,1 (z) .

Here, T is the unit circle {z ∈ C : |z| = 1}. The measure µ w,1 is finitely supported on the eigenvalues of U, we may write

µ w,1 = N k=1 w k δ λ k
where w k is the square of the scalar product of e with a unitary eigenvector associated with λ k .

The latter measure carries more information than the former. The weights in µ w,1 are blurred footprints of the eigenvectors of U. To make these footprints unblurred, it is then tempting to try to increase the dimension by projecting U on a fixed subspace of dimension p instead on the span generated by the single vector e. We obtain a matrix measure. This is what we will do in this paper. Actually we may even go back to the representation given by the spectral theorem (see [START_REF] Dunford | Linear operators. Part II[END_REF])

U = T zE U (dz)
where E U is the spectral measure of U (or resolution of the identity for U). In our work, we sample U according to the Haar distribution on U(N) and we study the random object E U .

The paper is organized as follows. In the next section, we first frame our paper by giving the main notations and definitions needed further. Then, we recall some facts on unitary matrices and matrix orthogonal polynomials on the unit circle. We also show technical results on these objects that will be useful later. In Section 3 we first study the effects of the randomization of the unitary matrices on the object defined in Section 2. In particular, our approach merely simplifies the proof of the asymptotic normality for a fixed corner extracted in the unitary ensemble given in [START_REF] Krishnapur | From random matrices to random analytic functions[END_REF]. Further, we show large deviation theorems both for matrix random spectral measure and their infinite dimensional lifting. All proofs are postponed to Section 4.

Preliminaries

Some notations and definitions

To begin with, let us give some definitions and notations. Let N = {1, 2, . . . } and H = ℓ 2 C (N). For i ≥ 1, let e i = (0, . . . , 0, 1, 0, . . . ) be the i-th element of the canonical basis of H and for p ≥ 1 let H p be span {e 1 , • • • , e p }. We define several sets of matrices with complex entries:

• M p,n , the set of p × n matrices with complex entries,

• U(n), the set of n × n unitary matrices, At last, I p denotes the p × p identity matrix on H p .

Operator-valued and spectral measures

Let B(T) denote the Borel σ-algebra on T. Let H be a separable Hilbert space, I H be the identity in H and H(H) be the algebra of bounded Hermitian endomorphisms on H.

Definition 2.1 1. A mapping Σ : B(T) → H(H) is called an operator-valued measure in H if (a) Σ(∅) = 0; (b) Σ is non-negative i.e. if Σ(∆) ≥ 0 for ∆ ∈ B(T); (c) Σ is strongly countably additive, i.e., if ∆ = ∪ ∞ j=1 ∆ j is a disjoint decomposition of ∆ ∈ B(T), then Σ(∆) = ∞ j=1 Σ(∆ j ) (in the strong sense);
2. An operator-valued measure Σ is an operator-valued probability if Σ(T) = I H ;

3. An operator-valued probability E is said to be spectral or orthogonal if it is projection-valued i.e. if for any ∆ ∈ B(T), E(∆) = E(∆) 2 .

Let P L be the orthogonal projection onto the closed linear subspace L. The notation T ↾L means the restriction of a linear operator T on the set L. In the sequel, , will denote the standard Hermitian product without mention of the ambient Hilbert space. For α, β elements of a Hilbert space, the outer product |α β| is a rank one endomorphism defined by

(|α β|)(•) = α β, . .
If ν is an operator-valued measure on T and K is a subspace of H, then ν ↾K denotes the map

B(T) → B(K) such that ν ↾K (∆) = ν(∆) ↾K . Of course, if L ⊂ K ⊂ H we have ν ↾L = (ν ↾K ) ↾L . (2.1)
M(H) (resp. M 1 (H)) denotes the set of operator-valued measures in H (resp. operator-valued probability measures in H). We equip M(H) with the following topology: ν n → ν if, and only if, for all f ∈ H, the sequence of positive (scalar) measures f, ν n (.)f converges weakly to f, ν(.)f .

In the finite dimensional space case, an operator-valued measure is a matrix measure. For p ∈ N, we denote by M p (resp. M 1 p ) the set of all Hermitian non-negative p × p matrix measures (resp. matrix probability measures). For µ ∈ M 1 p , the (matrix) moment m ℓ (µ) of order ℓ ∈ Z of µ is the element of M p,p defined by

(2.2) m ℓ (µ) = T z ℓ dµ .
If λ is the Lebesgue measure on T, the operator-valued measure I p λ is in some sense the reference measure. We need the notion of absolute continuity and Lebesgue decomposition for operatorvalued measures. We refer to Robertson [START_REF] Robertson | The decomposition of matrix-valued measures[END_REF] and to Mandrekar [START_REF] Mandrekar | On singularity and Lebesgue type decomposition for operatorvalued measures[END_REF].

If ν is a non-negative σ-finite measure on T, we say that a m × n matrix measure M on T is absolutely continuous (a.c. in short) with respect to ν (M ≪ ν) if each entry of M is a.c. with respect to ν. In this case M ′ ν will denote the matrix-valued function whose entries are the Radon-Nikodym derivatives. Let M be a m × m non-negative Hermitian matrix measure. Then, there exist unique matrix measures M a and M s such that M = M a + M s , M a and M s are non-negative.

