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Abstract

This paper studies a new risk measure derived from the expected area in red introduced
in Loisel (2005). Specifically, we derive various properties of a risk measure defined as the
smallest initial capital needed to ensure that the expected time-integrated negative part
of the risk process on a fixed time interval [0, T ] (T can be infinite) is less than a given
predetermined risk limit. We also investigate the optimal risk limit allocation: given a risk
limit set at company level for the sum of the expected areas in red of all lines, we determine
the way(s) to allocate this risk limit to the subsequent business lines in order to minimize
the overall capital needs.

Key words and phrases: Ruin probability, risk measure, expected area in red, stochastic
ordering, risk limit.



1 Introduction and motivation

Over the last decade, the concept of risk measures has become very popular in the insurance
industry, especially with the introduction of the European Solvency II regulation. Insur-
ance companies are now often required to hold a level of available capital such that the
probability for economic ruin after one year is less than 1 in 200. The Value-at-Risk (VaR)
risk measure has then emerged as a key instrument in insurance to compute the solvency
capital requirement. Readers interested in articles dealing with regulation and solvency for
insurance companies could see, e.g., Volume 35, Issue 1 of the Geneva Papers on Risk and
Insurance - Issues and Practice. Although this new regulatory framework is an improvement
compared to the old insurance practices, it does not consider possible adverse situations in
between or beyond the one-year horizon. Ruin theory precisely accounts for the insured
risk during the whole life-time of the business or until any given time-horizons. This is why
practitioners often look at risks in the ruin context when building internal models. Risk
measures derived from ruin theory often provide more robust risk indicators.

Dhaene, Goovaerts and Kaas (2003) give ample motivation for an exponential risk mea-
sure inherited from the Cramèr-Lundberg upper bound for the ruin probability in a discrete-
time ruin model. Cheridito, Delbaen and Kupper (2006) mention (in an application of their
study on coherent risk measures for unbounded stochastic processes) a VaR-type risk mea-
sure based on the infinite-time ruin probability itself. Overall, over the last few years, the
relative position and relation between risk measures that fulfill a list of axioms on the one
hand, and classical ruin theory on the other hand, has often been a matter of debate. Trufin,
Albrecher and Denuit (2011) take up this issue and investigate in more details some proper-
ties of the VaR-type risk measure based on the ultimate ruin probability that is mentioned
in Cheridito et al. (2006).

Over the years, the management of the liquidity risk has become a major concern for the
insurance industry. The recent financial crisis tells us how this risk can be devastating for a
financial institution. In this paper, we propose to study a risk measure derived from ruin the-
ory that takes into account liquidity risk of an insurance business over a given period of time.

In risk theory, many risk measures have been considered for the classical continuous-time
risk model. In addition to the well-known finite-time and infinite-time ruin probabilities,
some others risk measures have been deeply investigated throughout numerous articles (see
Gerber (1988), Dufresne and Gerber (1988) and Picard (1994) for instance). Let us mention
the time to ruin, the severity of ruin, the time spent below zero from the first ruin to the
first time of recovery, the maximal ruin severity or also the aggregate severity of ruin until
recovery. The total time spent below zero has also been studied by dos Reis (1993), using
some results of Gerber (1988). However, all those risk measures are either drawn from the
infinite-time ruin theory or involve the behavior of the risk process between ruin times and
recovery times. This is why Loisel (2005) introduces a risk measure based on a fixed time
interval, finite or infinite, i.e. the expected time-integrated negative part of general risk
processes on a fixed time interval [0, T ], also called the expected area in red. The author
derives some expressions for this new risk measure and obtains a closed-form formula in the
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compound Poisson risk model in infinite-time for exponential claims. Biard, Loisel, Macci
and Veraverbeke (2010) investigate the asymptotic behavior of the expected area in red and
discuss an optimal allocation problem with two business lines.

The expected area in red appears to be a relevant risk indicator for quantifying the liq-
uidity risk of an insurance business over a given time horizon. In this paper, we adopt this
risk measure to reflect the liquidity risk of an insurer and we look at the smallest capital that
ensures the expected area in red is less than a given level. While the ruin probability focuses
on the risk that (at least) one liquidity issue occurs over a finite- or infinite-time horizon,
we are here more interested in what happens once the insurer encounters liquidity problems
and in controlling their potential impact. Note that in the sequel, the zero surplus does not
necessarily correspond to economic ruin. It may correspond to a risk tolerance level, or to a
level after which some controls or penalties would affect business and profitability.

The purpose of this paper is to consider certain properties of a risk measure that is
derived from the expected area in red. It provides tools to enable a better assessment of
the riskiness (through the perspective of the liquidity risk) of certain financial positions in
the insurance context. It also makes an interesting link between the initial reserve optimal
allocation problem and a new problem of risk budget allocation, that we define and solve.
More generally, this paper will contribute to improve the understanding of the connections
between the axiomatic framework of risk measures and ruin theory.

Our paper is organized as follows. In Section 2, we set up the scene by presenting the risk
process we are dealing with in the present analysis and by recalling the definitions of some
stochastic orders used in the following. Next, in Section 3, we introduce the studied risk
measure and investigate some of its properties. Further, numerical illustrations are performed
within the compound Poisson model for an infinite horizon to illustrate the diversification
benefit resulting from the aggregation of two business lines. Finally, Section 4 determines
the way(s) to allocate a risk limit set at company level to the subsequent business lines in
order to minimize the overall capital needs.

2 Risk model and stochastic orders

2.1 The model

The surplus process (or risk process) is defined as

Ut = u+ c t− St, t ≥ 0,

where Ut is the insurer’s capital at time t starting from some initial capital U0 = u, c is the
(constant) premium income per unit of time and St =

∑Nt
k=1Xk is the total claim amount

up to time t, with Nt the corresponding number of claims, and Xk the size of the kth claim,
assumed to be non-negative. The claim number process N = {Nt, t ≥ 0} is governed
by a sequence of identically distributed inter-occurrence times Tk with a common distri-
bution function FT . The Xk’s are identically distributed as X, with distribution function
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FX . Let us notice that we do not require the independence of the inter-occurrence times Tk’s
nor of the claim sizes Xk’s. Also, we do not assume the Xk’s to be independent from the Tk’s.

