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In this paper, we study the spectrum of the weighted Laplacian (also called Bakry-Emery or Witten Laplacian) Lσ on a compact, connected, smooth Riemannian manifold (M, g) endowed with a measure σdvg. First, we obtain upper bounds for the k-th eigenvalue of Lσ which are consistent with the power of k in Weyl's formula. These bounds depend on integral norms of the density σ, and in the second part of the article, we give examples showing that this dependence is, in some sense, sharp. As a corollary, we get bounds for the eigenvalues of Laplace type operators, such as the Schrödinger operator or the Hodge Laplacian on p-forms. In the special case of the weighted Laplacian on the sphere, we get a sharp inequality for the first nonzero eigenvalue which extends Hersch's inequality.

Note that L σ is self-adjoint as an operator on L 2 (σdv g ) and is unitarily equivalent (through the transform

is nothing but the restriction to functions of the Witten Laplacian associated to f . That is why L σ itself is sometimes called Witten Laplacian.

Weighted manifolds arise naturally in several situations in the context of geometric analysis and their study has been very active in recent years. Their

Introduction

In this article, our main aim is to study the spectrum of the weighted Laplacian (also called Bakry-Emery Laplacian) L σ on a compact, connected, smooth Riemannian manifold (M, g) endowed with a measure σdv g , where σ = e -f ∈ C 2 (M ) is a positive density and dv g is the Riemannian measure induced by the metric g. Such a triple (M, g, σ) is known in literature as a weighted Riemannian manifold, a manifold with density, a smooth metric measure space or a Bakry-Emery manifold. Denoting by ∇ g and ∆ g the gradient and the Laplacian with respect to the metric g, the operator L σ is defined by

L σ = ∆ g - 1 σ ∇ g σ • ∇ g = ∆ g + ∇ g f • ∇ g
so that, for any function u ∈ C 2 (M ), satisfying Neumann boundary conditions if ∂M = ∅, Bakry-Emery curvature Ric σ = Ric g + Hessf plays a role which is similar in many respects to that played by the Ricci curvature for Riemannian manifolds, and appears as a centerpiece in the analysis of singularities of the Ricci flow in Perelman's work (see [START_REF] Morgan | Manifolds with density[END_REF][START_REF] Morgan | Manifolds with density and Perelman's proof of the Poincaré conjecture[END_REF]). The weighted Laplacian L σ appears naturally in the study of diffusion processes (see e.g., the pioneering work of Bakry and Emery [START_REF] Bakry | Diffusions hypercontractives[END_REF]). Eigenvalues of L σ are strongly related to asymptotic properties of mm-spaces, such as the study of Levy families (see [START_REF] Funano | Concentration, Ricci Curvature, and Eigenvalues of Laplacian[END_REF][START_REF] Gromov | A topological application of the isoperimetric inequality[END_REF][START_REF] Milman | On the role of convexity in isoperimetry, spectral gap and concentration[END_REF]). Without being exhaustive, we refer to the following articles and the references therein: [START_REF] Lott | Some geometric properties of the Bakry-Émery-Ricci tensor[END_REF][START_REF] Lott | Optimal transport and Ricci curvature for metric-measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Munteanu | Smooth metric measure spaces with nonnegative curvature[END_REF][START_REF] Munteanu | Analysis of weighted Laplacian and applications to Ricci solitons[END_REF][START_REF] Munteanu | The curvature of gradient Ricci solitons[END_REF][START_REF] Wei | Comparison geometry for the Bakry-Emery Ricci tensor[END_REF] and, closely related to our topic, [START_REF] Andrews | Eigenvalue comparison on Bakry-Emery manifolds[END_REF][START_REF] Futaki | On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking ricci solitons[END_REF][START_REF] Futaki | Lower diameter bounds for compact shrinking Ricci solitons[END_REF][START_REF] Hassannezhad | Eigenvalues of perturbed Laplace operators on compact manifolds[END_REF][START_REF] Lu | Eigenvalues of collapsing domains and drift Laplacians[END_REF][START_REF] Ma | Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians[END_REF][START_REF] Setti | Eigenvalue estimates for the weighted Laplacian on a Riemannian manifold[END_REF][START_REF] Wu | Upper bounds on the first eigenvalue for a diffusion operator via Bakry-Émery Ricci curvature[END_REF][START_REF] Wu | Upper Bounds on the First Eigenvalue for a Diffusion Operator via Bakry-Émery Ricci Curvature II[END_REF] The spectrum of L σ , with Neumann boundary conditions if ∂M = ∅, consists of an unbounded sequence of eigenvalues

Spec(L σ ) = {0 = λ 1 (L σ ) < λ 2 (L σ ) ≤ λ 3 (L σ ) ≤ • • • ≤ λ k (L σ ) ≤ • • • }
which satisfies the Weyl's asymptotic formula

λ k (L σ ) ∼ 4π 2 ω -2 n n k V g (M ) 2 n , as k → ∞
where V g (M ) is the Riemannian volume of (M, g) and ω n is the volume of the unit ball in R n . The first aim of this paper is to obtain bounds for λ k (L σ ) which are consistent with the power of k in Weyl's formula. Before stating our results, let us recall some known facts about the eigenvalues (λ k (g)) k≥1 of the usual Laplacian ∆ g (case σ = 1). Firstly, the well-known Hersch's isoperimetric inequality (see [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF]) asserts that on the 2dimensional sphere S 2 , the first positive normalized eigenvalue λ 2 (g)V g (M ) is maximal when g is a "round" metric (see [START_REF] Soufi | A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle[END_REF][START_REF] Soufi | Sur la première valeur propre des tores[END_REF][START_REF] Jakobson | Extremal metric for the first eigenvalue on a Klein bottle[END_REF][START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF][START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF] for similar results on other surfaces). Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] proved that on any compact manifold of dimension n = 2, λ k (g)V g (M ) is bounded above independently of g. More precisely, if M is a compact orientable surface of genus γ, then