Furthermore, M a ≪ ν and M s is singular with respect to ν, i.e. nonzero only on a set of ν measure zero. Now, we say that a matrix measure Q is strongly a.c. with respect to M (Q ≪ M) if and only if there exists a nonegative measure ν dominating M and Q such that the range of the operator

Q ′ ν (ω) is a subset of the range of the operator M ′ ν (ω) for ν-almost every ω. Actually, if M is ℓ × n and Q is m × n then Q ≪ M iff there exists a ℓ × m matrix-valued function Φ integrable with respect to M such that dQ = ΦdM. Such a Φ is essentially unique and Φ = Q ′ ν (M ′ ν ) ♯
where ♯ denotes the pseudo-inverse.

Unitary operators and unitary matrices

For any unitary operator U in H the spectral theorem (see [START_REF] Dunford | Linear operators. Part II[END_REF]) provides a spectral operatorvalued probability E U such that U = T zE U (dz). In other words, for any f, g ∈ H and k ∈ Z

f, U k g = T z k f, E U (dz)g . (2.3)
If K is a subspace of H, the spectral measure of the pair (U, K) is by definition (E U ) ↾K . If K is a one-dimensional subspace, the spectral measure is scalar (see the previous section).

Let N be a fixed integer. In the generic situation, an operator U ∈ U(N) has distinct eigenvalues e ıθ k , k = 1, • • • , N and its spectral decomposition may be written

U = N k=1 e ıθ k |v k v k | , (2.4)
where for k = 1, • • • , N, v k is a unit eigenvector, associated with the eigenvalue e ıθ k . Obviously, for p ≤ N, the spectral measure associated with the pair (U,

H p ) is µ w,p := N k=1 w k δ e ıθ k , (2.5) 
where, for k

= 1, • • • , N, w k := |P Hp v k P Hp v k |
, is an Hermitian endomorphism on H p . This spectral measure is a matrix probability measure which satisfies (2.6) m ℓ (µ w,p ) = e i , U ℓ e j p i,j=1 .

Matrix orthogonal polynomials on the unit circle 2.4.1 Construction

In spectral theory, orthogonal polynomials play a prominent role. Here, we will need to work with matrix-valued orthogonal polynomials with respect to matrix measures on the unit circle.

We recall some useful facts and refer to [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory and Part 2: Spectral Theory[END_REF] for more on the subject. To begin with, as in the scalar case, these orthogonal polynomials satisfy a recursion and the matrices appearing in this recursion are the so-called matrix Verblunsky coefficients (see [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF]). Let us give some more notations. Let p ∈ N and µ ∈ M p . Further, let F and G be measurable matrix valued functions : T → M p,p . We define two p × p matrices by setting

F, G R = T F (z) † dµ(z)G(z) ∈ M p,p F, G L = T G(z)dµ(z)F (z) † ∈ M p,p .
A sequence of functions (ϕ j ) in H p is called right-orthonormal if and only if

ϕ i , ϕ j R = δ ij I p .
The orthogonal polynomial recursion is built as follows.

First, assume that the support of µ is infinite. We define the right monic matrix orthogonal polynomials Φ R n by applying Gram-Schmidt procedure to {I p , zI p , z 2 I p , . . . }. In other words, Φ R n is the unique matrix polynomial Φ R n (z) = z n I p + lower order terms such that z k I p , Φ R n R = 0 for k = 0, . . . , n -1. The normalized orthogonal polynomials are defined by

ϕ 0 = I p , ϕ R n = Φ R n κ R n
where the sequence of p × p matrix (κ R n ) satisfy, for all n, the condition κ R n -1 κ R n+1 > 0 and is such that the set {ϕ R n } is orthonormal. We define the sequence of left-orthonormal polynomials {ϕ L n } in the same way except that the above condition is replaced by

κ L n+1 κ L n -1 > 0. The Szegő recursion is then zϕ L n -ρ L n ϕ L n+1 = α † n (ϕ R n ) * (2.7) zϕ R n -ϕ R n+1 ρ R n = (ϕ L n ) * α † n , (2.8) 
where for all n ∈ N,

• α n belongs to B p the closed unit ball of M p×p defined by

B p := {V ∈ M p,p : V V † ≤ I p } ,
• ρ n is the so-called defect matrix defined by

ρ R n := I p -α n α † n 1/2 , ρ L n = I p -α † n α n 1/2 , (2.9) 
• for a matrix polynomial P , having degree n, the reversed polynomial P * is defined by

P * (z) := z n P (1/z) † .
Notice that the construction of the recursion coefficients uses only the matrix moments. The Verblunski's theorem (analogue of Favard's theorem for matrix orthogonal polynomials on the unit circle) establishes a one-to-one correspondance between matrix measures on T with infinite support and sequences of elements of the interior of B p (Theorem 3.12 in [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF]). Now, for a matrix measure having a finite support, the construction of the Verblunsky coefficients is not obvious. In [START_REF] Dette | Matrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations[END_REF] Theorem 2.1, a sufficient condition on the moments for such a construction is provided. It is related to the positivity of a block-Toeplitz matrix, as it is also mentioned in [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory and Part 2: Spectral Theory[END_REF] at the top of p.208.