The expected area in red on a fixed time interval [0, T ] is defined as

E [IT,c(u)] = E
[∫ T

t=0

|Ut|1{Ut<0}dt

]
.

It can also be expressed as follows, which will be useful in our analysis:

E [IT,c(u)] = E
[∫ T

t=0

|Ut|1{Ut<0}dt

]
=

∫ T

t=0

E
[
|Ut|1{Ut<0}

]
dt using Fubini’s Theorem

=

∫ T

t=0

E
[
(St − c t− u)+

]
dt. (2.1)

Henceforth, when needed to make explicit the dependence on S = {St, t ≥ 0}, we will

denote E [IT,c(u)] as E
[
I

(S)
T,c (u)

]
.

2.2 Stochastic orders

In this section, we recall the definitions of some stochastic orders that will be useful in the
following. For more details, we refer the interested reader, e.g., to Denuit et al. (2005).

Given two random variables X and Y , X precedes Y in the usual stochastic order,
denoted as X �st Y , if

FX(u) ≤ F Y (u) for all u,

where FX = 1 − FX and F Y = 1 − FY . The later is also equivalent to the inequality
E[g(X)] ≤ E[g(Y )] for any non-decreasing function g such that the expectations exist.

The usual stochastic order compares the sizes of the risks. The convex order focuses on
their variabilities. It allows to compare two risks with identical means. Given two random
variables X and Y such that E[X] = E[Y ], X precedes Y in the convex order, denoted as
X �cx Y , when ∫ ∞

t

FX(u) du ≤
∫ ∞
t

F Y (u) du for all t. (2.2)

The inequality in (2.2) can be equivalently written as

E[(X − t)+] ≤ E[(Y − t)+] for all t. (2.3)

From (2.3) it follows that X �cx Y if, and only if, E[g(X)] ≤ E[g(Y )] for all convex functions
g : R+ → R, provided the expectations exist.
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The increasing convex, or stop loss, order combines the aspects of size (as �st) and
variability (as �cx). Being smaller in the stop-loss order means “smaller” and “less variable”.
By definition, X is said to be smaller than Y in the stop-loss order, denoted as X �icx Y ,
when ∫ ∞

t

FX(u) du ≤
∫ ∞
t

F Y (u) du for all t,

or equivalently if
E[(X − t)+] ≤ E[(Y − t)+] for all t. (2.4)

Similarly, X �icx Y if, and only if, E[g(X)] ≤ E[g(Y )] for all non-decreasing convex functions
g : R+ → R, provided the expectations exist. Obviously, in case E[X] = E[Y ], the orders
�cx and �icx are equivalent.

In the multivariate case, the supermodular order is a useful tool to compare random
vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) with the same marginals and different levels
of dependence. A random vector X is said to be smaller than the random vector Y in the
supermodular ordering, denoted X �sm Y , if E[f(X)] ≤ E[f(Y )] for all supermodular func-
tions f such that the expectations exist. A function f : Rn → R is said to be supermodular
if

f(x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi + ε, . . . , xj, . . . , xn)

≥ f(x1, . . . , xi, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi, . . . , xj, . . . , xn)

holds for all x = (x1, . . . , xn) ∈ Rn, 1 ≤ i < j ≤ n and all ε, δ > 0.
For n = 2, the supermodular order is equivalent to the positive quadrant dependent

order. The random vector X = (X1, X2) is said to be smaller than Y = (Y1, Y2) in the
positive quadrant dependent order, denoted X �PQD Y , if

Pr[X1 ≤ x1, X2 ≤ x2] ≤ Pr[Y1 ≤ x1, Y2 ≤ x2] for all x1 and x2.

3 Risk measure derived from the expected area in red

In Trufin et al. (2011), the authors focus on a risk measure that is the necessary capital such
that the ruin probability is less than a given level. In this paper we would like to investigate
the capital needed to ensure that the expected area in red is bounded by a predefined value.
Namely, for a limit expected area A > 0, we define

ρ
(T )
A,c[S] = inf

{
v ≥ 0|E

[
I

(S)
T,c (v)

]
≤ A

}
.

In words, ρ
(T )
A,c[S] is the smallest amount of capital needed such that the expected area in red

(on the time interval [0, T ]) for a surplus process with a premium rate c and an aggregate
claim amount process S is at most equal to some specified area A.

In what follows, we study the properties of ρ
(T )
A,c within the axiomatic framework of risk

measures. It is worth to mention that unlike in Trufin et al. (2011), we do not restrict our
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analysis to the compound Poisson model nor to an infinite horizon. Moreover, the current
risk measure depends this time on the size of the company, which is desirable for concrete
applications where liquidity and diversification are at play.

Properties of ρ
(T )
A,c

Let S = {St, t ≥ 0} and S̃ = {S̃t, t ≥ 0} two aggregate claim amount processes with

St =
∑Nt

k=1Xk and S̃t =
∑Ñt

k=1 X̃k. From now on, for a stochastic order relation �, the

writing S � S̃ means St � S̃t for all t ≥ 0. The risk measure ρ
(T )
A,c possesses the following

properties.

Property 3.1. (i) The risk measure ρ
(T )
A,c agrees with the usual stochastic order, that is

S �st S̃⇒ ρ
(T )
A,c[S] ≤ ρ

(T )
A,c[S̃].

(ii) The risk measure ρ
(T )
A,c agrees with the stop-loss order, that is S �icx S̃ ⇒ ρ

(T )
A,c[S] ≤

ρ
(T )
A,c[S̃].