λ k (g)V g (M ) ≤ C(γ + 1)k ( 1 
)
where C is an absolute constant (see [START_REF] Hassannezhad | Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem[END_REF] for an improved version of this inequality). On the other hand, on any compact manifold M of dimension n ≥ 3, the normalized first positive eigenvalue λ 2 (g)V g (M ) 2/n can be made arbitrarily large when g runs over the set of all Riemannian metrics on M (see [START_REF] Colbois | Riemannian metrics with large λ1[END_REF][START_REF] Lohkamp | Discontinuity of geometric expansions[END_REF]). However, the situation changes as soon as we restrict ourselves to a fixed conformal class of metrics. Indeed, on the sphere S n , round metrics maximize λ 2 (g)V g (S n ) 2/n among all metrics g which are conformally equivalent to the standard one (see [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF]Proposition 3.1]). Furthermore, Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] proved that for any compact Riemannian manifold (M, g) one has

λ k (g)V g (M ) 2/n ≤ C([g])k 2/n (2) 
where C([g]) is a constant depending only on the conformal class [g] of the metric g. Korevaar's approach has been revisited and placed in the context of metric measure spaces by Grigor'yan and Yau [START_REF] Grigor ′ Yan | Decomposition of a metric space by capacitors[END_REF] and, then, by Grigor'yan, Netrusov and Yau [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF].

The first observation we can make about possible extensions of these results to weighted Laplacians is that, given any compact Riemannian manifold (M, g), the eigenvalues λ k (L σ ) cannot be bounded above independently of σ. Indeed, from the semi-classical analysis of the Witten Laplacian (see [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten[END_REF]), we can easily deduce that (Proposition 2.1) if f is any smooth Morse function on M with m 0 stable critical points, then the family of densities

σ ε = e -f /ε satisfies for k > m 0 , λ k (L σε ) -→ ε→0 +∞.
Therefore, any extension of the inequalities (1) and ( 2) to L σ must necessarily have a density dependence in the right-hand side. The following theorem gives such an extension in which the upper bound depends on the ratio between the L n n-2 -norm and the L 1 -norm of σ. In all the sequel, the L p norm of σ with respect to dv g will be denoted by σ g p .

Theorem 1.1. Let (M, g, σ) be a compact weighted Riemannian manifold. The eigenvalues of the operator L σ , with Neumann boundary conditions if ∂M = ∅, satisfy :

(I) If n ≥ 3, then, ∀k ≥ 1, λ k (L σ ) ≤ C([g]) σ g n n-2 σ g 1 k 2/n
where C([g]) is a constant depending only on the conformal class of g.

(II) if n = 2 and M is orientable of genus γ, then, ∀k ≥ 1, λ k (L σ ) ≤ C σ ∞ σ g 1 (γ + 1)
k
where C is an absolute constant.

It is clear that taking σ = 1 in Theorem 1.1, we recover the inequalities (1) and [START_REF] Bakry | Diffusions hypercontractives[END_REF]. Moreover, as we will see in the next section, if M is boundaryless and the conformal class [g] contains a metric g 0 with nonnegative Ricci curvature, then C([g]) ≤ C(n), where C(n) is a constant which depends only on the dimension.

Notice that there already exist upper bounds for the eigenvalues of L σ in the literature, but they usually depend on derivatives of σ, either directly or indirectly, through the Bakry-Emery curvature. The main feature of our result is that the upper bounds we obtain depend only on L p -norms of the density. The proof of Theorem 1.1 relies in an essential way on the technique developed by Grigor'yan, Netrusov and Yau [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF]. Regarding Hersch's isoperimetric type inequalities, they extend to our context as follows (see Corollary 3.2): Given any metric g on S n which is conformally equivalent to the standard metric g 0 , and any positive density σ ∈ C 2 (S n ), one has

λ 2 (L σ ) ≤ n|S n | n 2 σ g n n-2 σ g 1
where |S n | is the volume of the standard n-sphere and with the convention that σ g n n-2 = σ ∞ when n = 2. Moreover, the equality holds in the inequality if and only if σ is constant and g is a round metric.

Next, let us consider a Riemannian vector bundle E over a Riemannian manifold (M, g) and a Laplace type operator

H = D * D + T
acting on smooth sections of the bundle. Here D is a connection on E which is compatible with the Riemannian metric and T is a symmetric bundle endomorphism (see e.g., [START_REF] Bérard | From vanishing theorems to estimating theorems: the Bochner technique revisited[END_REF]Section E]). The operator H is self-adjoint and elliptic and we will list its eigenvalues as:

λ 1 (H) ≤ λ 2 (H) ≤ • • • ≤ λ k (H) ≤ • • • .
Important examples of such operators are given by Schrödinger operators acting on functions (here T is just the potential), the Hodge Laplacian acting on differential forms (in which case T is the curvature term in Bochner's formula), and the square of the Dirac operator (T being in this case a multiple of the scalar curvature). Another important example is the Witten Laplacian acting on differential forms, whose restriction to functions is precisely given by a weighted Laplacian, the main object of study of this paper.

