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Abstract

Let H be a Hilbert space, let U be a unitary operator on H and let K be a cyclic subspace

for U . The spectral measure of the pair (U,K) is an operator-valued measure µK on the unit

circle T such that ∫

T

zkdµK(z) =
(
PKU

k
)
↾K

, ∀ k ≥ 0

where PK and ↾ K are the projection and restriction on K, respectively. When K is one

dimensional, µ is a scalar probability measure. In this case, if U is picked at random from

the unitary group U(N) under the Haar measure, then any fixed K is almost surely cyclic

for U . Let µ(N) be the random spectral (scalar) measure of (U,K). The sequence (µ(N)) was

studied extensively, in the regime of large N . It converges to the Haar measure λ on T and

satisfies the Large Deviation Principle at scale N with a good rate function which is the

reverse Kullback information with respect to λ ([21]). The purpose of the present paper is

to give an extension of this result for general K (of fixed finite dimension p) and eventually

to offer a projective statement (all p simultaneously), at the level of operator-valued spectral

measures in infinite dimensional spaces.
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1 Introduction

1.1 The influence of the mathematical work of Studden on our re-

search

A significant part of the mathematical contribution of W.J. Studden relies on moment problems

or more generally on generalized moment problems for T -systems. The first author of the present

paper first met the T -systems during his Ph.D preparation by the fascinating reading of two books

on moment problems. The first one is the book of Krein and Nudel’man [26] dealing mainly with

the Markov moment problem. The second one is the book of Karlin and Studden [24] that offers a

beautiful journey inside the continent of T -systems properties. The reading of these two books has

whetted our interest for the literature on moment problems and by the middle of the nineties we

came across a very interesting paper of Chang, Kempermann and Studden [3] on the asymptotic

behaviour of randomized moment sequences. This seminal paper gives a very nice Borel Poincaré

like theorem for moment sequences of probability measures on the unit interval and has been quite

motivating for at least the ten last years of our researches. The probabilized moment space frame

developed therein led to many papers written by many authors (see for example [23], [18], [28],

[10], [11], [20] ). One of the main ingredient tool for the study of probabilized moment spaces is

the parametrization of these spaces by the canonical moments. Roughly speaking, under natural

probability measures these parameters have a joint product law with beta marginal distributions.

They are also very intriguing nice mathematical objects with a lot of properties that we learned

from the excellent book of Dette and Studden [12]. Moreover, studying the exhaustive books of

Simon ([34]), we realized that canonical moments, also called Verblunsky coefficients, are quite

important objects in complex analysis and spectral theory. At this time the second author of the

present paper was working on the asymptotic properties of the determinant of classical random

matrix ensembles ([33]). Surprisingly, by the Bartlett formula, the distribution of these random

determinants involves product of independent beta random variables having similar parameters

as those found in the randomized moment problem. Observing this analogy, we discovered a

connection between random moments and spectral measures of classical random matrix ensembles

([21], [22]). The present paper is a matricial extension of the asymptotic studies conducted in

the latter papers dealing with scalar random spectral measures. This extension has been possible

thanks to two significant contributions of Dette and Studden in the field of matricial moment

problems (see [13], and [14]).

We never had the opportunity to meet W.J. Studden but we wish to pay here a tribute to this

creative mathematician that had often enlighten the paths of our researches.
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1.2 Introduction to this paper

To capture the asymptotic behavior of large dimensional unitary random matrices, the usual

statistic is the empirical spectral distribution, providing equal weights to all eigenvalues

µ
u
=

1

N

N∑

k=1

δλk
.

More recently, some authors used another random probability measure based on eigenvalues and

eigenvectors ([25], [2], [21]). If U is a unitary matrix and e is a fixed vector (assumed to be

cyclic), the so-called spectral measure µ
w,1 of the pair (U, e) may be defined through its algebraic

moments. Indeed, for all n ∈ Z

〈e, Une〉 =
∫

T

zndµ
w,1(z) .

Here, T is the unit circle {z ∈ C : |z| = 1}. The measure µ
w,1 is finitely supported on the

eigenvalues of U , we may write

µ
w,1 =

N∑

k=1

wkδλk

where wk is the square of the scalar product of e with a unitary eigenvector associated with λk.

The latter measure carries more information than the former. The weights in µ
w,1 are blurred

footprints of the eigenvectors of U . To make these footprints unblurred, it is then tempting to

try to increase the dimension by projecting U on a fixed subspace of dimension p instead on the

span generated by the single vector e. We obtain a matrix measure. This is what we will do in

this paper. Actually we may even go back to the representation given by the spectral theorem

(see [16])

U =

∫

T

zEU (dz)

where EU is the spectral measure of U (or resolution of the identity for U). In our work, we

sample U according to the Haar distribution on U(N) and we study the random object EU .

The paper is organized as follows. In the next section, we first frame our paper by giving the

main notations and definitions needed further. Then, we recall some facts on unitary matrices

and matrix orthogonal polynomials on the unit circle. We also show technical results on these

objects that will be useful later. In Section 3 we first study the effects of the randomization of the

unitary matrices on the object defined in Section 2. In particular, our approach merely simplifies

the proof of the asymptotic normality for a fixed corner extracted in the unitary ensemble given

in [27]. Further, we show large deviation theorems both for matrix random spectral measure and

their infinite dimensional lifting. All proofs are postponed to Section 4.
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2 Preliminaries

2.1 Some notations and definitions

To begin with, let us give some definitions and notations. Let N = {1, 2, . . . } and H = ℓ2
C
(N).

For i ≥ 1, let ei = (0, . . . , 0, 1, 0, . . . ) be the i-th element of the canonical basis of H and for p ≥ 1

let Hp be span {e1, · · · , ep}. We define several sets of matrices with complex entries:

• Mp,n, the set of p× n matrices with complex entries,

• U(n), the set of n× n unitary matrices,

At last, Ip denotes the p× p identity matrix on Hp.

2.2 Operator-valued and spectral measures

Let B(T) denote the Borel σ-algebra on T. Let H be a separable Hilbert space, IH be the identity

in H and H(H) be the algebra of bounded Hermitian endomorphisms on H.