Lemma 2.2 Let N = Qp + r, with Q ≥ 1 and 0 ≤ r < p. Let J ≤ Q -1.
Then for almost every U ∈ U(N) equipped with the Haar distribution, there exists a measure ν with infinite support and satisfying

m k (ν) = m k (µ w,p ) , k ≤ J .

A unitary isomorphism

As in the scalar case, we can build a unitary equivalence between the linear space M N,p (of systems of p vectors of H N ) and the linear space P N,p of polynomials of degree ≤ N -1 with coefficients in M p,p . Let e = [e 1 • • • e p ] be a N × p matrix consisting in p column vectors of dimension N.

In the same way, we consider the

N × p matrix Ue = [Ue 1 • • • Ue p ]. The pseudo-scalar (inner) product of e with f = [f 1 • • • f p ] is a matrix p × p denoted by ≪ f, e ≫ and defined by ≪ f, e ≫ i,j = f i , e j i, j = 1, . . . , p .
It is clear that if the system e 1 , • • • , e p is orthonormal, then ≪ e, e ≫= I p . It is clear also that if W ∈ M N,N and e, f are as above, then

(2.10) ≪ f, W e ≫ = ≪ W † f, e ≫ .
Elementary computations lead also to the useful following properties

(2.11) ≪ f, gW ≫ = ≪ f, g ≫ W , ≪ f W, g ≫ = W † ≪ f, g ≫ ,
where W ∈ M p,p . Notice that s = [s 

Let ε = [ε 1 • • • ε p ]
an orthonormal system, U unitary on H N and µ the spectral measure of the pair (U, span ε).

Definition 2.3 We say that ε is cyclic for U, if span {U k ε j , 0 ≤ k ≤ N -1, 1 ≤ j ≤ p} = C N . (2.12)
In this case, each element M of M N,p may be written as M = N -1 k=0 U k εγ k where γ k ∈ M p,p and then we can associate the polynomial q(z) = N -1 k=0 γ k z k ∈ P N,p .

Remark 2. [START_REF] Collins | Intégrales matricielles et Probabilités non-commutatives[END_REF] The system ε = [ε 1 , . . . , ε p ] is cyclic for U as soon as one of the ε j is cyclic for U, but of course, it is not a necessary condition.

If ε is cyclic for U we have then a one-to-one correspondance between M N,p and P N,p which preserves the pseudo-scalar products ≪, ≫ and , R :

• To q(z) = k γ k z k ∈ P N,p we associate M q = k U k εγ k ∈ M N,p
• If p and q are two polynomials, we have

≪ M p , M q ≫ = p, q R ,
(this property is straightforward for monomials and is extended easily).

Lemma 2.5 If ε is a cyclic system for U, then the first Verblunsky coefficient of the pair (U, ε) denoted by α 0 (U, ε) satisfies

(2.13) α 0 (U, ε) † = ≪ ε, Uε ≫ .
We construct now the GGT matrix G R , which is the matrix of the unitary operator

f ∈ L 2 (dµ) → (z → zf (z)) ∈ L 2 (dµ) in the orthonormal basis ϕ R k , that is G R k,ℓ = ϕ R k , zϕ R ℓ R . Lemma 2.6 We have G R k,ℓ =          -α k-1 ρ L k ρ L k+1 • • • ρ L ℓ-1 α † ℓ 0 ≤ k ≤ ℓ ρ R ℓ k = ℓ + 1 0 k ≥ ℓ + 1 (2.14) (with α -1 = -1 p , ρ L -1 = 0).
It is convenient to call G R (α 0 , α 1 , . . . ) the above GGT matrix built from the Verblunsky coefficients (α 0 , α 1 , . . . ). We have the easy following result, which is a replica of Theorem 10.1 in Simon [START_REF] Simon | CMV matrices: Five years after[END_REF].

Proposition 2.7 Let α be in the matrix unit ball. Set

Θ(α) := α † ρ L ρ R -α , (2.15)
and Θ(α) := Θ(α) ⊕ I p ⊕ I p ⊕ .... Then we have

(2.16) G R (α 0 , α 1 , . . . ) = Θ(α 0 )[I p ⊕ G R (α 1 , α 2 , . . . )] .
For the sake of completeness, let us consider now the operator point of view.

Proposition 2.8 Assume that ε is cyclic for U. Let ξ(U, ε) ∈ M N,p be the image of ϕ 1 in the isomorphism and set H 0 := span {ε, Uε} = span {ε, ξ}. Let V (U, ε) be the unitary transform which leaves invariant the subspace orthogonal to H 0 and whose restriction to H 0 has the matrix

Θ(α 0 (U, ε)) in the basis (ε, ξ). Then ξ(U, ε) is cyclic for the restriction of W (U, ε) := V -1 (U, ε)U
to ε ⊥ and we have

α 1 (ε, U) = α 0 (ξ(U, ε), W (U, ε)) . (2.17) 3 Randomization 3.1 Distributions on M n,n
Along this paper, we use three probability distributions,

• The Haar measure on U(n) for n ≥ 1.

• Gin(n), the (Ginibre) distribution on M n,n which makes all elements independent and standard complex Gaussian. It has the density π -n 2 exp -tr GG † with respect to the Lebesgue measure.