Proof. An equivalent characterization of the usual stochastic order is the existence for all
t of random variables S ′t and S̃ ′t such that S ′t (resp. S̃ ′t) is distributed as St (resp. S̃t) and
S ′t ≤ S̃ ′t almost surely (see Theorem 1.A.1 in Shaked and Shanthikumar (2007)). Therefore,
we can assume that St ≤ S̃t for all t. This implies E[(St − c t− u)+] ≤ E[(S̃t − c t− u)+] for
all u and t. Hence by equation (2.1),

S �st S̃⇒ E
[
I

(S)
T,c (u)

]
≤ E

[
I

(S̃)
T,c (u)

]
for all u.

Turning to item (ii), it suffices to notice that the inequality E[(St−c t−u)+] ≤ E[(S̃t−c t−u)+]
holds true for all u and t (see equation (2.4)). Consequently, by (2.1), after integrating with
respect to t,

S �icx S̃⇒ E
[
I

(S)
T,c (u)

]
≤ E

[
I

(S̃)
T,c (u)

]
for all u.

In particular, if S �icx S̃ and E[St] = E[S̃t] for all t ≥ 0, i.e. if S �cx S̃, then

ρ
(T )
A,c[S] ≤ ρ

(T )
A,c[S̃].

Remark: As the usual stochastic order implies the stop-loss order, we notice that Property
3.1 (i) can be seen as a particular case of Property 3.1 (ii).

Let us highlight some situations where the stochastic inequality S �icx S̃ holds true.

Example 1: We suppose the Xk’s (resp. X̃k’s) to be independent and identically distributed
and to be independent of {Nt, t ≥ 0} (resp.{Ñt, t ≥ 0}).

(a) If X �icx X̃ and Nt �icx Ñt for all t ≥ 0 then S �icx S̃. Indeed, it is well-known that
the stop-loss ordering is preserved under compounding of independent risks, see e.g.
Property 3.4.39 in Denuit et al. (2005).

5



(b) Let X = V +Y and X̃ = V +Z with V , Y and Z three non-negative random variables,
Y and Z being identically distributed. If Z is more positively dependent on V than
Y , in the sense that (V, Y ) �sm (V, Z), and if Nt �icx Ñt for all t ≥ 0, then we have
S �icx S̃. This is directly deduced from (a) since V + Y �cx V + Z (see Dhaene and
Goovaerts (1996) for instance).

(c) Let Nt =
∑m

i=1 N
i
t and Ñt =

∑m
i=1 Ñ

i
t , where for each i, the claim number processes

{N i
t , t ≥ 0} and {Ñ i

t , t ≥ 0} have the same distribution. For each t ≥ 0, let N t =
(N1

t , . . . , N
m
t ) and Ñ t = (Ñ1

t , . . . , Ñ
m
t ) be two random vectors. If N t �sm Ñ t for all

t ≥ 0 and X �icx X̃, then S �icx S̃. Indeed, from Müller (1997), we have N t �sm Ñ t

implies
∑m

i=1N
i
t �cx

∑m
i=1 Ñ

i
t for all t ≥ 0. Then, by (a), we have the announced

result.

Remark: If we consider S and S̃ such that {Nt, t ≥ 0} and {Ñt, t ≥ 0} are identically
distributed and (X1, . . . , Xm) �sm (X̃1, . . . , X̃m) for all m, then, similarly to Example 1 (c),
it comes S �cx S̃ since

∑m
i=1Xi �cx

∑m
i=1 X̃i for all m obviously yields

∑Nt
i=1Xi �cx

∑Nt
i=1 X̃i.

Example 2: We assume that the bivariate random vectors (Tk, Xk) (resp. (T̃k, X̃k)) for
k = 1, 2, . . . are mutually independent. If T and T̃ are identically distributed and if X and
X̃ are identically distributed with (X̃, T̃ ) �sm (X,T ), then S �cx S̃. Equivalently, let us
prove that ct− St �cx ct− S̃t for all t ≥ 0. We can write

ct− St =
Nt∑
k=1

(cTk −Xk) + c

(
t−

Nt∑
k=1

Tk

)
.

Therefore, showing that ct − St �cx ct − S̃t for all t ≥ 0 amounts to demonstrate that∑n
k=1(cTk −Xk) �cx

∑n
k=1(cT̃k − X̃k) for all n (we can assume Ns = Ñs for all s ≤ t as the

convex order is closed under mixtures). Since the random vectors (Tk, Xk) (resp. (T̃k, X̃k))
for k = 1, 2, . . . are mutually independent on the one hand, and the convex order is closed
under convolution on the other hand, it suffices to show that cTk −Xk �cx cT̃k − X̃k for all
k. Now, from Theorem 9.A.18 in Shaked and Shantikhumar (2007), (X̃, cT̃ ) �sm (X, cT )
directly implies cT −X �cx cT̃ − X̃.

We now show that the risk measure ρ
(T )
A,c also possesses some other properties that are

desirable for its application in actuarial science. We note that in the following, by S+ a and
aS, we actually mean the claim processes {St + a, t ≥ 0} and {aSt, t ≥ 0} respectively.

Property 3.2. (i) The risk measure ρ
(T )
A,c is monotone, that is Pr[St ≤ S̃t] = 1 for all t ≥ 0⇒

ρ
(T )
A,c[S] ≤ ρ

(T )
A,c[S̃].

(ii) The risk measure ρ
(T )
A,c is translation invariant, that is ρ

(T )
A,c[S+ a] = ρ

(T )
A,c[S] + a for any

constant a > 0.

(iii) The risk measure ρ
(T )
A,c is positively homogeneous, in the sense that ρ

(T )
A,c[aS] = a ρ

(T )
A
a
, c
a

[S]

for any constant a > 0.
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(iv) The risk measure ρ
(T )
A,c is subadditive, in the sense that the inequality ρ

(T )
A,c[S + S̃] ≤

ρ
(T )
γA,α c[S] + ρ

(T )
(1−γ)A,(1−α) c[S̃] holds true for all α, γ ∈ (0, 1), whatever the dependence

structure between the claim processes S and S̃.