Definition 2.1

1. A mapping Σ : B(T) → H(H) is called an operator-valued measure in H if

(a) Σ(∅) = 0;

(b) Σ is non-negative i.e. if Σ(∆) ≥ 0 for ∆ ∈ B(T);
(c) Σ is strongly countably additive, i.e., if ∆ = ∪∞

j=1∆j is a disjoint decomposition of

∆ ∈ B(T), then Σ(∆) =
∑∞

j=1Σ(∆j) (in the strong sense);

2. An operator-valued measure Σ is an operator-valued probability if Σ(T) = IH;

3. An operator-valued probability E is said to be spectral or orthogonal if it is projection-valued

i.e. if for any ∆ ∈ B(T), E(∆) = E(∆)2.

Let PL be the orthogonal projection onto the closed linear subspace L. The notation T↾L means

the restriction of a linear operator T on the set L. In the sequel, 〈, 〉 will denote the standard

Hermitian product without mention of the ambient Hilbert space. For α, β elements of a Hilbert

space, the outer product |α〉〈β| is a rank one endomorphism defined by

(|α〉〈β|)(·) = α〈β, .〉 .
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If ν is an operator-valued measure on T and K is a subspace of H, then ν↾K denotes the map

B(T) → B(K) such that ν↾K(∆) = ν(∆)↾K . Of course, if L ⊂ K ⊂ H we have

ν↾L = (ν↾K)↾L .(2.1)

M(H) (resp. M1(H)) denotes the set of operator-valued measures in H (resp. operator-valued

probability measures in H). We equip M(H) with the following topology: νn → ν if, and only if,

for all f ∈ H, the sequence of positive (scalar) measures 〈f, νn(.)f〉 converges weakly to 〈f, ν(.)f〉.
In the finite dimensional space case, an operator-valued measure is a matrix measure. For p ∈ N,

we denote by Mp (resp. M1
p) the set of all Hermitian non-negative p× p matrix measures (resp.

matrix probability measures). For µ ∈ M1
p, the (matrix) moment mℓ(µ) of order ℓ ∈ Z of µ is

the element of Mp,p defined by

(2.2) mℓ(µ) =

∫

T

zℓdµ .

If λ is the Lebesgue measure on T, the operator-valued measure Ipλ is in some sense the reference

measure. We need the notion of absolute continuity and Lebesgue decomposition for operator-

valued measures. We refer to Robertson [32] and to Mandrekar [29].

If ν is a non-negative σ-finite measure on T, we say that a m × n matrix measure M on T is

absolutely continuous (a.c. in short) with respect to ν (M ≪ ν) if each entry of M is a.c. with

respect to ν. In this case M ′
ν will denote the matrix-valued function whose entries are the Radon-

Nikodym derivatives. Let M be a m ×m non-negative Hermitian matrix measure. Then, there

exist unique matrix measures Ma and Ms such that M = Ma+Ms, Ma and Ms are non-negative.

Furthermore, Ma ≪ ν and Ms is singular with respect to ν, i.e. nonzero only on a set of ν

measure zero.

Now, we say that a matrix measure Q is strongly a.c. with respect to M (Q ≪ M) if and only

if there exists a nonegative measure ν dominating M and Q such that the range of the operator

Q′
ν(ω) is a subset of the range of the operator M ′

ν(ω) for ν-almost every ω. Actually, if M is ℓ×n

and Q is m× n then Q ≪ M iff there exists a ℓ×m matrix-valued function Φ integrable with

respect to M such that dQ = ΦdM . Such a Φ is essentially unique and Φ = Q′
ν (M

′
ν)

♯ where ♯

denotes the pseudo-inverse.

5



2.3 Unitary operators and unitary matrices

For any unitary operator U in H the spectral theorem (see [16]) provides a spectral operator-

valued probability EU such that U =
∫
T
zEU (dz). In other words, for any f, g ∈ H and k ∈ Z

〈f, Ukg〉 =
∫

T

zk〈f, EU(dz)g〉 .(2.3)

If K is a subspace of H, the spectral measure of the pair (U,K) is by definition (EU)↾K. If K is a

one-dimensional subspace, the spectral measure is scalar (see the previous section).

Let N be a fixed integer. In the generic situation, an operator U ∈ U(N) has distinct eigenvalues

eıθk , k = 1, · · · , N and its spectral decomposition may be written

U =

N∑

k=1

eıθk |vk〉〈vk| ,(2.4)

where for k = 1, · · · , N , vk is a unit eigenvector, associated with the eigenvalue eıθk . Obviously,

for p ≤ N , the spectral measure associated with the pair (U,Hp) is

µ
w,p :=

N∑

k=1

wk δeıθk ,(2.5)

where, for k = 1, · · · , N , wk := |PHp
vk〉〈PHp

vk|, is an Hermitian endomorphism on Hp. This

spectral measure is a matrix probability measure which satisfies

(2.6) mℓ(µw,p) =
(
〈ei, U ℓej〉

)p
i,j=1

.

2.4 Matrix orthogonal polynomials on the unit circle

2.4.1 Construction

In spectral theory, orthogonal polynomials play a prominent role. Here, we will need to work

with matrix-valued orthogonal polynomials with respect to matrix measures on the unit circle.

We recall some useful facts and refer to [34] for more on the subject. To begin with, as in

the scalar case, these orthogonal polynomials satisfy a recursion and the matrices appearing in

this recursion are the so-called matrix Verblunsky coefficients (see [6]). Let us give some more

notations. Let p ∈ N and µ ∈ Mp. Further, let F and G be measurable matrix valued functions

: T → Mp,p. We define two p× p matrices by setting

〈〈F,G〉〉R =

∫

T

F (z)†dµ(z)G(z) ∈ Mp,p

〈〈F,G〉〉L =

∫

T

G(z)dµ(z)F (z)† ∈ Mp,p .
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A sequence of functions (ϕj) in Hp is called right-orthonormal if and only if

〈〈ϕi, ϕj〉〉R = δijIp .

The orthogonal polynomial recursion is built as follows.