In Section 4 we will prove (Theorem 4.1) an upper bound for the gap between the k-th eigenvalue and the first eigenvalue of H involving integral norms of a first eigensection ψ. For example, if n ≥ 3, then

λ k (H) -λ 1 (H) ≤ C([g])   ψ g 2n n-2 ψ g 2   2 k 2/n , (3) 
where C[g] is a constant depending only on the conformal class of g. The reason why we bound the gap instead of λ k (H) itself is due to the fact that, even when σ = 1 and H is the standard Hodge Laplacian acting on p-forms, the first positive eigenvalue is not bounded on any conformal class of metrics (see [START_REF] Colbois | Eigenvalues of the Laplacian acting on p-forms and metric conformal deformations[END_REF]). For estimates on the gap when a finite group of isometries is acting, we refer to [START_REF] Colbois | Involutive isometries, eigenvalue bounds and a spectral property of Clifford tori[END_REF]. Inequality (3) should be regarded as an extension of Theorem 1.1. Indeed, if

H σ = √ σL σ 1
√ σ is the Schrödinger operator which is unitarily equivalent to the operator L σ , then λ 1 (H σ ) = λ 1 (L σ ) = 0 and any first eigenfunction of H σ is a scalar multiple of √ σ. Thus, taking ψ = √ σ in (3) we recover the first estimate in Theorem 1.1. Our main aim in section 5 is to discuss the accuracy of the upper bounds given in Theorem 1.1 regarding the way they depend on the density σ. That is why we exhibit an explicit family of compact manifolds (M, g), each endowed with a sequence of densities {σ j }, and give a sharp lower estimate of the first positive eigenvalue λ 2 (L σ j ) in terms of j. This enables us to see that both λ 2 (L σ j ) and the ratio σ j g n n-2 / σ j g 1 tend to infinity linearly with respect to j. Thus, we have

A σ j g n n-2 σ j g 1 ≤ λ 2 (L σ j ) ≤ B σ j g n n-2 σ j g 1
with λ 2 (L σ j ) -→ +∞ as j → +∞, and A and B are two positive constants which do not depend on j.

The examples of densities we give are modeled on Gaussian densities (i.e. σ j (x) = e -j|x| 2 ) on R n . For example, if Ω is a bounded convex domain in R n , we observe that λ 2 (L σ j ) ≥ 2j for all j. We then extend the lower bound to manifolds of revolution (at least asymptotically as j → ∞). However, in the case of a closed manifold of revolution, there is an additional difficulty coming from the fact that we need to extend smoothly this kind of density to the whole manifold in such a way as to preserve the estimates on both the eigenvalues and the L p -norms.

2. Upper bounds for weighted eigenvalues in a smooth metric measure space and proof of Theorem 1.1

Let (M, g) be a compact connected Riemannian manifold, possibly with a non-empty boundary. Let σ ∈ L ∞ (M ) be a bounded nonnegative function on M and let ν be a non-atomic Radon measure on M with 0 < ν(M ) < ∞.

To such a pair (σ, ν), we associate the sequence of non-negative numbers {µ k (σ, ν)} k∈N given by

µ k (σ, ν) = inf E∈S k sup u∈E\{0} R σ,ν (u)
where S k is the set of all k-dimensional vector subspaces of H 1 (M ) and

R σ,ν (u) = M |∇ g u| 2 g σdv g M u 2 dν .
In the case where σ is of class C 2 and ν = σdv g , the variational characterization of eigenvalues of the weighted Laplacian L σ = ∆ g -1 σ ∇ g σ • ∇ g gives (see e.g. [START_REF] Grigor | Heat kernels on weighted manifolds and applications[END_REF])

λ k (L σ ) = µ k (σ, σdv g ).
(4) Theorem 1.1 is a direct consequence of the following Theorem 2.1. Let (M, g) be a compact Riemannian manifold possibly with nonempty boundary. Let σ ∈ L ∞ (M ) be a nonnegative function and let ν be a non-atomic Radon measure with 0 < ν(M ) < ∞. (I) If n ≥ 3, then for every k ≥ 1, we have

µ k (σ, ν) ≤ C([g]) σ g n n-2 ν(M ) k 2/n ,
where C([g]) is a constant depending only on the conformal class of g. Moreover, if M is closed and [g] contains a metric with nonpositive Ricci curvature, then

C([g]) ≤ C(n) where C(n) is a constant depending only on n. (II) If M is a compact orientable surface of genus γ, then for every k ≥ 1, we have µ k (σ, ν) ≤ C σ ∞ ν(M ) (γ + 1) k.
where C is an absolute constant.

The proof of this theorem is based on the method described by Grigor'yan, Netrusov and Yau in [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF] and follows the same lines as the proof they have given in the case σ = 1. The main step consists in the construction of a family of disjointly supported functions with controlled Rayleigh quotient.

Let us fix a reference metric g 0 ∈ [g] and denote by d 0 the distance associated to g 0 . An annulus A ⊂ M is a subset of M of the form {x ∈ M : r < d 0 (x, a) < R} where a ∈ M and 0 ≤ r < R (if necessary, we will denote it A(a, r, R)). The annulus 2A is by definition the annulus {x ∈ M : r/2 < d 0 (x, a) < 2R}.