• Cor(n, p) (for n > 2p) the distribution on M p,p of the top-left corner of size p × p of a Haar distributed random matrix. It has the density

V → K p,n det I p -V V † n-2p (3.1)
on the unit ball B p where K p,n is the normalization constant (see for instance [START_REF] Collins | Product of random projections, Jacobi ensembles and universality problems arising from free probability[END_REF] Theorem 5.1). Actually, [START_REF] Neretin | Hua-type integrals over unitary groups and over projective limits of unitary groups[END_REF] Lemma 1.4 gives

K p,n = π -p 2 (n -2p)!(n -2p + 1)! . . . (n -p -1)! (n -p)!(n -p + 1)! . . . (n -1)! .

Preliminary results

Here, we describe the distribution of the matrix spectral measure. The first statement uses the encoding by weights and (2.5).

Proposition 3.1 Let U be Haar distributed in U(N).

1. The random variable (e ıθ 1 , • • • , e ıθ N ) ∈ T N is independent of the random variable

(w 1 , • • • , w N ).
2. For k = 1, • • • , N, let a k be independent p-dimensional random vectors with complex standard normal distribution. The random variable (w 1 , • • • , w N ) has the same distribution as

h -1/2 v 1 h -1/2 , • • • , h -1/2 v N h -1/2
where

v k := |a k a k | , k = 1, • • • , N and 
h := N k=1 v k . (3.2)
The second statement describes the distribution of the Verblunsky coefficients. Theorem 3.2 Let N = pQ + r with 0 ≤ r < p and Q > 2. Let U be chosen at random in U(N) according to Haar measure. Let µ (N ) p be the matrix spectral measure for (U, e 1 , . . . , e p ). Then, the matrix Verblunsky coefficients α According to Arlinskii [START_REF] Arlinskii | Conservative discrete time-invariant systems and block operator CMV matrices[END_REF] Theorem 4.2, we have

(N ) j := α j (µ (N ) p ) for j = 0, • • • , Q -2 are independent. Moreover, for j ≤ Q -2, α ( 
(3.3) α 1 = (ρ R 0 ) -1 CB(ρ L 0 ) -1
where (ρ R 0 ) -1 and (ρ L 0 ) -1 are the Moore-Penrose pseudo-inverses of ρ R 0 and ρ L 0 respectively. To see that we cannot use the true inverses let us look at

(ρ R 0 ) 2 = I p -α 0 α † 0 = CC † . The singularity of ρ R 0 follows directly from rank (CC † ) ≤ rank (C) < p .
We did not succeed in computing the distribution of α 1 given by (3.3) in such a case. Notice that in formula (3.3) we can replace CB by Γ 2 -Γ 2 1 where Γ 1 = α 0 and Γ 2 are the first two moments of µ. We recover a formula which fits with (2.19) in [START_REF] Dette | Matrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations[END_REF].

Asymptotics

In this section, we consider central limit theorems (CLT) i.e. convergences in distribution, and large deviation principles (LDP). To make this paper self-contained, let us first recall what is a LDP. For more on LDP we refer to [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF].

Let (a N ) be an increasing positive sequence of real numbers going to infinity with N. We say that a sequence (Q N ) of probability measures on a measurable Hausdorff space U with corresponding Borel field B(U)) satisfies an LDP at scale a N and rate function I if: i) I is lower semicontinuous, with values in R + ∪ {+∞}.

ii) For any measurable set A of U:

-I(int A) ≤ lim inf N →∞ a -1 n log Q N (A) ≤ lim sup N →∞ a -1 n log Q N (A) ≤ -I(clo A),
where I(A) = inf ξ∈A I(ξ) and int A (resp. clo A) is the interior (resp. the closure) of A.

We say that the rate function I is good if its level sets {x ∈ U : I(x) ≤ a} are compact for any a ≥ 0. More generally, a sequence of U-valued random variables is said to satisfy an LDP if their distributions satisfy a LDP. 

N ) k ) D -→ (G 1 , . . . , G k ) ( 
where G 1 , . . . , G k are independent and Gin(p) distributed.

There are two proofs of the first statement in [START_REF] Gamboa | Large deviations for random matricial moment problems[END_REF]. The second statement is a consequence of the first statement and of Theorem 3.2 above.

Coming back to the moments of the measure µ

(N ) w
we recover a result of Krishnapur, so offering a proof (postponed to Section 4.7) shorter than the involved combinatorial original one. 

√ N[U n ] i,j , 1 ≤ n ≤ n 0 , i, j ≤ p,
converges as N → ∞ in distribution to independent standard complex Gaussian matrices. ) N satisfies the LDP at scale N in M p,p with good rate function

v ∈ M p,p -→ I(v) =    -log det(I p -vv † ) if vv † < I p , ∞ otherwise.
(3.4)

2. For fixed p ≥ 1 and k ≥ 0, the sequence α

(N ) 0 , . . . , α (N ) k N
satisfies the LDP at scale N in

M p,p × • • • × M p,p
with good rate function

I k (α 0 , . . . , α k ) =    -k j=0 log det(I -α † j α j ) if α † j α j < I p for j = 0, . . . , k , ∞ otherwise. (3.5)
The first statement is a direct consequence of the explicit expression of the density and the second statement comes from the independence of Verblunsky coefficients. These are arguments from [START_REF] Gamboa | Large deviations for random matricial moment problems[END_REF]. It is worthwhile to quote the scalar case which was established in [START_REF] Lozada-Chang | Large deviations on moment spaces[END_REF]. where dν(z) = ν ′ a (z)dz + dν s (z) is the Lebesgue decomposition of ν.