First, assume that the support of µ is infinite. We define the right monic matrix orthogonal

polynomials ΦR
n by applying Gram-Schmidt procedure to {Ip, zIp, z2Ip, . . . }. In other words, ΦR

n

is the unique matrix polynomial ΦR
n (z) = znIp+ lower order terms such that 〈〈zkIp,ΦR

n 〉〉R = 0

for k = 0, . . . , n− 1. The normalized orthogonal polynomials are defined by

ϕ0 = Ip , ϕR
n = ΦR

nκ
R
n

where the sequence of p× p matrix (κR
n ) satisfy, for all n, the condition

(
κR
n

)−1
κR
n+1 > 0 and is

such that the set {ϕR
n} is orthonormal. We define the sequence of left-orthonormal polynomials

{ϕL
n} in the same way except that the above condition is replaced by κL

n+1

(
κL
n

)−1
> 0. The Szegő

recursion is then

zϕL
n − ρLnϕ

L
n+1 = α†

n(ϕ
R
n )

∗(2.7)

zϕR
n − ϕR

n+1ρ
R
n = (ϕL

n)
∗α†

n ,(2.8)

where for all n ∈ N,

• αn belongs to Bp the closed unit ball of Mp×p defined by

Bp := {V ∈ Mp,p : V V † ≤ Ip} ,

• ρn is the so-called defect matrix defined by

ρRn :=
(
Ip − αnα

†
n

)1/2
, ρLn =

(
Ip − α†

nαn

)1/2
,(2.9)

• for a matrix polynomial P , having degree n, the reversed polynomial P ∗ is defined by

P ∗(z) := znP (1/z̄)† .

Notice that the construction of the recursion coefficients uses only the matrix moments. The

Verblunski’s theorem (analogue of Favard’s theorem for matrix orthogonal polynomials on the

unit circle) establishes a one-to-one correspondance between matrix measures on T with infinite

support and sequences of elements of the interior of Bp (Theorem 3.12 in [6]).

Now, for a matrix measure having a finite support, the construction of the Verblunsky coefficients

is not obvious. In [15] Theorem 2.1, a sufficient condition on the moments for such a construction

is provided. It is related to the positivity of a block-Toeplitz matrix, as it is also mentioned in

[34] at the top of p.208.
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Lemma 2.2 Let N = Qp+ r, with Q ≥ 1 and 0 ≤ r < p. Let J ≤ Q− 1. Then for almost every

U ∈ U(N) equipped with the Haar distribution, there exists a measure ν with infinite support and

satisfying

mk(ν) = mk(µw,p) , k ≤ J .

2.4.2 A unitary isomorphism

As in the scalar case, we can build a unitary equivalence between the linear spaceMN,p (of systems

of p vectors of HN ) and the linear space PN,p of polynomials of degree ≤ N − 1 with coefficients

in Mp,p. Let e = [e1 · · · ep] be a N × p matrix consisting in p column vectors of dimension N .

In the same way, we consider the N × p matrix Ue = [Ue1 · · ·Uep]. The pseudo-scalar (inner)

product of e with f = [f1 · · · fp] is a matrix p× p denoted by ≪ f, e ≫ and defined by

≪ f, e ≫i,j = 〈fi, ej〉 i, j = 1, . . . , p .

It is clear that if the system e1, · · · , ep is orthonormal, then ≪ e, e ≫= Ip. It is clear also that if

W ∈ MN,N and e, f are as above, then

(2.10) ≪ f,We ≫=≪ W †f, e ≫ .

Elementary computations lead also to the useful following properties

(2.11) ≪ f, gW ≫=≪ f, g ≫ W , ≪ fW, g ≫= W † ≪ f, g ≫ ,

where W ∈ Mp,p. Notice that s = [s1 · · · sp] consists in elements of span {e} if and only if there

exists a matrix γ ∈ Mp,p such that s = eγ.

Let ε = [ε1 · · · εp] an orthonormal system, U unitary on HN and µ the spectral measure of the

pair (U, span ε).

Definition 2.3 We say that ε is cyclic for U , if

span {Ukεj, 0 ≤ k ≤ N − 1, 1 ≤ j ≤ p} = C
N .(2.12)

In this case, each element M of MN,p may be written as M =
∑N−1

k=0 Ukεγk where γk ∈ Mp,p and

then we can associate the polynomial q(z) =
∑N−1

k=0 γkz
k ∈ PN,p.

Remark 2.4 The system ε = [ε1, . . . , εp] is cyclic for U as soon as one of the εj is cyclic for U ,

but of course, it is not a necessary condition.
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If ε is cyclic for U we have then a one-to-one correspondance between MN,p and PN,p which

preserves the pseudo-scalar products ≪,≫ and 〈〈, 〉〉R:

• To q(z) =
∑

k γkz
k ∈ PN,p we associate Mq =

∑
k U

kεγk ∈ MN,p

• If p and q are two polynomials, we have

≪ Mp,Mq ≫= 〈〈p, q〉〉R ,

(this property is straightforward for monomials and is extended easily).

Lemma 2.5 If ε is a cyclic system for U , then the first Verblunsky coefficient of the pair (U, ε)

denoted by α0(U, ε) satisfies

(2.13) α0(U, ε)
† =≪ ε, Uε ≫ .

We construct now the GGT matrix GR, which is the matrix of the unitary operator

f ∈ L2(dµ) 7→ (z 7→ zf(z)) ∈ L2(dµ)

in the orthonormal basis ϕR
k , that is

GR
k,ℓ = 〈〈ϕR

k , zϕ
R
ℓ 〉〉R .

Lemma 2.6 We have

GR
k,ℓ =





−αk−1ρ
L
k ρ

L
k+1 · · · ρLℓ−1α

†
ℓ 0 ≤ k ≤ ℓ

ρRℓ k = ℓ+ 1

0 k ≥ ℓ+ 1

(2.14)

(with α−1 = −1p , ρL−1 = 0).

It is convenient to call GR(α0, α1, . . . ) the above GGT matrix built from the Verblunsky coef-

ficients (α0, α1, . . . ). We have the easy following result, which is a replica of Theorem 10.1 in

Simon [35].