To such an annulus we associate the function u A supported in 2A and such that

u A (x) =    1 -2 r d 0 (x, A) if r 2 ≤ d 0 (x, a) ≤ r 1 if x ∈ A 1 -1 R d 0 (x, A) if R ≤ d 0 (x, a) ≤ 2R
We introduce the following constant:

Γ(g 0 ) = sup x∈M,r>0 V g 0 (B(x, r)) r n
where B(x, r) stands for the ball of radius r centered at x in (M, d 0 ). Notice that since M is compact, the constant Γ(g 0 ) is finite and depends only on g 0 . This constant can be bounded from above in terms of a lower bound of the Ricci curvature Ric g 0 and an upper bound of the diameter diam(M, g 0 ) (Bishop-Gromov inequality). In particular, if the Ricci curvature of g 0 is nonnegative, then Γ(g 0 ) is bounded above by a constant depending only on the dimension n.

Lemma 2.1. For every annulus A ⊂ (M, d 0 ) one has

M |∇ g u A | 2 σdv g ≤ 8 Γ(g 0 ) 2 n 2A σ n n-2 dv g 1-2 n .
Proof. Let A = A(a, r, R) be an annulus of (M, d 0 ). Since u A is supported in 2A we get, using Hölder inequality,

M |∇ g u A | 2 σdv g = 2A |∇ g u A | 2 σdv g ≤ 2A |∇ g u A | n dv g 2 n 2A σ n n-2 dv g 1-2 n .
From the conformal invariance of 2A |∇ g u A | n dv g we have

2A |∇ g u A | n dv g = 2A |∇ g 0 u A | n dv g 0 with |∇ g 0 u A | a.e. =    2 r if r 2 ≤ d 0 (x, a) ≤ r 0 if r ≤ d 0 (x, a) ≤ R 1 R if R ≤ d 0 (x, a) ≤ 2R. Hence, 2A |∇ g 0 u A | n dv g 0 ≤ 2 r n V g 0 (B(a, r)) + 1 R n V g 0 (B(a, 2R)) ≤ 2 n+1 Γ(g 0 )
where the last inequality follows from the definition of Γ(g 0 ). Putting together all the previous inequalities, we obtain the result of the Lemma.

Proof of part (I) of Theorem 2.1: Let us introduce the constant N (M, d 0 ), that we call the covering constant, defined to be the infimum of the set of all integers N such that, for all r > 0, any ball of radius 2r in (M, d 0 ) can be covered by N balls of radius r. Again, the compactness of M ensures that N (M, d 0 ) is finite, and Bishop-Gromov inequality allows us to bound it from above in terms of the dimension when the Ricci curvature of (M, g 0 ) is nonnegative.

Since the metric measure space (M, d 0 , ν) has a finite covering constant and a non atomic measure, one can apply Theorem 1.1 of [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF] and conclude that there exists a constant c(N ) depending only on N (M, d 0 ) such that for each positive integer k, there exists a family of 2k annuli

A 1 , • • • , A 2k on M such that the annuli 2A 1 , • • • , 2A 2k are mutually disjoint and, ∀i ≤ 2k, ν(A i ) ≥ c(N ) ν(M ) k . (5) 
Since the annuli 2A i are mutually disjoint, one has

i≤2k 2A i σ n n-2 dv g ≤ M σ n n-2 dv g . Thus, at most k annuli among 2A 1 , • • • , 2A 2k satisfy 2A i σ n n-2 dv g > 1 k M σ
n n-2 dv g . Therefore, we can assume without loss of generality that the

k annuli A 1 , • • • , A k satisfy 2A i σ n n-2 dv g 1-2 n ≤ 1 k 1-2 n σ g n n-2 .

The corresponding functions u

A 1 • • • , u A k are such that (Lemma 2.1) R σ,ν (u A i ) = M |∇ g u A i | 2 g σdv g M u 2 A i dν ≤ 1 ν(A i ) 8Γ(g 0 ) 2 n 2A i σ n n-2 dv g 1-2 n ≤ 1 ν(A i ) 8Γ(g 0 ) 2 n σ g n n-2 k 1-2 n .
Using inequality (5), we get

R σ,ν (u A i ) ≤ 8 Γ(g 0 ) 2 n c(N (M, d 0 )) σ g n n-2 ν(M ) k 2 n .
Since the functions u A 1 , • • • , u A k are disjointly supported, they form a kdimensional subspace on which the Rayleigh quotient is bounded above by the right hand side of the last inequality. We set C([g]) = 8 Γ(g 0 )

2 n c(N (M,d 0 )) and conclude using the min-max formula.

As we mentioned above, if M is closed and the Ricci curvature of g 0 is non negative, then the constants Γ(g 0 ), N (M, d 0 ) and, hence, C([g]) are bounded in terms of the dimension n.

Proof of part (II) of Theorem 2.1. Assume now that (M, g) is a compact orientable surface of genus γ, possibly with boundary, and let ρ ∈ C ∞ (M ) be a positive function on M . If M has nonempty boundary, then we glue a disk on each boundary component of M and extend ν by 0. This closed surface admits a conformal branched cover ψ over S 2 with degree deg(ψ) ≤ ⌊ γ+3 2 ⌋We endow S 2 with the usual spherical distance d 0 and the pushforward measure µ = ψ * (ν), We apply Theorem 1.1 of [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF] to the metric measure space (S 2 , d 0 , µ) and deduce that there exist an absolute constant c = c N (S 2 , d 0 ) and k annuli A 1 , . . . , A k ⊂ S 2 such that the annuli 2A 1 , . . . , 2A k are mutually disjoint and, ∀i ≤ k,

µ(A i ) ≥ c µ(S 2 ) k . (6) 
We set for each i ≤ k, v i = u A i • ψ. From the conformal invariance of the energy and Lemma 2.1, one deduces that, for every i ≤ k,

M |∇ g v i | 2 dv g = deg(ψ) S 2 |∇ g 0 u A i | 2 dv g 0 ≤ 8Γ(S 2 , g 0 )⌊ γ + 3 2 ⌋, while, since u A i is equal to 1 on A i , M v 2 i dν ≥ ν ψ -1 (A i ) = µ(A i ) ≥ c µ(S 2 ) k = c ν(M ) k .
Therefore,

R σ,ν (v i ) ≤ 8Γ(S 2 , g 0 ) cν(M ) ⌊ γ + 3 2 ⌋ k ≤ C(γ + 1) ν(M ) k
where C is an absolute constant. Noting that the k functions v 1 , . . . v k are disjointly supported in M , we deduce the desired inequality for µ k (σ, ν).

