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Abstract

We study the solutions of the one dimensional focusing NLS equa-

tion. Here we construct new deformations of the Peregrine breather

of order 7 with 12 real parameters. We obtain new families of quasi-

rational solutions of the NLS equation. With this method, we con-

struct new patterns of different types of rogue waves. We recover

triangular configurations as well as rings isolated. As already seen

in the previous studies, one sees appearing for certain values of the

parameters, new configurations of concentric rings.

1 Introduction

The nonlinear Schrödinger equation was first solved by Zakharov and Sha-
bat [1] in 1972 by the inverse scattering method. The first expressions of the
quasi-rational solutions were given by Peregrine [2] in 1983. From this time,
a considerable number of studies were carried out. Eleonski, Akhmediev and
Kulagin obtained the first higher order analogue of the Peregrine breather
[3] in 1986. Akhmediev et al. [4, 5], constructed other analogues of order 3
and 4, using Darboux transformations.
Rational solutions of the NLS equation have been written in 2010, as a quo-
tient of two Wronskians in [6]. An other representation of the solutions of
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the NLS equation has been constructed in [7] in 2011, also in terms of a ratio
of two Wronskians determinants of order 2N .
In 2012, Guo, Ling and Liu constructed an other representation of the solu-
tions of the focusing NLS equation, as a ratio of two determinants has been
given in [8] using generalized Darboux transform.
In the same year, Ohta and Yang [9] have given a new approach where solu-
tions of the focusing NLS equation by means of a determinant representation,
obtained from Hirota bilinear method.
A the beginning of the year 2012, one obtained a representation in terms of
determinants which does not involve limits [10].
The two formulations given in [7, 10] did depend in fact only on two param-
eters; this remark was first made by V.B. Matveev. Then we found for the
order N (for determinants of order 2N), solutions depending on 2N − 2 real
parameters.
In this article, we restrict ourself the study to the case of the solutions of
NLS of order 7; because of the constraints of the publication, we do not have
the space to publish all the deformations. With this new method, we con-
struct news deformations at order 7 with 12 real parameters. The explicit
representation in terms of polynomials is found, but is too monstrous to be
published.
One constructs various drawings to illustrate the evolution of the solutions
according to the parameters. One obtains at the same time triangular con-
figurations and ring structures with a maximum of 28 peaks. These deforma-
tions are completely new and gives by new patterns a better understanding
of the NLS equation.

2 Determinant representation of solutions of

NLS equation

We recall the results obtained in [7] and [10]. We consider the focusing NLS
equation

ivt + vxx + 2|v|2v = 0. (1)

In the following, we consider 2N parameters λν , ν = 1, . . . , 2N satisfying the
relations

0 < λj < 1, λN+j = −λj, 1 ≤ j ≤ N. (2)
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We define the terms κν , δν , γν by the following equations,

κν = 2
√

1 − λ2
ν , δν = κνλν , γν =

√

1 − λν

1 + λν

, (3)

and

κN+j = κj, δN+j = −δj, γN+j = 1/γj, j = 1 . . . N. (4)

The terms xr,ν (r = 3, 1) are defined by

xr,ν = (r − 1) ln
γν − i

γν + i
, 1 ≤ j ≤ 2N. (5)

The parameters eν are defined by

ej = iaj − bj, eN+j = iaj + bj, 1 ≤ j ≤ N, (6)

where aj and bj, for 1 ≤ j ≤ N are arbitrary real numbers.
We use the following notations :

Aν = κνx/2 + iδνt − ix3,ν/2 − ieν/2,
Bν = κνx/2 + iδνt − ix1,ν/2 − ieν/2,

(7)

for 1 ≤ ν ≤ 2N , with κν , δν , xr,ν defined in (3), (4) and (5).
The parameters eν are defined by (6).
Here, the parameters aj and bj, for 1 ≤ N are chosen in the form

aj =
N−1
∑

k=1

ãkǫ
2k+1j2k+1, bj =

N−1
∑

k=1

b̃kǫ
2k+1j2k+1, 1 ≤ j ≤ N. (8)