Large deviations for the spectral measure in fixed dimension

Corollary 3.8 It is possible to rewrite the above quantity in the flavour of Kullback information with the notation of [START_REF] Mandrekar | On singularity and Lebesgue type decomposition for operatorvalued measures[END_REF] or [START_REF] Robertson | The decomposition of matrix-valued measures[END_REF], i.e.

I p (ν) =      T log det I p dz dν(z) dz if I p dz ≪ dν(z), ∞ otherwise. (3.7)
where ≪ denotes the strongly absolute continuity (see Section 2.2).

Remark 3.9 The deviations are from λ p (dz) := I p dz whose moments of every order are zero, i.e. T z k I p dz = 0 p for k = 0, where 0 p is the null endomorphism on H p . This corresponds to the fact that lim N (U k ) i,j = 0 for every k, i, j ≥ 1 fixed.

Large deviations -Operator-valued random measures

Every element U of U(N) can be extended to an operator on H by tensorisation with identity.

More precisely, if (e i ) denotes as above the canonical basis of H we define

U ∞ 1 h i e i = N 1 h i U(e i ) + ∞ N +1
h j e j .

When U is chosen according to the Haar measure in U(N), the (random) spectral measure associated with U is denoted µ (N ) . It is of the form

µ (N ) = E U = N k=1 | v k v k | δ e iθ k + ∞ k=N +1 |e k e k | δ 1 ,
where the v k are the eigenvectors of U extended in C N by zeros. We establish now an LDP for this sequence.

Theorem 3.10 The family of random spectral measures µ (N ) N satisfies the LDP in M 1 (H) at scale N with the good rate function

(3.8) µ ∈ M 1 (H) -→ I ∞ (µ) = lim k ↑ T -log det µ ′ a k (z)dz
where µ = µ ′ a dz + µ s and µ ′ a is a measurable function from T to H(H) and

µ ′ a k = P H k (µ ′ a (z)) ↾H k .
Moreover, if there is a constant C > 1 such that for every k and z

(3.9) C -1 ≤ det µ ′ a k (z) ≤ C
and if for every z the operator

I H -µ ′ a (z) is trace class and z → tr log µ ′ a (z) ∈ L 1 (T), then I ∞ (µ) = T -tr log µ ′ a (z)dz . (3.10)
Remark 3.11 The deviations are from λ ∞ (dz) := I H dz, whose moments of every order are zero, i.e. T z k I H dz = 0 H for k = 0, where 0 H is the null endomorphism on H. As in Remark 3.9 this corresponds to the fact that lim N (U k ) i,j = 0 for every k, i, j ≥ 1 fixed. Remark 3.12 The boundedness assumption on the sequence (det µ ′ a k (z)) cannot be deduced from a simple hypothesis on the operator valued density µ ′ a .

4 Proofs

Proof of Lemma 2.2

Let us first describe the result of Dette and Wagener [START_REF] Dette | Matrix measures on the unit circle, moment spaces, orthogonal polynomials and the Geronimus relations[END_REF] (up to a slight change of notation). Let for ℓ = 1, 2, . . .

F ℓ := {(I p , m 1 (µ), . . . , m ℓ (µ)) | µ ∈ M 1 p }
the ℓth moment space of matrix (probability) measures on the unit circle. Their Theorem 2.1

says that m = (1, m 1 , . . . , m J ) ∈ F J if and only if J i,j=0 tr(B † j m i-j B i ) ≥ 0 for all B 0 , . . . , B J ∈ C p×p where for k > 0, m -k = m † k . Moreover m ∈ int F J if and only if there is a strict inequality above except if B 0 = • • • = B ℓ = 0. For ℓ = 1, . . . , J, let m ℓ := m ℓ (µ w,p ). We have J i,j=0 tr(B † j m i-j B i ) = N k=1 tr J i,j=0 B † j P Hp v k (P Hp v k ) † B i e ıθ k (i-j) (4.1) = N k=1 tr A † k A k ,
where A k = J j=0 e ıjθ k (P Hp v k ) † B j . Let us prove that in our conditions (1, m 1 , . . . , m J ) ∈ int F J a.s. That means that a.s. we cannot find a system (B 0 , . . . , B J ) non zero such that (4.2)

N k=1 tr A † k A k = 0 .
But since the matrices A † k A k are Hermitian nonnegative, (4.2) is equivalent to A k = 0 for all k = 1, . . . , N which yields to a system of N matricial equations:

J j=0 e ıjθ k (P Hp v k ) † B j = 0 , k = 1, . . . , N ,
which may be converted into a linear system of pN scalar equations in the p 2 (J + 1) unknown variables (B j ) s,t where j = 0, . . . , J and s, t = 1, . . . , p. We have supposed that J ≤ Q -1, so that in all cases p 2 (J + 1) ≤ pN. If this system has a nontrivial solution, the following

p 2 (J + 1) × p 2 (J + 1) minor    I p ⊗ Γ 1 . . . I p ⊗ Γ (J+1)p    where Γ k = P Hp v † k , P Hp v † k e ıθ k , P Hp v † k e 2ıθ k , . . . , P Hp v † k e Jıθ k
has a determinant zero. An easy permutation of rows shows that this determinant is, up to a change of sign,

    det     Γ 1 . . . Γ (J+1)p         p
If our system has a non-trivial solution, we have