We end this section with the following observation showing that the presence of the density in the RHS of the inequalities of Theorem 1.1 is essential. This question will also be discussed in Section 5.

Proposition 2.1. Let (M, g) be a compact Riemannian manifold and let f be a smooth Morse function on M . For every ε > 0 we set σ ε = e -f /ε . If m 0 denotes the number of stable critical points of f , then there exists ε 0 > 0 such that, ∀ε ∈ (0, ε 0 ),

λ m 0 +1 (L σε ) ≥ 1 √ ε .
Proof. First observe that for any density σ = e -f , the operator L σ is unitarily equivalent to the Schrödinger operator

H σ = ∆ g - ∆ g √ σ √ σ = ∆ g + 1 4 |∇ g f | 2 + 1 2 ∆ g f acting on L 2 (dv g ) (indeed, L σ = 1 √ σ H σ √ σ, where multiplication by √ σ is a unitary transform from L 2 (σdv g ) to L 2 (dv g )).
Consequently, denoting by (λ k (ε)) k≥1 the eigenvalues of the semiclassical Schrödinger operator

ε 2 ∆ g + 1 4 |∇ g f | 2 + ε 2 ∆ g f , we get λ k (L σε ) = 1 ε 2 λ k (ε).
According to [START_REF] Helffer | Puits multiples en mécanique semi-classique. IV. Étude du complexe de Witten[END_REF] (see also [23, proposition 2.2]), there exists ε 0 > 0 such that, ∀ε < ε 0 , the number of eigenvalues λ k (ε) contained in the interval [0, ε 3/2 ) is exactly m 0 , that is, λ m 0 (ε) < ε 3/2 and λ m 0 +1 (ε) ≥ ε 3/2 . Therefore,

λ m 0 +1 (L σε ) = 1 ε 2 λ m 0 +1 (ε) ≥ 1 √ ε .

Sharp estimates for the first positive eigenvalue

Let (M, g) be a compact connected Riemannian n-dimensional manifold, possibly with a non-empty boundary. Li and Yau introduced in [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] the notion of conformal volume as follows : Given any immersion φ from M to the standard sphere (S p , g S p ) of dimension p, we denote by V (φ) the volume of M with respect to the metric φ * g S p , and by V c (φ) the supremum of V (γ • φ) as γ runs over the group of conformal diffeomorphisms of (S p , g S p ). The conformal volume of (M, [g]) is

V c (M, [g]) = inf p>n inf {V c (φ) : φ ∈ conf ((M, g), S p )}
where conf ((M, g), S p ) is the set of all conformal immersions from (M, g) to S p .

With the same notations as in the previous section, we have the following Theorem 3.1. Let (M, g) be a compact Riemannian manifold possibly with nonempty boundary. Let σ ∈ L ∞ (M ) be a nonnegative function and let ν be a non-atomic Radon measure on M with 0 < ν(M ) < ∞. One has

µ 2 (σ, ν) ≤ nV c (M, [g]) 2/n σ g n n-2 ν(M ) , (7) 
with the convention that

σ n n-2 = σ ∞ if n = 2. Proof. From the definition of µ 2 (σ, ν), it is clear that if u ∈ C 1 (M )
is any nonzero function such that M u dν = 0, then, taking for E the 2-dimensional vector space generated by constant functions and u, we have

µ 2 (σ, ν) ≤ sup w∈E R σ,ν (w) ≤ R σ,ν (u).
Let φ ∈ conf ((M, g), S p ). Using standard center of mass lemma (see e.g., [15, Proposition 4.1.5]), there exists a conformal diffeomorphism γ of S p so that the Euclidean components of the map φ = γ • φ satisfy

M φj dν = 0, j ≤ p + 1.
Thus, for every j ≤ p + 1,

µ 2 (σ, ν) M φ2 j dν ≤ M |∇ g φj | 2 σdv g . (8) 
From the fact that φ is conformal one has φ * g

S p = 1 n j≤p+1 |∇ g φj | 2 g and V ( φ) = M   1 n j≤p+1 |∇ g φj | 2   n/2 dv g .
We sum up in [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] and use Hölder's inequality to get

µ 2 (σ, ν) ν(M ) ≤ M j≤p+1 |∇ g φj | 2 σdv g ≤ nV ( φ) 2/n σ g n n-2 ≤ nV c (φ) 2/n σ g n n-2 .
The proof of the theorem follows immediately.

An immediate consequence of Theorem 3.1 is the following Corollary 3.1. Let (M, g) be a compact Riemannian manifold possibly with nonempty boundary and let σ ∈ C 2 (M ) be a positive function. One has

λ 2 (L σ ) ≤ nV c (M, [g]) 2/n σ g n n-2 σ g 1 . (9) 
In [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF], Ilias and the second author proved that if the Riemannian manifold (M, g) admits an isometric immersion into a Euclidean space R p whose Euclidean components are first non-constant eigenfunctions of the Laplacian ∆ g , then the following equality holds

λ 2 (∆ g )V g (M ) 2/n = nV c (M, [g]) 2/n . ( 10 
)
In this case, the inequality (9) reads

λ 2 (L σ ) ≤ λ 2 (∆ g )V g (M ) 2/n σ g n n-2 σ g 1 (11)
where the equality holds whenever σ is a constant function. This proves the sharpness of the inequality of Corollary 3.1.