We consider the following functions :

f4j+1,k = γ4j−1
k sin Ak, f4j+2,k = γ4j

k cos Ak,

f4j+3,k = −γ4j+1
k sin Ak, f4j+4,k = −γ4j+2

k cos Ak,
(9)

for 1 ≤ k ≤ N , and

f4j+1,N+k = γ2N−4j−2
k cos AN+k, f4j+2,N+k = −γ2N−4j−3

k sin AN+k,

f4j+3,N+k = −γ2N−4j−4
k cos AN+k, f4j+4,N+k = γ2N−4j−5

k sin AN+k,
(10)
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for 1 ≤ k ≤ N .
We define the functions gj,k for 1 ≤ j ≤ 2N , 1 ≤ k ≤ 2N in the same way,
we replace only the term Ak by Bk.

g4j+1,k = γ4j−1
k sin Bk, g4j+2,k = γ4j

k cos Bk,

g4j+3,k = −γ4j+1
k sin Bk, g4j+4,k = −γ4j+2

k cos Bk,
(11)

for 1 ≤ k ≤ N , and

g4j+1,N+k = γ2N−4j−2
k cos BN+k, g4j+2,N+k = −γ2N−4j−3

k sin BN+k,

g4j+3,N+k = −γ2N−4j−4
k cos BN+k, g4j+4,N+k = γ2N−4j−5

k sin BN+k,
(12)

for 1 ≤ k ≤ N .
Then we get the following result :

Theorem 2.1 The function v defined by

v(x, t) =
det((njk)j,k∈[1,2N ]

)

det((djk)j,k∈[1,2N ]
)
e2it−iϕ (13)

is a quasi-rational solution of the NLS equation (1)

ivt + vxx + 2|v|2v = 0,

depending on 2N − 2 parameters ãj, b̃j, 1 ≤ j ≤ N − 1, where

nj1 = fj,1(x, t, 0), njk =
∂2k−2fj,1

∂ǫ2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0), njN+k =
∂2k−2fj,N+1

∂ǫ2k−2 (x, t, 0),

dj1 = gj,1(x, t, 0), djk =
∂2k−2gj,1

∂ǫ2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0), djN+k =
∂2k−2gj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(14)

The functions f and g are defined in (9),(10), (11), (12).

We don’t have the space to give the proof in this publication. We will give
it in an other forthcoming paper.
The solutions of the NLS equation can also be written in the form :

v(x, t) = exp(2it − iϕ) × Q(x, t)
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where Q(x, t) is defined by :

Q(x, t) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1,1[0] . . . f1,1[N − 1] f1,N+1[0] . . . f1,N+1[N − 1]
f2,1[0] . . . f2,1[N − 1] f2,N+1[0] . . . f2,N+1[N − 1]

...
...

...
...

...
...

f2N,1[0] . . . f2N,1[N − 1] f2N,N+1[0] . . . f2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1,1[0] . . . g1,1[N − 1] g1,N+1[0] . . . g1,N+1[N − 1]
g2,1[0] . . . g2,1[N − 1] g2,N+1[0] . . . g2,N+1[N − 1]

...
...

...
...

...
...

g2N,1[0] . . . g2N,1[N − 1] g2N,N+1[0] . . . g2N,N+1[N − 1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

(15)

3 Quasi-rational solutions of order 7 with twelve

parameters

Wa have already constructed in [7] solutions for the cases from N = 1 until
N = 6, and in [10] with two parameters.
Because of the length of the expression v of the solution of NLS equation
with 12 parameters, we can’t give here. We only construct figures to show
deformations of the analogue of the seventh Peregrine breather; in the fol-
lowing we will call it for simplicity, the seventh Peregrine breather.
Conversely to the study with two parameters given in preceding works [7, 10],
we get other type of symmetries in the plots in the (x, t) plane. We give some
examples of this fact in the following.
It is important to note the similar role played by the parameters ãj and b̃j

for a same j; the same configuration of the peaks is obtained. For this reason
one will give the figures only for a parameter ãj or b̃j. On the other hand, to
understand the configuration for a value of the parameter, one will give two
sights to see the distribution of the peaks.
With different choices of parameters, we obtain all types of configurations :
triangles, rings and concentric rings with a maximum of 28 peaks.
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Figure 1: Solution of NLS, N=7; all parameters equal to 0, the Peregrine
breather of order 7, P7.