Proposition 2.7 Let α be in the matrix unit ball. Set

Θ(α) :=

(
α† ρL

ρR −α

)
,(2.15)

and Θ̃(α) := Θ(α)⊕ Ip ⊕ Ip ⊕ .... Then we have

(2.16) GR (α0, α1, . . . ) = Θ̃(α0)[Ip ⊕ GR (α1, α2, . . . )] .
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For the sake of completeness, let us consider now the operator point of view.

Proposition 2.8 Assume that ε is cyclic for U . Let ξ(U, ε) ∈ MN,p be the image of ϕ1 in the

isomorphism and set H0 := span {ε, Uε} = span {ε, ξ}. Let V (U, ε) be the unitary transform

which leaves invariant the subspace orthogonal to H0 and whose restriction to H0 has the matrix

Θ(α0(U, ε)) in the basis (ε, ξ). Then ξ(U, ε) is cyclic for the restriction of W (U, ε) := V −1(U, ε)U

to ε⊥ and we have

α1(ε, U) = α0(ξ(U, ε),W (U, ε)) .(2.17)

3 Randomization

3.1 Distributions on Mn,n

Along this paper, we use three probability distributions,

• The Haar measure on U(n) for n ≥ 1.

• Gin(n), the (Ginibre) distribution on Mn,n which makes all elements independent and stan-

dard complex Gaussian. It has the density

π−n2

exp
(
−trGG†

)

with respect to the Lebesgue measure.

• Cor(n, p) (for n > 2p) the distribution on Mp,p of the top-left corner of size p× p of a Haar

distributed random matrix. It has the density

V 7→ Kp,n det
(
Ip − V V †

)n−2p
(3.1)

on the unit ball Bp where Kp,n is the normalization constant (see for instance [5] Theorem

5.1). Actually, [30] Lemma 1.4 gives

Kp,n = π−p2 (n− 2p)!(n− 2p+ 1)! . . . (n− p− 1)!

(n− p)!(n− p + 1)! . . . (n− 1)!
.

3.2 Preliminary results

Here, we describe the distribution of the matrix spectral measure. The first statement uses the

encoding by weights and (2.5).
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Proposition 3.1 Let U be Haar distributed in U(N).

1. The random variable (eıθ1 , · · · , eıθN ) ∈ TN is independent of the random variable

(w1, · · · , wN).

2. For k = 1, · · · , N , let ak be independent p-dimensional random vectors with complex stan-

dard normal distribution. The random variable (w1, · · · , wN) has the same distribution as

(
h−1/2v1h

−1/2, · · · , h−1/2vNh
−1/2

)

where vk := |ak〉ak| , k = 1, · · · , N and

h :=

N∑

k=1

vk.(3.2)

The second statement describes the distribution of the Verblunsky coefficients.

Theorem 3.2 Let N = pQ+ r with 0 ≤ r < p and Q > 2. Let U be chosen at random in U(N)

according to Haar measure. Let µ
(N)
p be the matrix spectral measure for (U, e1, . . . , ep). Then, the

matrix Verblunsky coefficients α
(N)
j := αj(µ

(N)
p ) for j = 0, · · · , Q− 2 are independent. Moreover,

for j ≤ Q− 2, α
(N)
j has in the matrix unit ball of Mp,p the density Cor(N − pj, p).

Remark 3.3 Notice that for p = 1 the last Verblunsky coefficient α
(1)
N−1 is uniformly distributed

on T. In the general case, the distribution of what could be the last coefficient α
(N)
Q−1 is not obvious.

Assume that N = p+ r with r < p. Let us compute α1. Let us denote

U =

(
α0 C

B A

)
.

According to Arlinskii [1] Theorem 4.2, we have

(3.3) α1 = (ρR0 )
−1CB(ρL0 )

−1

where (ρR0 )
−1 and (ρL0 )

−1 are the Moore-Penrose pseudo-inverses of ρR0 and ρL0 respectively. To

see that we cannot use the true inverses let us look at (ρR0 )
2 = Ip − α0α

†
0 = CC†. The singularity

of ρR0 follows directly from

rank (CC†) ≤ rank (C) < p .

We did not succeed in computing the distribution of α1 given by (3.3) in such a case. Notice that

in formula (3.3) we can replace CB by Γ2 − Γ2
1 where Γ1 = α0 and Γ2 are the first two moments

of µ. We recover a formula which fits with (2.19) in [15].
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3.2.1 Asymptotics

In this section, we consider central limit theorems (CLT) i.e. convergences in distribution, and

large deviation principles (LDP). To make this paper self-contained, let us first recall what is a

LDP. For more on LDP we refer to [8].

Let (aN ) be an increasing positive sequence of real numbers going to infinity with N . We say that

a sequence (QN) of probability measures on a measurable Hausdorff space U with corresponding

Borel field B(U)) satisfies an LDP at scale aN and rate function I if:

i) I is lower semicontinuous, with values in R+ ∪ {+∞}.

ii) For any measurable set A of U :

−I(intA) ≤ lim inf
N→∞

a−1
n logQN(A) ≤ lim sup

N→∞

a−1
n logQN(A) ≤ −I(cloA),

where I(A) = infξ∈A I(ξ) and intA (resp. cloA) is the interior (resp. the closure) of A.

We say that the rate function I is good if its level sets {x ∈ U : I(x) ≤ a} are compact for any

a ≥ 0. More generally, a sequence of U -valued random variables is said to satisfy an LDP if their

distributions satisfy a LDP.

Proposition 3.4 (CLT)

1. If V
(N)
p is a random matrix with distribution Cor (N, p), then for fixed p

√
NV (N)

p
D−→ Gin(p)

2. If k and p are fixed, the k first (matrix) Verblunsky coefficients satisfy

√
N(α

(N)
0 , . . . , α

(N)
k )

D−→ (G1, . . . , Gk)

where G1, . . . , Gk are independent and Gin(p) distributed.

There are two proofs of the first statement in [20]. The second statement is a consequence of the

first statement and of Theorem 3.2 above.

Coming back to the moments of the measure µ
(N)
w we recover a result of Krishnapur, so offering

a proof (postponed to Section 4.7) shorter than the involved combinatorial original one.