Proof. The monotonicity immediately follows since by equation (2.1), Pr[St ≤ S̃t] = 1 for

all t ≥ 0 implies E
[
I

(S)
T,c (u)

]
≤ E

[
I

(S̃)
T,c (u)

]
for all u. Item (ii) is obvious since adding a

deterministic amount to the insurance risk equally increases the necessary initial capital to
maintain the same level for the expected area in red. For item (iii), it suffices to prove that

E
[
I

(aS)
T,c (u)

]
= aE

[
I

(S)
T, c
a
(u
a
)
]
. By equation (2.1), this equality holds true, as we have

E
[
(aSt − c t− u)+

]
= aE

[(
St −

c t

a
− u

a

)
+

]
.

Considering item (iv), let us first prove that the inequality

E
[
I

(S+S̃)
T,c (u)

]
≤ E

[
I

(S)
T,α c(βu)

]
+ E

[
I

(S̃)
T,(1−α) c((1− β)u)

]
(3.1)

holds true for all u and α, β ∈ (0, 1). By equation (2.1), it suffices to notice that

E
[(
St + S̃t − c t− u

)
+

]
= E

[(
St − α c t− βu+ S̃t − (1− α) c t− (1− β)u

)
+

]
≤ E

[
(St − α c t− βu)+

]
+ E

[(
S̃t − (1− α) c t− (1− β)u

)
+

]
.

Now, from equation (3.1) with β =
ρ
(T )
γA,α c[S]

ρ
(T )
γA,α c[S]+ρ

(T )
(1−γ)A,(1−α) c[S̃]

, we have

E
[
I

(S+S̃)
T,c

(
ρ

(T )
γA,α c[S] + ρ

(T )
(1−γ)A,(1−α) c[S̃]

)]
≤ E

[
I

(S)
T,α c

(
ρ

(T )
γA,α c[S]

)]
+ E

[
I

(S̃)
T,(1−α) c

(
ρ

(T )
(1−γ)A,(1−α) c[S̃]

)]
≤ A (by definition of ρ

(T )
γA,α c[S] and ρ

(T )
(1−γ)A,(1−α) c[S̃]).

The notion of positive homogeneity can be interpreted as the independence with respect
to the monetary unit used. When considering two different monetary units u1 and u2 say,
with exchange rate a (i.e. with u1 = a u2), the risk limit A set in the first unit becomes
logically A/a in the second one, as the premium rate c and the claim process aS that become
respectively c/a and S.

The subadditivity property reflects the idea that the risk can be reduced by diversification.
For a fair comparison, we note that the risk limit considered for the aggregate portfolio has
been naturally taken as equal to the sum of the risk limits of the subsequent business lines.
The diversification benefit resulting from the aggregation of two business lines with premium
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rates c1 = α c and c2 = (1−α) c, claim processes S and S̃ and respective risk limits A1 = γ A
and A2 = (1− γ)A is then positive and is given by

∆(S, S̃) = ρ
(T )
γA,α c[S] + ρ

(T )
(1−γ)A,(1−α) c[S̃]− ρ(T )

A,c[S + S̃].

As the risk measure ρ
(T )
A,c satisfies the four axioms of Property 3.2, one can say that ρ

(T )
A,c

is coherent, bearing in mind the senses brought in our context to the notions of positive
homogeneity and subadditivity.

Let us illustrate the diversification benefit for T = ∞ in two examples. Beforehand, we
recall the following Theorem of Loisel (2005):
Theorem. Within the compound Poisson model, for a positive safety loading η = (c −
λµX)/λµX (where µX = E[X]), the expected area in red E[I∞,c(u)] and the ultimate ruin
probability ψ(u) are linked by the following equation:

d2

du2
E[I∞,c(u)] =

1

c

1

1− ψ(0)
ψ(u) for all u > 0.

In particular, it is possible to get explicit expressions for E[I∞,c(u)] when the claim size
distribution is exponential or a combination of exponentials for instance, as we know the
ruin probability ψ(u) in these cases.

As an example, for X ∼ Exp(1/µ) and a positive safety loading η = (c − λµ)/λµ, we
have ψ(u) = (1 − µR) e−Ru, where R = (1/µ)(1 − λµ/c). Hence, the integration of this
well-known formula for ψ(u) directly leads to

E[I∞,c(u)] =

(
1− µR
cµR3

)
e−Ru

since E[I∞,c(u)] tends to 0 as u → ∞. In this case, our risk measure ρ
(∞)
A,c can then be

explicitly written as

ρ
(∞)
A,c =

{
1
R

[
ln
(

1−µR
cµR3

)
− ln(A)

]
for A < 1−µR

cµR3

0 otherwise
.

Example 3: Let St =
∑Nt

k=1 Xk and S̃t =
∑Ñt

k=1 X̃k, where {Nt, t ≥ 0} and {Ñt, t ≥ 0}
are assumed to be Poisson processes with constant intensities λ and λ̃ respectively. The
Xk’s (resp. X̃k’s) are supposed to be independent and distributed as the generic random
variable X (resp. X̃), with X ∼ Exp(1/µ) (resp. X̃ ∼ Exp(1/µ̃), with µ̃ 6= µ). The claim
sizes processes {Xk} and {X̃k} are also assumed to be (1) mutually independent and (2)
independent of {Nt, t ≥ 0} and {Ñt, t ≥ 0}. Let us consider Nt and Ñt of the form