(4.3) det     Γ 1 . . . Γ (J+1)p     = 0 .
This equation is polynomial in the variables e ıθ ℓ , P Hp v k T for ℓ, k ≤ (J + 1)p. Besides, under the Haar probability on U(N) the distribution of e ıθ ℓ , ℓ ≤ (J + 1)p is absolutely continuous with respect to the Lebesgue measure on T Jp , the distribution of P Hp v k T , k ≤ (J + 1)p is also diffuse on the set { (J+1)p s=1 f T s f s ≤ I p } and both arrays are independent. If the above polynomial is not identically zero, the set of its solutions will then be of measure zero. But if we choose P Hp v 1 , . . . , P Hp v p as the canonical basis (e 1 , . . . , e p ) of C p and P Hp v kp+s = P Hp v s = e s for k = 1, . . . , Jp and s = 1, . . . , p, equation (4.3) becomes: 

(4.4) det                          e T 1 e ıθ 1 e T 1 e 2ıθ
                       = 0 .
In the Christoffel-Darboux formula (see [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF] Proposition 3.6 (b))

(1 -z1 z 2 ) n k=0 ϕ R k (z 2 )ϕ R k (z 1 ) † = ϕ L, * n+1 (z 2 )ϕ L, * n+1 (z 1 ) † -ϕ R n+1 (z 2 )ϕ R n+1 (z 1 ) † taking z 1 = 0, z 2 = z gives ϕ L, * ℓ (z) = ℓ k=0 ϕ R k (z)g ℓ k , g ℓ k = ϕ R k (0) † ϕ L, * ℓ (0) † -1 (4.7) and then ϕ R k , (ϕ L ℓ ) * = g ℓ k (4.8)
But we have

ϕ R k = Φ R k κ R k ; ϕ L ℓ = κ L ℓ Φ L ℓ ; Φ L, * ℓ (0) = 1 p (4.9)
and from the Szegő recursion

ϕ R k (0) = -κ L k-1 † α † k-1 ρ R k-1 -1
so that

g ℓ k = -(ρ R k-1 ) -1 α k-1 κ L k-1 (κ L ℓ ) -1 = -α k-1 (ρ L k-1 ) -1 κ L k-1 (κ L ℓ ) -1 = -α k-1 κ L k (κ L ℓ ) -1 (4.10) (we have used α j ρ L j = ρ R j α j and ρ L j-1 = κ L j-1 κ L j -1
). Gathering (4.10), (4.8) and (4.6) we get

eventually G k,ℓ = -α k-1 ρ L k . . . ρ L ℓ-1 α † ℓ .

Proof of Proposition 2.8

First, let us rephrase the computation of ϕ R 1 . We look for ξ

= [ξ 1 • • • ξ p ] ∈ M N,p
, unitary in the sense that ≪ ξ, ξ ≫= I p , "orthogonal" to ε in the sense that ≪ ξ, ε ≫= 0 p and such that the vectors of ξ belong to span {ε, Uε}. In a first step, let us see that the matrix Uεεγ is orthogonal to ε if and only if

≪ Uε, ε ≫ = ≪ εγ, ε ≫ = γ † ≪ ε, ε ≫ hence γ = α † .
Let us now normalize this vector. The square of its "norm" is ≪ Uεεα † , Uεεα † ≫ = I pαα † , so that, using the notation of Simon for the defect matrices we claim that the matrix ξ = Uεεα † (ρ R ) -1 (4.11) satisfies all the requirements above. Of course, we demand that ρ R is invertible, but it is true in the generic case.

As in the scalar case, we define now an endomorphism V unitary letting invariant the subspace orthogonal to span {ε, Uε} and such that V ε = Uε. We know already from (4.11) that V ε = ξρ R + εα † . In the "basis" (ε, ξ), we can say that the matrix of the restriction of V will be Θ(α), as defined in (2.15), in the sense that if w = εa + ξb then V w = εa ′ + ξb ′ with

a ′ = α † a + ρ L b , b ′ = ρ R a -αb .

Now, the endomorphism

W = V -1 U (4.12)
is unitary and it fixes ε. In the basis obtained by orthonormalization of {ε, Uε, U 2 ε, . . . }, the endomorphism U has the block GGT matrix G R (α 0 , . . . ). In this basis V (U, ε) has the matrix Θ(α 0 ). and by (2.16) the restriction of W (U, ε) to ε ⊥ has the matrix G R (α 1 , . . . ).

Proof of Proposition 3.1

The first assertion is a straightforward consequence of the invariance of the Haar measure.

To prove the second assertion, we will follow some notation of Collins doctoral dissertation ([4]) Section 4.2. Let π be the canonical projection : M N,N → M p,N . The set π(U(N)) is a real sub-manifold of M p,N of dimension p(2Np), characterized by

π(U(N)) = {V ∈ M p,N : V V † = I p } . (4.13)
The pushforward π of the Haar measure on U(N) by π is invariant under the natural action at left and right of U(p) and U(N), respectively. Since the action of U(p) × U(N) on π(U(N)) is transitive, this measure is the only normalised invariant one.