Corollary 3.5 ([27], Lemma 10 p.357) Let U ∈ U(N) sampled from the Haar measure. Fix

p ≥ 1 and n0 ≥ 1. Then the sequence of random variables
√
N [Un]i,j, 1 ≤ n ≤ n0, i, j ≤ p,

converges as N → ∞ in distribution to independent standard complex Gaussian matrices.
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Theorem 3.6 (LDP)

1. If V
(N)
p is a random matrix with density (3.1) in the unit ball, then for fixed p, the sequence

(V
(N)
p )N satisfies the LDP at scale N in Mp,p with good rate function

v ∈ Mp,p 7−→ I(v) =




− log det(Ip − vv†) if vv† < Ip,

∞ otherwise.
(3.4)

2. For fixed p ≥ 1 and k ≥ 0, the sequence
(
α
(N)
0 , . . . , α

(N)
k

)
N

satisfies the LDP at scale N in

Mp,p × · · · ×Mp,p with good rate function

Ik(α0, . . . , αk) =




−∑k

j=0 log det(I − α†
jαj) if α†

jαj < Ip for j = 0, . . . , k ,

∞ otherwise.
(3.5)

The first statement is a direct consequence of the explicit expression of the density and the second

statement comes from the independence of Verblunsky coefficients. These are arguments from

[20]. It is worthwhile to quote the scalar case which was established in [28].

3.3 Large deviations for the spectral measure in fixed dimension

Theorem 3.7 For fixed p ≥ 1, the family of random matrix measures
(
µ
(N)
w,p

)
N
satisfies the LDP

in M1
p at scale N with good rate function

ν ∈ M1
p 7−→ Ip(ν) = −

∫

T

log det ν ′
a(z)dz(3.6)

where dν(z) = ν ′
a(z)dz + dνs(z) is the Lebesgue decomposition of ν.

Corollary 3.8 It is possible to rewrite the above quantity in the flavour of Kullback information

with the notation of [29] or [32], i.e.

Ip(ν) =





∫

T

log det
Ipdz

dν(z)
dz if Ipdz ≪ dν(z),

∞ otherwise.

(3.7)

where ≪ denotes the strongly absolute continuity (see Section 2.2).

Remark 3.9 The deviations are from λp(dz) := Ipdz whose moments of every order are zero,

i.e.
∫
T
zkIpdz = 0p for k 6= 0, where 0p is the null endomorphism on Hp. This corresponds to the

fact that limN (U
k)i,j = 0 for every k, i, j ≥ 1 fixed.
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3.4 Large deviations - Operator-valued random measures

Every element U of U(N) can be extended to an operator on H by tensorisation with identity.

More precisely, if (ei) denotes as above the canonical basis of H we define

Û

(
∞∑

1

hiei

)
=

N∑

1

hiU(ei) +

∞∑

N+1

hjej .

When U is chosen according to the Haar measure in U(N), the (random) spectral measure

associated with Û is denoted µ(N). It is of the form

µ(N) = EÛ =

N∑

k=1

|v̂k〉〈v̂k| δeiθk +

(
∞∑

k=N+1

|ek〉〈ek|
)
δ1 ,

where the v̂k are the eigenvectors of U extended in CN by zeros. We establish now an LDP for

this sequence.

Theorem 3.10 The family of random spectral measures
(
µ(N)

)
N
satisfies the LDP in M1(H) at

scale N with the good rate function

(3.8) µ ∈ M1(H) 7−→ I∞(µ) = lim
k

↑
∫

T

− log detµ′
a
k
(z)dz

where µ = µ′
adz + µs and µ′

a is a measurable function from T to H(H) and

µ′
a
k
= PHk

(µ′
a(z))↾Hk

.

Moreover, if there is a constant C > 1 such that for every k and z

(3.9) C−1 ≤ detµ′
a
k
(z) ≤ C

and if for every z the operator IH − µ′
a(z) is trace class and z 7→ tr log µ′

a(z) ∈ L1(T), then

I∞(µ) =

∫

T

−tr log µ′
a(z)dz .(3.10)

Remark 3.11 The deviations are from λ∞(dz) := IHdz, whose moments of every order are zero,

i.e.
∫
T
zkIHdz = 0H for k 6= 0, where 0H is the null endomorphism on H. As in Remark 3.9 this

corresponds to the fact that limN(U
k)i,j = 0 for every k, i, j ≥ 1 fixed.

Remark 3.12 The boundedness assumption on the sequence (detµ′
a
k(z)) cannot be deduced from

a simple hypothesis on the operator valued density µ′
a.
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4 Proofs

4.1 Proof of Lemma 2.2

Let us first describe the result of Dette and Wagener [15] (up to a slight change of notation). Let

for ℓ = 1, 2, . . .

Fℓ := {(Ip, m1(µ), . . . , mℓ(µ)) | µ ∈ M1
p}

the ℓth moment space of matrix (probability) measures on the unit circle. Their Theorem 2.1

says that m̃ = (1, m1, . . . , mJ) ∈ FJ if and only if

J∑

i,j=0

tr(B†
jmi−jBi) ≥ 0 for all B0, . . . , BJ ∈ C

p×p

where for k > 0, m−k = m†
k. Moreover m̃ ∈ int FJ if and only if there is a strict inequality above

except if B0 = · · · = Bℓ = 0.

For ℓ = 1, . . . , J , let mℓ := mℓ(µw,p). We have

J∑

i,j=0

tr(B†
jmi−jBi) =

N∑

k=1

tr

(
J∑

i,j=0

B†
jPHp

vk(PHp
vk)

†Bie
ıθk(i−j)

)
(4.1)

=
N∑

k=1

tr A†
kAk ,

where Ak =
∑J

j=0 e
ıjθk(PHp

vk)
†Bj. Let us prove that in our conditions (1, m1, . . . , mJ) ∈ int FJ

a.s. That means that a.s. we cannot find a system (B0, . . . , BJ) non zero such that

(4.2)

N∑

k=1

tr A†
kAk = 0 .