Nt = N
(1)
t +N

(0)
t and Ñt = N

(2)
t +N

(0)
t ,

where {N (0)
t , t ≥ 0}, {N (1)

t , t ≥ 0} and {N (2)
t , t ≥ 0} are independent Poisson processes with

constant rates λ0, λ−λ0, λ̃−λ0 respectively and λ0 ≤ min(λ; λ̃). The process S+S̃ is then also
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compound Poisson with intensity λ+λ̃−λ0 and generic claim size Y with distribution function

FY = 1
λ+λ̃−λ0

(
(λ− λ0)FX + (λ̃− λ0)FX̃ + λ0FX+X̃

)
. As µ 6= µ̃, FX+X̃ = 1

1−(µ̃/µ)
FX +

1
1−(µ/µ̃)

FX̃ and hence FY = α1FX + (1− α1)FX̃ , where

α1 =
1

λ+ λ̃− λ0

(
λ+ λ0

(
1

1− µ̃/µ
− 1

))
,

i.e. FY appears to be a combination of exponential distributions. This well-known special
case of claim size distributions is studied in Gerber et al. (1987), and the corresponding ruin

probability ψ(u) for a positive safety loading η = c−(λ+λ̃−λ0)µY
(λ+λ̃−λ0)µY

is of the form

ψ(u) = C1e
−r1u + C2e

−r2u,

with

Cj =
α1/(1/µ− rj)

α1/(1/µ− rj)2 + α2/(1/µ̃− rj)2
µ+

α2/(1/µ̃− rj)
α1/(1/µ− rj)2 + α2/(1/µ̃− rj)2

µ̃ j = 1, 2,

(3.2)
where α2 = 1− α1 and r1, r2 are the solutions of the equation

λ+ λ̃− λ0

c

(
α1

1/µ− r
+

α2

1/µ̃− r

)
= 1.

This last equation is equivalent to

r2 + r

(
λ+ λ̃− λ0

c
−
(

1

µ
+

1

µ̃

))
+

[
1

µµ̃
− λ+ λ̃− λ0

c

(
α1

µ̃
+
α2

µ

)]
= 0.

We then get

r1 =
1

2

(
1

µ
+

1

µ̃
− λ+ λ̃− λ0

c

−

√√√√(λ+ λ̃− λ0

c
−
(
1

µ
+

1

µ̃

))2

− 4

[
1

µµ̃
− λ+ λ̃− λ0

c

(
α1

µ̃
+
α2

µ

)])
(3.3)

and

r2 =
1

2

(
1

µ
+

1

µ̃
− λ+ λ̃− λ0

c

+

√√√√(λ+ λ̃− λ0

c
−
(
1

µ
+

1

µ̃

))2

− 4

[
1

µµ̃
− λ+ λ̃− λ0

c

(
α1

µ̃
+
α2

µ

)])
.

(3.4)
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So, E[I
(S+S̃)
∞,c (u)] is simply given by

E[I(S+S̃)
∞,c (u)] =

1

c

1

1− ψ(0)

(
C1

r2
1

e−r1u +
C2

r2
2

e−r2u
)
. (3.5)

We assume here that λ = λ̃ = 1, µ = 2 and µ̃ = 3. Also, we suppose that η = 10% and
A = 20. We then compare ρ

(∞)
γA,c1

[S] +ρ
(∞)
(1−γ)A,c2

[S̃] and ρ
(∞)
A,c [S+ S̃] with c1 = λµ(1 +η) = 2.2,

c2 = λ̃µ̃(1 + η) = 3.3 and c = c1 + c2 = 5.5. For γ = λµ/(λµ + λ̃µ̃) = 0.4 (i.e. γ is set such
that A is allocated to S and S̃ in proportion of their expected losses), we get the following
results:

λ0 ρ
(∞)
γA,c1

[S] ρ
(∞)
(1−γ)A,c2

[S̃] ρ
(∞)
A,c [S + S̃] ∆(S, S̃)

0 123.569 185.353 123.759 185.163

0.1 123.569 185.353 132.049 176.874

0.2 123.569 185.353 140.402 168.521

0.3 123.569 185.353 148.819 160.103

0.4 123.569 185.353 157.300 151.623

0.5 123.569 185.353 165.843 143.080

0.6 123.569 185.353 174.448 134.475

0.7 123.569 185.353 183.113 125.809

0.8 123.569 185.353 191.839 117.084

0.9 123.569 185.353 200.623 108.299

1 123.569 185.353 209.465 99.457

As expected, the diversification benefit ∆(S, S̃) is always positive, whatever the value of
the dependence parameter λ0.

For λ0 ≤ 0.7, we even observe ρ
(∞)
A,c [S + S̃] smaller than ρ

(∞)
(1−γ)A,c2

[S̃]. This is made

possible because the premium rates and areas used to compare these risks, i.e. S and S+ S̃,
are different, with c2 < c and (1− γ)A < A .

Also, ∆(S, S̃) decreases with the dependence parameter λ0, which was expected from
Example 1(c) as for ε1 < ε2, we have (Nt, Ñt)|λ0=ε1 �sm (Nt, Ñt)|λ0=ε2 .

In the case where λ0 = 1, i.e. when Nt = Ñt, we still observe a diversification ben-
efit. This was expected as for each k, the claim sizes Xk and X̃k have been assumed to
be independent. From Example 1(b), Xk and X̃k positively dependent will lead to a larger

ρ
(∞)
A,c [S + S̃]|λ0=1. If we consider the extreme case where Xk and X̃k are comonotonic, we

simply get X + X̃ ∼ Exp(1/(µ+ µ̃)), which leads to ρ
(∞)
A,c [S + S̃]|λ0=1=308.922 and hence to

∆(S, S̃) = 0.

Example 4: Let us consider the two dependent claim processes St =
∑Nt

k=1Xk and S̃t =∑Ñt
k=1 X̃k of Example 3. The claim processes are linked by some events which create claims

in both claim streams (common shocks). In this example, we also suppose that the claim
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sizes Xks and X̃ks are conditionally independent with respect to a mixing random variable
Θ, with

Pr
[
X1 > x1, . . . , Xn > xn, X̃1 > x̃1, . . . , X̃p > x̃p | Θ = θ

]
= e−

θ
µ

(x1+···+xn)− θ
µ̃

(x̃1+···+x̃p).