Notice that all compact rank one symmetric spaces satisfy [START_REF] Soufi | Sur la première valeur propre des tores[END_REF] and hence [START_REF] Funano | Concentration, Ricci Curvature, and Eigenvalues of Laplacian[END_REF]. In particular, we have the following result that extends Hersch's isoperimetric inequality [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF] and its generalization to higher dimensions [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF].

Corollary 3.2. Let g be a Riemannian metric on S n which is conformal to the standard metric g S n , and let σ ∈ C 2 (S n ) be a positive function. One has

λ 2 (L σ ) ≤ n|S n | 2 n σ g n n-2 σ g 1 (12)
where |S n | is the volume of the Euclidean unit sphere. Moreover, the equality holds in [START_REF] Futaki | On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking ricci solitons[END_REF] if and only if σ is constant and g is homothetically equivalent to g S n .

Proof. Let γ = (γ 1 , ..., γ n+1 ) : S n → S n be conformal transformation of S n such that, for every i ≤ n + 1, we have

S n γ i σ dv g = 0.
Using the same arguments as in the proof of Theorem 3.1, we get

λ 2 (L σ ) S n γ 2 i σ dv g ≤ S n |∇ g γ i | 2 σ dv g , i ≤ n + 1, λ 2 (L σ ) σ g 1 ≤ S n i≤n+1 |∇ g γ i | 2 σ dv g ≤ n    S n   1 n i≤n+1 |∇ g γ i | 2   n/2 dv g    2/n σ g n n-2
with (since γ is conformal from (S n , g) to (S n , g S n ) )

S n   1 n i≤n+1 |∇ g γ i | 2   n/2 dv g = V γ * g S n (S n ) = |S n |.
The inequality [START_REF] Futaki | On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking ricci solitons[END_REF] follows immediately. Assume that the equality holds in [START_REF] Futaki | On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking ricci solitons[END_REF]. This implies that

• L σ γ i = λ 2 (L σ )γ i , i ≤ n + 1, and • the function σ is constant if n = 2 and, if n ≥ 3, the functions n+1 i=1 |∇ g γ i | 2 n/2
and σ n n-2 are proportional.

An elementary computation gives

0 = i≤n+1 L σ γ 2 i = 2 i≤n+1 γ i L σ γ i -|∇ g γ i | 2 = 2   λ 2 (L σ ) - i≤n+1 |∇ g γ i | 2   .
From the previous facts we see that σ is constant in all cases and, since

γ * g S n = 1 n j≤n+1 |∇ g γ j | 2 g = λ 2 (Lσ)
n g, the metric g is homothetically equivalent to g S n .

Eigenvalues of Laplace type operators

In this section we show that Theorem 1.1 extends to a much more general framework to give upper bounds of the eigenvalues of certain operators acting on sections of vector bundles, precisely the Laplace-type operators defined in the introduction. Throughout this section, (M, g) denotes a compact Riemannian manifold without boundary. We will use the notations introduced in Section 2 and refer to [START_REF] Bérard | From vanishing theorems to estimating theorems: the Bochner technique revisited[END_REF][START_REF] Peter | Spectral geometry, Riemannian submersions, and the Gromov-Lawson conjecture[END_REF] for details on Laplace type operators.

Theorem 4.1. Let H = D ⋆ D + T be an operator of Laplace type acting on sections of a Riemannian vector bundle E over (M, g), and let ψ be an eigensection associated to λ 1 (H). One has for all k ≥ 1

λ k (H) -λ 1 (H) ≤ µ k (σ, ν) with σ = |ψ| 2 and ν = |ψ| 2 dv g . Thus, a) If n ≥ 3 then λ k (H) -λ 1 (H) ≤ C([g])   ψ g 2n n-2 ψ g 2   2 k 2/n .
where C([g]) is a constant depending only on the conformal class of g. b) If M is a compact, orientable surface of genus γ then :

λ k (H) -λ 1 (H) ≤ C ψ ∞ ψ g 2 2 (γ + 1)k
where C is an absolute constant.

Proof. As H = D ⋆ D + T , the quadratic form associated to H is given by:

Q(ψ) = M Hψ, ψ dv g = M |Dψ| 2 + T ψ, ψ dv g ,
where ψ denotes a generic smooth section. If u is any Lipschitz function on M , then an integration by parts gives (see [START_REF] Colbois | Large eigenvalues and concentration[END_REF]Lemma 8])

Q(uψ) = M u 2 Hψ, ψ + |∇u| 2 |ψ| 2 dv g .
Now assume that ψ is a first eigensection: Hψ = λ 1 (H)ψ. Then we obtain:

Q(uψ) M u 2 |ψ| 2 dv g = λ 1 (H) + M |∇u| 2 |ψ| 2 dv g M u 2
|ψ| 2 dv g for all Lipschitz functions u. Let σ = |ψ| 2 and ν = |ψ| 2 dv g . Restricting the test-sections to sections of type uψ, where u is Lipschitz (hence in 1 (M )) and ψ is a fixed first eigensection, an obvious application of the min-max principle gives:

λ k (H) ≤ λ 1 (H) + µ k (σ, ν).
The remaining part of the theorem is an immediate consequence of the last inequality and Theorem 1.1.