But since the matrices A†
kAk are Hermitian nonnegative, (4.2) is equivalent to Ak = 0 for all

k = 1, . . . , N which yields to a system of N matricial equations:

J∑

j=0

eıjθk(PHp
vk)

†Bj = 0 , k = 1, . . . , N ,

which may be converted into a linear system of pN scalar equations in the p2(J + 1) unknown

variables (Bj)s,t where j = 0, . . . , J and s, t = 1, . . . , p. We have supposed that J ≤ Q − 1,

so that in all cases p2(J + 1) ≤ pN . If this system has a nontrivial solution, the following
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p2(J + 1)× p2(J + 1) minor




Ip ⊗ Γ1

. . .

Ip ⊗ Γ(J+1)p


 where Γk =

(
PHp

v†k, PHp
v†ke

ıθk , PHp
v†ke

2ıθk , . . . , PHp
v†ke

Jıθk
)

has a determinant zero. An easy permutation of rows shows that this determinant is, up to a

change of sign, 
det




Γ1

...

Γ(J+1)p







p

If our system has a non-trivial solution, we have

(4.3) det




Γ1

...

Γ(J+1)p


 = 0 .

This equation is polynomial in the variables eıθℓ ,
(
PHp

vk
)T

for ℓ, k ≤ (J + 1)p. Besides, under

the Haar probability on U(N) the distribution of eıθℓ , ℓ ≤ (J + 1)p is absolutely continuous

with respect to the Lebesgue measure on TJp, the distribution of
(
PHp

vk
)T

, k ≤ (J + 1)p is

also diffuse on the set {∑(J+1)p
s=1 fT

s fs ≤ Ip} and both arrays are independent. If the above

polynomial is not identically zero, the set of its solutions will then be of measure zero. But if we

choose PHp
v1, . . . , PHp

vp as the canonical basis (e1, . . . , ep) of C
p and PHp

vkp+s = PHp
vs = es for

k = 1, . . . , Jp and s = 1, . . . , p, equation (4.3) becomes:

(4.4) det




eT1 eıθ1eT1 e2ıθ1eT1 . . . eJıθ1eT1

eT2 eıθ2eT2 e2ıθ2eT2 . . . eJıθ2eT2
...

...
...

...
...

eTp eıθpeTp e2ıθpeTp . . . eJıθpeTp

eT1 eıθp+1eT1 e2ıθp+1eT1 . . . eJıθp+1eT1
...

...
...

...
...

eTp eıθ2peTp e2ıθ2peTp . . . eJıθ2peTp
...

...
...

...
...

eT1 eıθJp+1eT1 e2ıθJp+1eT1 . . . eJıθJp+1eT1
...

...
...

...
...

eTp eıθ(J+1)peTp e2ıθ(J+1)peTp . . . eJıθ(J+1)peTp




= 0 .
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Afer reordering into Vandermonde-type blocks, the right hand side is (up to a sign)

p∏

k=1

∏

0≤i<j≤J

(
eıθip+k − eıθjp+k

)
.

So, it is not identically zero and we may conclude that a.s. (Ip, m1(µw,p), . . . , mJ(µw,p)) ∈ int Fp.

Hence, we can construct a measure ν with infinite support whose J first moments fit with those

of µ
w,p using the Bernstein-Szegő construction (see [6] Section 3.6).

4.2 Proof of Lemma 2.5

We start with ϕR
0 = ϕL

0 = Ip. Then by (2.7) and (2.8) with n = 0

zIp − ρL0ϕ
L
1 = α†

0

zIp − ϕR
1 ρ

R
0 = α†

0 .(4.5)

Since ϕR
1 (resp. ϕL

1 ) is orthogonal to ϕR
0 (resp. ϕL

0 ) we get α†
0 = 〈〈Ip, zIp〉〉R, so that α0(U, ε)

† =

≪ ε, Uε ≫.

4.3 Proof of Lemma 2.6

In this proof, all inner products are right inner products. Let us begin with the subdiagonal

terms:

Gℓ+1,ℓ = 〈〈ϕR
ℓ+1, zϕ

R
ℓ 〉〉 .

From (2.8))

〈〈ϕR
ℓ+1, zϕ

R
ℓ 〉〉 = 〈〈ϕR

ℓ+1, ϕ
R
ℓ+1〉〉ρRℓ − 〈〈ϕR

ℓ+1, (ϕ
L
ℓ )

∗〉〉α†
ℓ

and since (ϕL
ℓ )

∗ is a polynomial of degree ℓ, it is orthogonal to ϕR
ℓ+1, and Gℓ+1,ℓ = ρRℓ .

Suppose now 0 ≤ k ≤ ℓ. Again from (2.6) we have

〈〈ϕR
k , zϕ

R
ℓ 〉〉 = 〈〈ϕR

k , ϕ
R
ℓ+1〉〉ρRℓ − 〈〈ϕR

k , (ϕ
L
ℓ )

∗〉〉α†
ℓ

Now it is the first term which vanishes, so that it remains

〈〈ϕR
k , zϕ

R
ℓ 〉〉 = −〈〈ϕR

k , (ϕ
L
ℓ )

∗〉〉α†
ℓ(4.6)
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In the Christoffel-Darboux formula (see [6] Proposition 3.6 (b))

(1− z̄1z2)

n∑

k=0

ϕR
k (z2)ϕ

R
k (z1)

† = ϕL,∗
n+1(z2)ϕ

L,∗
n+1(z1)

† − ϕR
n+1(z2)ϕ

R
n+1(z1)

†

taking z1 = 0, z2 = z gives

ϕL,∗
ℓ (z) =

ℓ∑

k=0

ϕR
k (z)g

ℓ
k , gℓk = ϕR

k (0)
†
(
ϕL,∗
ℓ (0)†

)−1

(4.7)

and then

〈〈ϕR
k , (ϕ

L
ℓ )

∗〉〉 = gℓk(4.8)

But we have

ϕR
k = ΦR

k κ
R
k ; ϕL

ℓ = κL
ℓ Φ

L
ℓ ; ΦL,∗

ℓ (0) = 1p(4.9)

and from the Szegő recursion

ϕR
k (0) = −

(
κL
k−1

)†
α†
k−1

(
ρRk−1

)−1

so that

gℓk = −(ρRk−1)
−1αk−1κ

L
k−1(κ

L
ℓ )

−1 = −αk−1(ρ
L
k−1)

−1κL
k−1(κ

L
ℓ )

−1

= −αk−1κ
L
k (κ

L
ℓ )

−1(4.10)

(we have used αjρ
L
j = ρRj αj and ρLj−1 = κL

j−1

(
κL
j

)−1
). Gathering (4.10), (4.8) and (4.6) we get

eventually Gk,ℓ = −αk−1ρ
L
k . . . ρ

L
ℓ−1α

†
ℓ.