The unconditioned distribution of each Xk and X̃k is then completely monotone and the
dependence structure between the claim sizes (common mixing) is described by a survival
Archimedean copula whose generator is the inverse Laplace transform of Θ (see Albrecher et
al. (2011) for more details). Obviously, when Θ = θ, we are back in the model of Example
3.

Let us assume that the safety loading condition is always fulfilled, i.e. Pr[Θ ≥ θ0] = 1,

with θ0 = max
(
λµ
c1

; λ̃µ̃
c2

)
. Hence, by (3.5), the conditional expected area in red E[I

(S+S̃)
∞,c (u)|Θ =

θ] can be written as

E[I(S+S̃)
∞,c (u)|Θ = θ] =

1

c

1

1− ψθ(0)

(
C1(θ)

[r1(θ)]2
e−r1(θ)u +

C2(θ)

[r2(θ)]2
e−r2(θ)u

)
with

ψθ(0) = C1(θ) + C2(θ),

where C1(θ) and C2(θ) (resp. r1(θ) and r2(θ)) are given by equation (3.2) (resp. equations
(3.3) and (3.4)), replacing µ and µ̃ with µ/θ and µ̃/θ respectively. The unconditioned

expected area in red E[I
(S+S̃)
∞,c (u)] is thus of the form

E[I(S+S̃)
∞,c (u)] =

1

c

∫ +∞

θ=θ0

1

1− ψθ(0)

(
C1(θ)

[r1(θ)]2
e−r1(θ)u +

C2(θ)

[r2(θ)]2
e−r2(θ)u

)
dFΘ(θ),

where FΘ is the distribution function of Θ.

Similarly, E[I
(S)
∞,c1(u)] and E[I

(S̃)
∞,c2(u)] can be expressed as

E[I(S)
∞,c1(u)] =

∫ +∞

θ=λµ
c1

(
1− µR1(θ)/θ

c1µ[R1(θ)]3/θ

)
e−R1(θ)udFΘ(θ)

and

E[I(S̃)
∞,c2(u)] =

∫ +∞

θ= λ̃µ̃
c2

(
1− µ̃R2(θ)/θ

c2µ̃[R2(θ)]3/θ

)
e−R2(θ)udFΘ(θ),

with

R1(θ) =
θ

µ

(
1− λµ

c1θ

)
and R2(θ) =

θ

µ̃

(
1− λ̃µ̃

c2θ

)
.

Let us assume that Θ ∼ Uni(a, b). It comes E[X] = µE[1/Θ] = µ
b−a ln

(
b
a

)
and E[X̃] =

µ̃E[1/Θ] = µ̃
b−a ln

(
b
a

)
. We also suppose that E[X] = 2, E[X̃] = 3, λ = λ̃ = 1, η = 35% and

A = 20. Again, we aim to compare ρ
(∞)
γA,c1

[S]+ρ
(∞)
(1−γ)A,c2

[S̃] and ρ
(∞)
A,c [S+S̃] with c1 = λE[X](1+

η) = 2.7, c2 = λ̃E[X̃](1+η) = 4.05, c = c1+c2 = 6.75 and γ = λE[X]/(λE[X]+λ̃E[X̃]) = 0.4.
We note that the requirement Pr[Θ ≥ θ0] = 1 becomes b

a
≤ 1 + ln

(
b
a

)
(1 + η) in this case, so

that for b = 10, a ≥ 5.639. The next tables summarize the results we obtain:
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a=9, b=10

λ0 ρ
(∞)
γA,c1

[S] ρ
(∞)
(1−γ)A,c2

[S̃] ρ
(∞)
A,c [S + S̃] ∆(S, S̃) ∆(S,S̃)

ρ
(∞)
γA,c1

[S]+ρ
(∞)
(1−γ)A,c2

[S̃]

0 17.374 26.061 8.869 34.565 79.580%

0.2 17.374 26.061 11.624 31.810 73.237%

0.4 17.374 26.061 14.459 28.975 66.710%

0.6 17.374 26.061 17.367 26.065 60.012%

0.8 17.374 26.061 20.345 23.091 53.162%

1 17.374 26.061 23.388 20.046 46.153%

a=8, b=10

λ0 ρ
(∞)
γA,c1

[S] ρ
(∞)
(1−γ)A,c2

[S̃] ρ
(∞)
A,c [S + S̃] ∆(S, S̃) ∆(S,S̃)

ρ
(∞)
γA,c1

[S]+ρ
(∞)
(1−γ)A,c2

[S̃]

0 23.972 35.958 13.977 45.954 76.678%

0.2 23.972 35.958 17.640 42.290 70.566%

0.4 23.972 35.958 21.427 38.503 64.247%

0.6 23.972 35.958 25.330 34.600 57.734%

0.8 23.972 35.958 29.344 30.586 51.036%

1 23.972 35.958 33.465 26.466 44.161%

a=7, b=10

λ0 ρ
(∞)
γA,c1

[S] ρ
(∞)
(1−γ)A,c2

[S̃] ρ
(∞)
A,c [S + S̃] ∆(S, S̃) ∆(S,S̃)

ρ
(∞)
γA,c1

[S]+ρ
(∞)
(1−γ)A,c2

[S̃]

0 49.462 74.192 35.307 88.346 71.446%

0.2 49.462 74.192 42.572 81.081 65.571%

0.4 49.462 74.192 50.097 73.557 59.486%

0.6 49.462 74.192 57.865 65.788 53.204%

0.8 49.462 74.192 65.865 57.789 46.734%

1 49.462 74.192 74.083 49.570 40.088%

a=6, b=10

λ0 ρ
(∞)
γA,c1

[S] ρ
(∞)
(1−γ)A,c2

[S̃] ρ
(∞)
A,c [S + S̃] ∆(S, S̃) ∆(S,S̃)