For M ∈ M N,N set h(M) = π(M)π(M) † (4.14) and v(M) = h(M) -1/2 π(M) (4.15)
which leads to consider the unitary endomorphism U ′ = UΓ and to check successively

α(U ′ , ε) = α(U, ε) , ξ(U ′ , ε) = ξ(U, ε) ,
(see (4.16) and (4.11)). It should be clear that V (U ′ , ε) = V (U, ε) since they coincide on span {ε, ξ} (see (2.15) and leave invariant its orthogonal subspace. We have then

W (U, ε)Γ = V (U ′ , ε) -1 U ′ = W (U ′ , ε) and then EF (W (U, ε)Γ, α(U, ε)) = EF (W (U ′ , ε), α(U ′ , ε)) .
Since U ′ and U have the same distribution, we have checked (4.17) and the proof of the first step of the iteration is complete. Now we have to consider a matrix Haar distributed in U(Np).

It's the same reasoning. We stop the recursion at j = J.

Proof of Corollary 3.5

With the notations of Sec. 2.3, µ w,p is the spectral measure of the pair (U, H p ) so that, for p and

n 0 fixed, (4.18) (U n ) p i,j=1 = m n (µ w,p ) , 1 ≤ n ≤ n 0 .
Now, the n th matrix Verblunsky coefficient α (N ) n of µ w,p is also the (n + 1)th matrix canonical moment of µ w,p (as soon as the dimension N of the ambient space is greater than (n + 2)p) and there is a Taylor expansion of the moments m 1 , . . . , m n 0 ) in function of the canonical moments α 0 , . . . , α n 0 -1 (see [START_REF] Gamboa | Large deviations for random matricial moment problems[END_REF] Lemma 3.2). Then it is enough to use the so-called delta-method to deduce the statement of Corollary 3.5 from the second statement of Proposition 3.4 . Notice that for n 0 = 1 the result goes back to [START_REF] Petz | On asymptotics of large Haar distributed unitary matrices[END_REF].

Proof of Theorem 3.7

There is actually two possible proofs. The first one (that is presented here), is short and use directly the Verblunsky coefficients. The second one is quite longer and does not use the Verblunsky coefficients but directly the representation on the eigenvalues of the matrix measure. This second proof is much more general as it may be applied to a general sequence of matrix-valued random measures and is useful to obtain general sum rules. This point of view will be developed in the forthcoming paper [START_REF] Gamboa | From large deviations to sum rules[END_REF].

First of all, invoking Dawson-Gärtner's theorem on projective limits ([8] Th.4.6.1), we get the LDP for the random matrix measure at scale N with good rate function

I(µ) = - ∞ j=0 log det(I -α † j α j ) .
To conclude, we use the matricial Verblunsky form of the Szegő theorem (see originally [START_REF] Delsarte | Orthogonal polynomial matrices on the unit circle[END_REF], [START_REF] Simon | Orthogonal polynomials on the unit circle. Part 1: Classical theory and Part 2: Spectral Theory[END_REF] Theorem 2.13.5 and more recently [START_REF] Derevyagin | Szegő's theorem for matrix orthogonal polynomials[END_REF]):

I(µ) = - 1 2π π -π log det W (θ)dθ if dµ(θ) = W (θ) dθ 2π + dµ s (θ) (Lebesgue decomposition).
Notice that the last expression early appears in [START_REF] Widom | On the limit of block toeplitz determinants[END_REF] in the asymptotic expansion of determinant of block Toeplitz matrices (see also [START_REF] Dym | An abstract version of a limit theorem of Szegö[END_REF] for related results on more general block operators).

Proof of Corollary 3.8

Starting from ν = ν a + ν s , ν a = ν ′ a dz we see that ν a ≪ dz yields ν a ≪ I p dz. If ν ′ a > 0 a.e. then, by theorem 5.5 in [START_REF] Robertson | The decomposition of matrix-valued measures[END_REF] we have I p dz ≪ ν a , hence I p dz ≪ ν and the Radon-Nikodym derivative of I p dz with respect to ν is (ν ′ a ) -1 and (3.7) is valid. Conversely, if I p dz ≪ ν, then there exists a finite measure γ on T such that I p dz ≪ γ, ν ≪ γ and range (I p dz/dγ) ⊂ range (ν ′ γ ). But I p dz ≪ γ implies dz ≪ γ, so that dz = g(z)dγ. Since I p dz/dν = g(z)(ν ′ γ (z)) ♯ the finiteness of the integral in (3.7) has two consequences:

• g(z) > 0 for a.e. z and then dγ = (g(z)) -1 1 g(z)>0 dz + dγ s γ s ⊥ dz

• (ν ′ γ ) ♯ (z) = 0 for a.e. z. From the definition of the pseudo-inverse, this last requirement needs ν ′ γ = 0 for a.e. z.

This yields dν = ν ′ γ dγ = ν ′ γ (z)(g(z)) -1 1 g(z)>0 dz + ν ′ γ (z)dγ s and then ν ′ a (z) = ν ′ γ (z)(g(z)) -1 for a.e. z and (3.6) is valid. Then we use the following lemma whose proof is slightly postponed. The first statement entails that the supremum in (4.19) is actually an increasing limit. The second statement gives a limit for the integrand. But, in general, it is not possible to commute limit and integral in (3.8). Assumption (3.9) ensures a dominated convergence. The equality tr log = log det is classical (see [START_REF] Derevyagin | Szegő's theorem for matrix orthogonal polynomials[END_REF]). and it is straightforward to see that the (k -1)-section of L k (z) is L k-1 (z), so that we have an infinite Cholesky matrix L(z) whose generic entry will be denoted by ℓ i,j (z). From Plugging in (4.24) ends the proof of the first part of Lemma 4.1.