4.4 Proof of Proposition 2.8

First, let us rephrase the computation of ϕR
1 . We look for ξ = [ξ1 · · · ξp] ∈ MN,p , unitary in

the sense that ≪ ξ, ξ ≫= Ip, ”orthogonal” to ε in the sense that ≪ ξ, ε ≫= 0p and such that

the vectors of ξ belong to span {ε, Uε}. In a first step, let us see that the matrix Uε − εγ is

orthogonal to ε if and only if

≪ Uε, ε ≫=≪ εγ, ε ≫= γ† ≪ ε, ε ≫

hence γ = α†. Let us now normalize this vector. The square of its ”norm” is

≪ Uε − εα†, Uε− εα† ≫= Ip − αα† ,
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so that, using the notation of Simon for the defect matrices we claim that the matrix

ξ =
(
Uε − εα†

)
(ρR)−1(4.11)

satisfies all the requirements above. Of course, we demand that ρR is invertible, but it is true in

the generic case.

As in the scalar case, we define now an endomorphism V unitary letting invariant the subspace

orthogonal to span {ε, Uε} and such that V ε = Uε. We know already from (4.11) that V ε =

ξρR + εα†. In the ”basis” (ε, ξ), we can say that the matrix of the restriction of V will be Θ(α),

as defined in (2.15), in the sense that if w = εa+ ξb then V w = εa′ + ξb′ with

a′ = α†a+ ρLb , b′ = ρRa− αb .

Now, the endomorphism

W = V −1U(4.12)

is unitary and it fixes ε. In the basis obtained by orthonormalization of {ε, Uε, U2ε, . . . }, the
endomorphism U has the block GGT matrix GR(α0, . . . ). In this basis V (U, ε) has the matrix

Θ̃(α0). and by (2.16) the restriction of W (U, ε) to ε⊥ has the matrix GR(α1, . . . ).

4.5 Proof of Proposition 3.1

The first assertion is a straightforward consequence of the invariance of the Haar measure.

To prove the second assertion, we will follow some notation of Collins doctoral dissertation ([4])

Section 4.2. Let π be the canonical projection : MN,N → Mp,N . The set π(U(N)) is a real

sub-manifold of Mp,N of dimension p(2N − p), characterized by

π(U(N)) = {V ∈ Mp,N : V V † = Ip} .(4.13)

The pushforward π̂ of the Haar measure on U(N) by π is invariant under the natural action at

left and right of U(p) and U(N), respectively. Since the action of U(p) × U(N) on π(U(N)) is

transitive, this measure is the only normalised invariant one.

For M ∈ MN,N set

h(M) = π(M)π(M)†(4.14)

and

v(M) = h(M)−1/2π(M)(4.15)
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(when h(M) > 0), where the square root is taken in the functional calculus sense.

From (4.13), v(M) ∈ π(U(N)). Let us now provide MN,N with the distribution Gin(N) and let

us denote by π̃ the pushforward of this measure by v. Let us prove that

π̃ = π̂ .

Ii is enough to show that π̃ is left and right invariant. Since π(MU) = π(M)U for U ∈ U(N) and

then h(MU) = h(M), and since the Gaussian distribution is invariant by U , the right invariance

by U(N) is obvious. Let us consider the left invariance. If U ∈ U(p) and if Ũ is defined by

Ũ =

(
U 0p,N−p

0N−p,p IN−p

)
,

then Uπ(M) = π(ŨM) , h(M) = U †h(ŨM)U , h(M)−1/2 = U †(h(ŨM))−1/2U and eventually

Uv(M) = v(ŨM). The invariance of the Gaussian distribution by Ũ ends the job. (Let us notice

that (4.14) is precisely the relation (3.2). )

4.6 Proof of Theorem 3.2

There are two approaches in the scalar case, that of [25] and that of [35] section 11. We follow the

method of proof of Theorem 11.1 in [35] and extend it to the matricial case. The only difficulty

comes from the noncommutativity.

Let ε = [ε1 · · · εp] an orthonormal system and (see (2.13)

α(U, ε) =≪ Uε, ε ≫ .(4.16)

If U is Haar distributed, we have to find the distribution of α and to check that conditionally

upon α, the matrix W is Haar distributed on U(N − p). Actually, α is nothing else than the

upper left corner of size p of U and its distribution is known from Collins to be the Cor(N, p) one.

To prove the remaining part, let us see how the different quantities depend on U . To be clear,

let us write α(U, ε) for α and the same for ξ, V and W as defined in the proof of Proposition 2.8..

To characterize the Haar distribution, we use the criterion of invariance by left multiplication by

an unitary matrix. We have to prove that if Γ is a fixed unitary matrix letting ε invariant and if

F is a Borel function

EF (W (U, ε)Γ, α(U, ε)) = EF (W (U, ε), α(U, ε)) .(4.17)

We have

W (U, ε)Γ = V (U, ε)−1UΓ
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which leads to consider the unitary endomorphism U ′ = UΓ and to check successively

α(U ′, ε) = α(U, ε) , ξ(U ′, ε) = ξ(U, ε) ,

(see (4.16) and (4.11)). It should be clear that V (U ′, ε) = V (U, ε) since they coincide on

span {ε, ξ} (see (2.15) and leave invariant its orthogonal subspace. We have then

W (U, ε)Γ = V (U ′, ε)−1U ′ = W (U ′, ε)

and then

EF (W (U, ε)Γ, α(U, ε)) = EF (W (U ′, ε), α(U ′, ε)) .