Corollary 4.1. Assume that a Laplace type operator H acting on sections of a Riemannian vector bundle E over (M, g), admits a first eigensection of constant length. Then, for all k ≥ 1

λ k (H) -λ 1 (H) ≤ λ k (∆ g ).
Indeed, when σ is constant, µ k (σ, σdv g ) is nothing but the k-th eigenvalue of the Laplacian ∆ g acting on functions. In the particular case where H (p) is the Hodge Laplacian acting on p-forms, Corollary 4.1 says that the existence of a nonzero harmonic p-form of constant length on M leads to

λ k (H (p) ) ≤ λ k (∆ g )
for every positive integer k, which extends the result of Takahashi [START_REF] Takahashi | The gap of the eigenvalues for p-forms and harmonic p-forms of constant length[END_REF].

Lower bounds for eigenvalues on weighted Euclidean domains and manifolds of revolution

The scope of this section is to show that our main upper bound is asymptotically sharp for some special weighted manifolds, namely convex Euclidean domains and revolution manifolds endowed with a Gaussian density. By a Gaussian density we mean a function of type σ j (x) = e -jd(x,x 0 ) 2 where x 0 is a fixed point and j is a positive integer (a slight modification is needed for closed revolution manifolds). We will give a lower bound of λ 2 (L σ j ) and verify that in all these cases both λ 2 (L σ j ) and our main upper bound grow to infinity linearly in j as j → ∞.

In what follows, we make use of the Reilly formula, recently extended to weighted manifolds (see [START_REF] Ma | Extension of Reilly formula with applications to eigenvalue estimates for drifting Laplacians[END_REF]). Here M is a compact Riemannian manifold of dimension n with smooth boundary ∂M ; we let σ = e -f be a positive smooth density and u ∈ C ∞ (M ). Then we have:

M (L σ u) 2 σ = M |∇ 2 u| 2 σ + Ric(∇u, ∇u)σ + ∇ 2 f (∇u, ∇u)σ + ∂M 2 ∂u ∂N L ∂M σ u • σ + B(∇ ∂M u, ∇ ∂M u)σ + ∂M (n -1)H + ∂f ∂N ∂u ∂N 2 σ ( 13 
)
where N is the inner unit normal, B the second fundamental form of ∂M with respect to N and (n -1)H = trB is the mean curvature. By L ∂M σ we denote the induced operator on ∂M , naturally defined as

L ∂M σ u = ∆ ∂M u + ∇ ∂M f , ∇ ∂M u .
When not explicitly indicated, integration is taken with respect to the canonical Riemannian measure.

Convex Euclidean domains.

Here is the main statement of this section.

Theorem 5.1. Let Ω be a convex domain of R n containing the origin, endowed with the Gaussian density σ j (x) = e -j|x| 2 . There exists a constant K n,R depending only on n and R = dist(O, ∂Ω) such that, for all j ≥ K n,R ,

σ j n n-2 σ j 1 ≤ λ 2 (L σ j ) ≤ B n σ j n n-2 σ j 1 ( 14 
)
where B n is a constant that depends only on n. Moreover, λ 2 (L σ j ) tends to infinity with a linear growth as j → ∞.

The proof follows from Theorem 1.1 and the following estimates.

Proposition 5.1. Let Ω be a convex domain in R n . Then, for all j > 0,

λ 2 (L σ j ) ≥ 2j.
Proof. We apply the Reilly formula [START_REF] Futaki | Lower diameter bounds for compact shrinking Ricci solitons[END_REF] to an eigenfunction u associated

to λ = λ 2 (L σ j ). By definition, f = j|x| 2 so that ∇ 2 f = 2jI. As ∂u ∂N = 0
(Neumann condition) and B ≥ 0 by the convexity assumption, we arrive at

λ 2 Ω u 2 σ ≥ 2j Ω |∇u| 2 σ = 2jλ Ω u 2 σ,
and the inequality follows. . In particular

σ j n n-2 ≤ C n j n-2 2 .
b) There exists a constant K n,R depending only on n and R such that, if

j ≥ K n,R , then σ j 1 ≥ C n 2j n 2
.

The constants C n , C n,p will be given explicitely in the proof. From the above facts we obtain for j ≥ K n,R ,

σ j n n-2 σ j 1 ≤ 2j ≤ λ 2 (L σ j ).
Proof of Lemma 5.1. We use the well-known formula

∞ 0 r n-1 e -jr 2 dr = Γ( n 2 ) 2j n 2
, where Γ is the Gamma function. Then

R n e -j|x| 2 dx = |S n-1 | ∞ 0 r n-1 e -jr 2 dr = C n j n 2
.

with

C n = 1 2 |S n-1 |Γ( n 2 
). This implies that

σ j p = Ω e -jp|x| 2 dx 1 p ≤ R n e -jp|x| 2 dx 1 p = C n,p j n 2p with C n,p = (C n ) 1 p p n 2p
, which proves a). Now, one has

σ j 1 = Ω e -j|x| 2 dx = R n e -j|x| 2 dx - Ω c e -j|x| 2 dx = C n j n 2 - Ω c
e -j|x| 2 dx.

On the complement of Ω one has |x| ≥ R by the definition of R. Then,

Ω c e -j|x| 2 dx = Ω c e -j 2 |x| 2 e -j 2 |x| 2 dx ≤ e -jR 2 2 R n e -|x| 2 2 dx = D n e -jR 2 2 .
As R is fixed and j n 2 e -jR 2 2 tends to zero when j tends to infinity, one sees immediately that there exists K n,R such that, for j ≥ K n,R ,

Ω c e -j|x| 2 dx ≤ D n e -jR 2 2 ≤ C n 2j n 2
.