2. This follows directly from the Cholesky decomposition in (4.21).

1

 1 The influence of the mathematical work of Studden on our research A significant part of the mathematical contribution of W.J. Studden relies on moment problems or more generally on generalized moment problems for T -systems. The first author of the present paper first met the T -systems during his Ph.D preparation by the fascinating reading of two books

Remark 3 . 3

 33 N ) jhas in the matrix unit ball of M p,p the density Cor(Npj, p). Notice that for p = 1 the last Verblunsky coefficient α (1) N -1 is uniformly distributed on T. In the general case, the distribution of what could be the last coefficient α (N ) Q-1 is not obvious. Assume that N = p + r with r < p. Let us compute α 1 . Let us denote

2 .

 2 matrix with distribution Cor (N, p), then for fixed p √ NV If k and p are fixed, the k first (matrix) Verblunsky coefficients satisfy √

Corollary 3 . 5 (

 35 [START_REF] Krishnapur | From random matrices to random analytic functions[END_REF], Lemma 10 p.357) Let U ∈ U(N) sampled from the Haar measure. Fix p ≥ 1 and n 0 ≥ 1. Then the sequence of random variables

  matrix with density (3.1) in the unit ball, then for fixed p, the sequence

Theorem 3 . 7 1 p

 371 For fixed p ≥ 1, the family of random matrix measures µ at scale N with good rate function ν ∈ M 1 p -→ I p (ν) = -T log det ν ′ a (z)dz (3.6)

4. 10

 10 Proof of Theorem 3.10 As we noticed in (2.1) the structure of spectral measures is projective. We may apply the Dawson-Gärtner theorem ([8] Th. 4.6.1) and we get the rate function (4.19) sup k T log det µ ′ a k (z)dz .

Lemma 4 . 1

 41 In the settings of the theorem the following statements hold true:1. The sequence Tlog det µ ′ a k (z)dz is increasing in k.

  ) = det µ ′ a (z) .

Proof of Lemma 4. 1 1.

 1 For fixed k, the Hermitian non-negative matrix µ ′ a k (z) admits a Cholesky decomposition(4.21) µ ′ a k (z) = L k (z)L k (z) † ,

1 2 . 4 - 1 j=0

 1241 (z)|ℓ kk (z)| Taking logarithm and integrating the last relation in z we get (log |ℓ kk (z)| 2 dz which, by Jensen's inequality gives (4.24)log det µ ′ a k (z)dz + log det µ ′ a k-1 (z) ≥log |ℓ kk (z)| 2 dzFrom (4.21) we have also(4.25) |ℓ kk (z)| 2 = (µ ′ a (z)) kk -k-|ℓ kj (z)| 2 ≤ (µ ′ a (z)) kk .Now, µ is a matrix probability measure and then T µ ′ a (z)dz ≤ I, which implies (µ ′ a (z)) kk dz ≤ 1, and by integration in (4.25) (4.26) T |ℓ kk (z)| 2 dz ≤ 1 .
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Afer reordering into Vandermonde-type blocks, the right hand side is (up to a sign) p k=1 0≤i<j≤J e ıθ ip+ke ıθ jp+k . So, it is not identically zero and we may conclude that a.s. (I p , m 1 (µ w,p ), . . . , m J (µ w,p )) ∈ int F p .

Hence, we can construct a measure ν with infinite support whose J first moments fit with those of µ w,p using the Bernstein-Szegő construction (see [START_REF] Damanik | The analytic theory of matrix orthogonal polynomials[END_REF] Section 3.6).

Proof of Lemma 2.5

We start with ϕ R 0 = ϕ L 0 = I p . Then by (2.7) and (2.8) with n = 0

Proof of Lemma 2.6

In this proof, all inner products are right inner products. Let us begin with the subdiagonal terms:

Now it is the first term which vanishes, so that it remains 

Proof of Theorem 3.2

There are two approaches in the scalar case, that of [START_REF] Killip | Matrix models for circular ensembles[END_REF] and that of [START_REF] Simon | CMV matrices: Five years after[END_REF] section 11. We follow the method of proof of Theorem 11.1 in [START_REF] Simon | CMV matrices: Five years after[END_REF] and extend it to the matricial case. The only difficulty comes from the noncommutativity.

an orthonormal system and (see (2.13)

If U is Haar distributed, we have to find the distribution of α and to check that conditionally upon α, the matrix W is Haar distributed on U(Np). Actually, α is nothing else than the upper left corner of size p of U and its distribution is known from Collins to be the Cor(N, p) one.

To prove the remaining part, let us see how the different quantities depend on U. To be clear, let us write α(U, ε) for α and the same for ξ, V and W as defined in the proof of Proposition 2.8.. To characterize the Haar distribution, we use the criterion of invariance by left multiplication by an unitary matrix. We have to prove that if Γ is a fixed unitary matrix letting ε invariant and if F is a Borel function EF (W (U, ε)Γ, α(U, ε)) = EF (W (U, ε), α(U, ε)) . (4.17 We have