Since U ′ and U have the same distribution, we have checked (4.17) and the proof of the first step

of the iteration is complete. Now we have to consider a matrix Haar distributed in U(N − p).

It’s the same reasoning. We stop the recursion at j = J .

4.7 Proof of Corollary 3.5

With the notations of Sec. 2.3, µ
w,p is the spectral measure of the pair (U,Hp) so that, for p and

n0 fixed,

(4.18) (Un)pi,j=1 = mn(µw,p) , 1 ≤ n ≤ n0 .

Now, the nth matrix Verblunsky coefficient α
(N)
n of µ

w,p is also the (n + 1)th matrix canonical

moment of µ
w,p (as soon as the dimension N of the ambient space is greater than (n + 2)p) and

there is a Taylor expansion of the moments m1, . . . , mn0) in function of the canonical moments

α0, . . . , αn0−1 (see [20] Lemma 3.2). Then it is enough to use the so-called delta-method to deduce

the statement of Corollary 3.5 from the second statement of Proposition 3.4 . Notice that for

n0 = 1 the result goes back to [31].

4.8 Proof of Theorem 3.7

There is actually two possible proofs. The first one (that is presented here), is short and

use directly the Verblunsky coefficients. The second one is quite longer and does not use

the Verblunsky coefficients but directly the representation on the eigenvalues of the matrix

measure. This second proof is much more general as it may be applied to a general sequence of

matrix-valued random measures and is useful to obtain general sum rules. This point of view

will be developed in the forthcoming paper [19].
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First of all, invoking Dawson-Gärtner’s theorem on projective limits ([8] Th.4.6.1), we get

the LDP for the random matrix measure at scale N with good rate function

I(µ) = −
∞∑

j=0

log det(I − α†
jαj) .

To conclude, we use the matricial Verblunsky form of the Szegő theorem (see originally [7], [34]

Theorem 2.13.5 and more recently [9]):

I(µ) = − 1

2π

∫ π

−π

log detW (θ)dθ

if dµ(θ) = W (θ) dθ
2π

+ dµs(θ) (Lebesgue decomposition). Notice that the last expression early

appears in [36] in the asymptotic expansion of determinant of block Toeplitz matrices (see also

[17] for related results on more general block operators).

4.9 Proof of Corollary 3.8

Starting from

ν = νa + νs , νa = ν ′
adz

we see that νa ≪ dz yields νa ≪ Ipdz. If ν ′
a > 0 a.e. then, by theorem 5.5 in [32] we have

Ipdz ≪ νa, hence Ipdz ≪ ν and the Radon-Nikodym derivative of Ipdz with respect to ν is

(ν ′
a)

−1 and (3.7) is valid.

Conversely, if Ipdz ≪ ν, then there exists a finite measure γ on T such that Ipdz ≪ γ, ν ≪ γ

and range (Ipdz/dγ) ⊂ range (ν ′
γ). But Ipdz ≪ γ implies dz ≪ γ, so that dz = g(z)dγ. Since

Ipdz/dν = g(z)(ν ′
γ(z))

♯ the finiteness of the integral in (3.7) has two consequences:

• g(z) > 0 for a.e. z and then

dγ = (g(z))−11g(z)>0dz + dγs γs ⊥ dz

• (ν ′
γ)

♯(z) 6= 0 for a.e. z. From the definition of the pseudo-inverse, this last requirement

needs ν ′
γ 6= 0 for a.e. z.

This yields

dν = ν ′
γdγ = ν ′

γ(z)(g(z))
−11g(z)>0dz + ν ′

γ(z)dγs

and then ν ′
a(z) = ν ′

γ(z)(g(z))
−1 for a.e. z and (3.6) is valid.
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4.10 Proof of Theorem 3.10

As we noticed in (2.1) the structure of spectral measures is projective. We may apply the

Dawson-Gärtner theorem ([8] Th. 4.6.1) and we get the rate function

(4.19) sup
k

∫

T

− log detµ′
a
k
(z)dz .

Then we use the following lemma whose proof is slightly postponed.

Lemma 4.1 In the settings of the theorem the following statements hold true:

1. The sequence
∫
T
− log detµ′

a
k(z)dz is increasing in k.

2. We have

(4.20) lim
k

detµ′
a
k
(z) = detµ′

a(z) .

The first statement entails that the supremum in (4.19) is actually an increasing limit. The

second statement gives a limit for the integrand. But, in general, it is not possible to commute

limit and integral in (3.8). Assumption (3.9) ensures a dominated convergence. The equality

tr log = log det is classical (see [9]).

Proof of Lemma 4.1

1. For fixed k, the Hermitian non-negative matrix µ′
a
k(z) admits a Cholesky decomposition

(4.21) µ′
a
k
(z) = Lk(z)Lk(z)

† ,

and it is straightforward to see that the (k − 1)-section of Lk(z) is Lk−1(z), so that we

have an infinite Cholesky matrix L(z) whose generic entry will be denoted by ℓi,j(z). From

(4.21), we have the relation

(4.22) detµ′
a
k
(z) = detµ′

a
k−1

(z)|ℓkk(z)|2 .

Taking logarithm and integrating the last relation in z we get

(4.23)

∫

T

− log det µ′
a
k
(z)dz +

∫

T

log detµ′
a
k−1

(z) =

∫

T

− log |ℓkk(z)|2dz

which, by Jensen’s inequality gives

(4.24)

∫
− log detµ′

a
k
(z)dz +

∫
log detµ′

a
k−1

(z) ≥ − log

∫
|ℓkk(z)|2dz
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From (4.21) we have also

(4.25) |ℓkk(z)|2 = (µ′
a(z))kk −

k−1∑

j=0

|ℓkj(z)|2 ≤ (µ′
a(z))kk .

Now, µ is a matrix probability measure and then
∫
T
µ′
a(z)dz ≤ I, which implies∫

(µ′
a(z))kk dz ≤ 1, and by integration in (4.25)

(4.26)

∫

T

|ℓkk(z)|2dz ≤ 1 .

Plugging in (4.24) ends the proof of the first part of Lemma 4.1.

2. This follows directly from the Cholesky decomposition in (4.21).
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