Figure 2: Solution of NLS, N=7; b̃1 = 104; we obtain a regular triangle with
28 peaks; on the right, sight of top.
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Figure 3: Solution of NLS, N=7; ã2 = 106, 3 rings with respectively 5, 10,
10 peaks with in the center the Peregrine of order 2, P2; on the right, sight
of top.

Figure 4: Solution of NLS, N=7; b̃3 = 1010, 4 rings with 7 peaks on each of
them without central peak; on the right, sight of top.
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Figure 5: Solution of NLS, N=7; ã4 = 1010, 3 rings with 9 peaks on each of
them with in the center one peak; on the right, sight of top.

Figure 6: Solution of NLS, N=7; b̃5 = 1015, 2 rings of 11 peaks with in the
center the Peregrine breather of order 3, P3; on the right, sight of top.
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Figure 7: Solution of NLS, N=7; ã6 = 1012, b̃6 = −108, a ring with 13 peaks
and in the center the Peregrine breather of order 5, P5; on the right, sight of
top.

4 Conclusion

We have constructed explicitly solutions of the NLS equation of order N with
2N − 2 real parameters. The expressions in terms of polynomials in x and t
are too monstrous to be published in this paper.
It is important to note the symmetrical role played by the parameters ãj and
b̃j; the configurations obtained for one of these two parameters ãj or b̃j for
the index j are the same ones. Thus for each couple (ãj; b̃j) we have only
built one associated figure for only for one parameter, ãj 6= 0, or b̃j 6= 0.
In the cases a1 6= 0 or b1 6= 0 we obtain triangles with a maximum of 28
peaks; for a2 6= 0 or b2 6= 0, we have 3 concentric rings with two of them
with 10 peaks and an other with 5 peaks with in the center the Peregrine
P2 with 3 peaks. For a3 6= 0 or b3 6= 0, we obtain 4 concentric rings without
central peak with 7 peaks on each of them. For a4 6= 0 or b4 6= 0, we have 3
concentric rings with 9 peaks, with a in the center one peak. For a5 6= 0 or
b5 6= 0, we obtain 2 concentric rings without central peak with 11 peaks on
each of them and the appearance in the center of the Peregrine breather P3

with 6 peaks. For a6 6= 0 or b6 6= 0, we have only one ring with 13 peaks with
inside the appearance of the Peregrine breather of order 5 with 15 peaks.
We obtained new patterns in the (x; t) plane, by different choices of these
parameters; we recognized rings configurations as already observed in the
case of deformations depending on two parameters [7, 10]. We get news
triangular shapes and multi-concentric rings.
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This study at the order 7 was never still carried out; it is completely new
and makes it possible to provide a better understanding of the phenomena
of rogue waves.

References

[1] Zakharov V.E. and Shabat A.B. Sov. 1972 Phys. JETP 34 62-69

[2] Peregrine D. 1983 J. Austral. Math. Soc. Ser. B 25 16-43,

[3] Akhmediev N., Eleonsky V. and Kulagin N. 1985 Sov. Phys. J.E.T.P.
62 894-899

[4] Akhmediev N., Ankiewicz A. and Soto-Crespo J.M. 2009 Physical Re-
view E 80 026601-1-9

[5] Ankiewicz A., Clarkson P.A., Akhmediev N. 2010 J. Phys. A : Math.
Theor. 43 122002, 1-9,

[6] Dubard P., Gaillard P., Klein C. and Matveev V.B. 2010 Eur. Phys. J.
Special Topics 185 247-258,

[7] Gaillard P. 2011 J. Phys. A : Meth. Theor. 44 1-15,

[8] Guo B., Ling L. and Liu Q.P. 2012 Phys. Rev. E 85 026607-1-9

[9] Ohta Y. and Yang J. 2012 Pro. R. Soc. A 468 1716-1740

[10] Gaillard P. 2013 Jour. Of Math. Phys. 54 013504-1-32

10