ρ
(∞)
γA,c1

[S]+ρ
(∞)
(1−γ)A,c2

[S̃]

0 322.672 484.009 306.266 500.415 62.033%

0.2 322.672 484.009 350.758 455.922 56.518%

0.4 322.672 484.009 396.450 410.231 50.854%

0.6 322.672 484.009 443.265 363.414 45.051%

0.8 322.672 484.009 491.137 315.544 39.116%

1 322.672 484.009 540.003 266.677 33.059%
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In particular, we note that for a given λ0, a lower a leads to a lower relative diversification

benefit ∆(S, S̃)/
(
ρ

(∞)
γA,c1

[S] + ρ
(∞)
(1−γ)A,c2

[S̃]
)

, which is in line with the expectations since a

lower a implies a stronger dependency between S and S̃.

4 Optimal allocation

Most insurance companies have several business lines (e.g. motor insurance, fire insurance,
...). Decision makers may choose a risk limit at the company level (for the aggregate surplus)
if all results are fully consolidated and if they do not want to have a view by line of business.
In this case, the risk limit would be the maximal expected area in red that the company is
ready to accept for its aggregate surplus. But more and more insurance companies define
risk limits not only at company level, but also at the level of business lines. This means that
the company could set a risk limit A that would be the maximal acceptable sum of expected
areas in red. Henceforth, we denote by ci and Si the premium rate and the claim process
associated to line of business i (i = 1, 2, . . . , K). For the sake of clarity, let us first consider
a company with two business lines (K = 2). The following optimal allocation immediately
arises: how to split this global risk limit A into risk limits by line of business A1 and A2

satisfying A1 + A2 = A in order to minimize the global required initial surplus

ρ
(T )
A1,c1

[S1] + ρ
(T )
A2,c2

[S2].

Note that for u1, u2 ≥ 0,

0 ≤ E[I
(S1)
T,c1

(u1)] + E[I
(S2)
T,c2

(u2)] ≤ E[I
(S1)
T,c1

(0)] + E[I
(S2)
T,c2

(0)].

Consequently, for
A ≥ E[I

(S1)
T,c1

(0)] + E[I
(S2)
T,c2

(0)],

optimal allocations are trivial and correspond to non-negative couples (A∗1, A
∗
2) satisfying

A∗1 ≥ E[I
(S1)
T,c1

(0)] and A∗2 ≥ E[I
(S2)
T,c2

(0)].

In that case the required initial surplus is zero for both lines:

ρ
(T )
A∗1,c1

[S1] + ρ
(T )
A∗2,c2

[S2] = 0.

In the interesting case where A < E[I
(S1)
T,c1

(0)]+E[I
(S2)
T,c2

(0)], we now show that the optimal risk
limit allocation leads to solutions that are similar to the ones of the optimal initial reserve
allocation problem considered in Loisel (2005).

Proposition 4.1. Consider an insurance company with two business lines as described above.
Assume that A < E[I

(S1)
T,c1

(0)] + E[I
(S2)
T,c2

(0)]. The optimal risk limit allocation (A∗1, A
∗
2) either

satisfies
E[τ1(A∗1)] = E[τ2(A∗2)]

or is degenerated, i.e. either

A∗1 = E[I
(S1)
T,c1

(0)] or A∗2 = E[I
(S2)
T,c2

(0)].
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Note that degenerated cases correspond to extremely unbalanced cases, where one line
of business is much more risky than the other one, and needs all the initial surplus. For
example, if line of business 1 is too risky in comparison to line of business 2, then we have

A∗2 = E[I
(S2)
T,c2

(0)] and A∗1 = A− E[I
(S2)
T,c2

(0)] < E[I
(S1)
T,c1

(0)].

In this degenerated case, line 2 starts with zero surplus. One gives the maximal risk limit to
line 2 that corresponds to the weakest constraint. More pressure is placed over line 1.

Proof. For any line of business, E[I
(S)
∞,c(u)] is strictly convex (see Loisel (2005)) and increases

with u. Therefore, h(A) = ρ
(T )
A,c[S] is also strictly convex and increases with A. As we have

d

du
E[I(S)
∞,c(u)] = −E[τ(u)],

we can deduce that
∂

∂A
ρ

(T )
A,c[S] = − 1

E [τA]
.

We now denote A1 = γA, with 0 ≤ γ ≤ 1, and A2 = (1 − γ)A. For line of business 1, we
have

∂

∂γ
ρ

(T )
γA,c1

[S1] =
∂

∂A
ρ

(T )
A,c1

[S1]

∣∣∣∣
A=γA

∂

∂γ
γA = − 1

E[τ1(γA)]
A.

For line of business 2, we have

∂

∂γ
ρ

(T )
(1−γ)A,c2

[S2] = − 1

E[τ2((1− γ)A)]

∂

∂γ
(1− γ)A =

1

E[τ2((1− γ)A)]
A.

Consequently, if the optimal value γ∗ is in the interior of the interval [0, 1], we must have

∂

∂γ

{
ρ

(T )
γA,c1

[S1] + ρ
(T )
(1−γ)A,c2

[S2]
} ∣∣∣∣

γ=γ∗
= − 1

E[τ1(γ∗A)]
A+

1

E[τ2((1− γ∗)A)]
A = 0,

which is equivalent to
E[τ1(γ∗A)] = E[τ2((1− γ∗)A)].

Example: We consider the same assumptions as in Example 3. LetA < min
(

1−µ1R1

c1µ1R3
1

; 1−µ2R2

c2µ2R3
2

)
.

We then have

ρ
(∞)
γA,c1

[S1] =
1

R1

[
ln

(
1− µ1R1

c1µ1R3
1

)
− ln(γA)

]
and

ρ
(∞)
(1−γ)A,c2

[S2] =
1

R2

[
ln

(
1− µ2R2

c2µ2R3
2

)
− ln((1− γ)A)

]
.

Hence, we get
∂

∂γ
ρ

(∞)
γA,c1

[S1] = − 1

R1

∂

∂γ
ln(γ) = − 1

γR1
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and
∂

∂γ
ρ

(∞)
(1−γ)A,c2

[S2] = − 1

R2

∂

∂γ
ln(1− γ) =

1

(1− γ)R2

.

Therefore, we find that

∂

∂γ

{
ρ

(∞)
γA,c1

[S1] + ρ
(∞)
(1−γ)A,c2

[S2]
} ∣∣∣∣

γ=γ∗
= − 1

γ∗R1

+
1

(1− γ∗)R2

= 0

if and only if
γ∗

1− γ∗
=
R2

R1

.

This is well equivalent to E[τ1(γ∗A)] = E[τ2((1− γ∗)A)] since we have

E[τ1(γA)] = γAR1 and E[τ2((1− γ)A)] = (1− γ)AR2.

In conclusion we are now ready to state the result that generalizes Proposition 4.1 for
K ≥ 2 business lines.

Proposition 4.2. Consider an insurance company with K ≥ 2 business lines. Assume
that A < E[I

(S1)
T,c1

(0)] + · · · + E[I
(SK)
T,cK

(0)]. The optimal risk limit allocation (A∗1, . . . , A
∗
K)

can be described as follows: there exists a subset J ⊂ {1, 2, . . . , K} such that for j ∈ J ,

A∗j = E[I
(Sj)
T,cj

(0)] and for k, l ∈ {1, 2, . . . , K} \ J ,

E[τk(A
∗
k)] = E[τl(A

∗
l )].

Proof. The proof is similar to the one of Proposition 4.1.

Note that J corresponds to the set of numbers of business lines that are much less risky
than the other ones and start with zero initial surplus. If J is empty, then there is no
saturation, and the optimal risk limit allocation is obtained by making the time spent in the
red by each line equal to one another.

Conclusion

In this paper we proposed a new risk measure and showed that it fulfills interesting properties.
On contrary to the risk measure discussed in Trufin et al. (2011), the size of the portfolio

considered influences ρ
(T )
A,c, which is of practical relevance when dealing with a risk measure

that aims to represent a capital. Moreover the present study has been conducted within
a more general risk model than the classical compound Poisson model. We also quantified
in two numerical examples the diversification benefit obtained by an insurer composed of
two business lines. Finally, we showed that the optimal risk budget allocation problem that
arises in our context is dual to the optimal initial reserve allocation problem.

Most results might be generalized to other penalty functions. For instance, we could
penalize more very negative values than negative values close to zero, as suggested in Picard
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(1994) in his study of the cost of recovery. So, one might extend most results of the present
paper to quantities

E
[∫ T

0

g (| Ut |) 1{Ut<0}dt

]
mentioned in Loisel (2005), with g an increasing convex function (to be consistent with the
theory of utility functions) such that g(0) = 0.
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Stéphane Loisel thanks the financial support of Milliman under the research chair Actuariat
Durable and BNP Paribas Cardif under the research chair Management de la modélisation.
Julien Trufin thanks the financial support of Risk Dynamics under grant New approaches in
risk measurement within advanced risk models in actuarial science.

References

Albrecher, H., Constantinescu, C., & Loisel, S. (2011). Explicit ruin formulas for
models with dependence among risks. Insurance: Mathematics and Economics 48(2),
265-270.

Biard, R., Loisel, S., Macci, C. & Veraverbeke, N. (2010). Asymptotic behaviour
of the finite-time expected time-integrated negative part of some risk processes and
optimal reserve allocation. Journal of Mathematical Analysis and Applications 367,
535-549.

Cheridito, P., Delbaen, F., & Kupper, M. (2006). Coherent and convex monetary
risk measures for unbounded cadlag processes. Finance and Stochastics 10, 427-448.

Denuit, M., Dhaene, J., Goovaerts, M.J., & Kaas, R. (2005). Actuarial Theory for
Dependent Risks: Measures, Orders and Models. Wiley, New York.

Dhaene, J., Goovaerts, M.J., & Kaas, R. (2003). Economic capital allocation derived
from risk measures. North American Actuarial Journal 7, 44-59.

Dhaene, J. & Goovaerts, M.J. (1996). Dependency of risks and stop-loss order. Astin
Bulletin 26, 201-212.

Dufresne, F. & Gerber H.U. (1988). The surpluses immediately before and at ruin, and
the amount of claim causing ruin. Insurance: Mathematics and Economics 7, 193-199.

Dos Reis, A.E. (1993). How long is the surplus belong zero? Insurance: Mathematics
and Economics 12, 23-38.

Gerber, H.U. (1988). Mathematical fun with ruin theory. Insurance: Mathematics and
Economics 7, 15-23.

Gerber, H.U., Goovaerts, M., & Kaas, R. (1987). On the probability and severity of
ruin. Astin Bulletin 17, 151-163.

Loisel, S. (2005). Differentiation of some functionals of risk processes, and optimal reserve
allocation. J. Appl. Prob. 42(2), 379-392.

16



Müller, A. (1997). Stop-loss order for portfolios with dependent risks. Insurance: Math-
ematics and Economics 21, 219-223.

Picard, P. (1994). On some measures of the severity of ruin in the classical Poisson model.
Insurance: Mathematics and Economics 14, 107-115.

Shaked, M., & Shanthikumar, J.G. (2007). Stochastic Orders. Springer, New York.

Trufin, J., Denuit, M., & Albrecher, H. (2011). Properties of a risk measure derived
from ruin theory. The Geneva Risk and Insurance Review 36(2), 174-188.

17