In that range of j one indeed has

σ j 1 ≥ C n 2j n 2
.

Revolution manifolds with boundary.

A revolution manifold with boundary of dimension n is a Riemannian manifold (M, g) with a distinguished point N such that (M \{N }, g) is isometric to (0, R]×S n-1 endowed with the metric g = dr 2 + θ 2 (r)g S n-1 , g S n-1 denoting the standard metric on the sphere. Here θ(r) is a smooth function on [0, R] which is positive on (0, R] (note that we assume in particular θ(R) > 0) and is such that:

θ(0) = θ ′′ (0) = 0, θ ′ (0) = 1.
We notice that, as R < +∞, M is compact, connected and has a smooth boundary ∂M = {R} × S n-1 isometric to the (n -1)-dimensional sphere of radius θ(R). If we make the stronger assumption that θ has vanishing even derivatives at zero then the metric is C ∞ -smooth everywhere. Given a Gaussian radial density of the form σ j (r) = e -jr 2 centered at the pole N , we wish to study the first non-zero eigenvalue λ 2 (L σ j ) of L σ j , with Neumann boundary conditions.

Theorem 5.2. Let (M, g) be a revolution manifold with boundary endowed with the Gaussian density σ j (r) = e -jr 2 , j ≥ 1. Then there is a (possibly negative) constant C, not depending on j, such that

λ 2 (L σ j ) ≥ 2j + C. Moreover, if (M, g) has non-negative Ricci curvature, then λ 2 (L σ j ) ≥ 2j.
We start the proof by making general considerations which are valid for any radial density σ(r) = e -f (r) (Lemma 5.2 and 5.3). As for the usual Laplacian, we can separate variables and prove that there is an orthonormal basis of L 2 (σ) made of eigenfunctions of type

u(r, x) = φ(r)ξ(x) (15) 
where φ is a smooth function of r ∈ [0, R] and ξ(x) is an eigenfunction of the Laplacian on S n-1 . Listing the eigenvalues of S n-1 as {µ k }, where k = 1, 2, . . . , and computing the Laplacian, one arrives at

∆u(r, x) = -φ ′′ (r) -(n -1) θ ′ (r) θ(r) φ ′ (r) + µ k θ(r) 2 φ(r) ξ(x). As f = f (r) is radial one has ∇f , ∇u (r, x) = f ′ (r)φ ′ (r)ξ(x) so that L σ u(r, x) = -φ ′′ (r)-(n-1) θ ′ (r) θ(r) φ ′ (r)+f ′ (r)φ ′ (r)+ µ k θ(r) 2 φ(r) ξ(x) (16)
Let us now focus on the first positive eigenvalue λ 2 (L σ ) with associated eigenfunction u of the form [START_REF] Girouard | Maximization of the second positive Neumann eigenvalue for planar domains[END_REF]. There are only two cases to examine:

• either µ k = µ 1 = 0, so that ξ(x) is constant and the eigenfunction u is radial,

• or µ k = µ 2 = n -1, the first positive eigenvalue of S n-1 . In fact, higher eigenvalues of S n-1 do not occur, otherwise u would have too many nodal domains. We summarize this alternative in the following lemma.

Lemma 5.2. Let M = (0, R] × S n-1 be a manifold of revolution as above, endowed with a radial density σ(r) = e -f (r) . Then, either L σ admits a (Neumann) radial eigenfunction associated to λ 2 (L σ ), or λ 2 (L σ ) is the first positive eigenvalue of the problem

   φ ′′ + (n -1) θ ′ θ -f ′ φ ′ + λ - n -1 θ 2 φ = 0 φ(0) = φ ′ (R) = 0
Note that the condition φ ′ (R) = 0 follows from the Neumann boundary condition, while the condition φ(0) = 0 is imposed to insure that the eigenfunction is continuous at the pole N .

We then prove the following lower bound for the "radial spectrum".

Lemma 5.3. In the hypothesis of Lemma 5.2, assume that L σ admits a a (Neumann) radial eigenfunction associated to the eigenvalue λ. Then

λ ≥ inf (0,R) (n -1) θ ′ θ 2 + Ric 0 + f ′′ ,
where Ric 0 is a lower bound of the Ricci curvature of M .

Proof. Let u = u(r) be a radial eigenfunction associated to λ. We apply the Reilly formula [START_REF] Futaki | Lower diameter bounds for compact shrinking Ricci solitons[END_REF] to obtain:

λ M u 2 σ = M |∇ 2 u| 2 σ + Ric(∇u, ∇u)σ + ∇ 2 f (∇u, ∇u)σ.
In fact, the boundary terms vanish because on ∂M one has ∂u ∂N = 0 and, as u is radial (hence constant on ∂M ), one also has ∇ ∂M u = 0. We now wish to bound from below the terms involving the hessians. For that we need to use a suitable orthonormal frame. So, fix a point p = (r, x) and consider a local frame (ē 1 , . . . , ēn-1 ) around x which is orthonormal for the canonical metric of S n-1 . We can assume that this frame is geodesic at x. Taking e i = 1 θ ēi it is clear that (e 1 , . . . , e n-1 , ∂ ∂r ) is a local orthonormal frame on (M, g). If ∇ denotes (as usual) the Levi-Civita connection of (M, g) one sees easily that at p,

∇ e i e j = -δ ij θ ′ θ ∂ ∂r , ∇ e i ∂ ∂r = θ ′ θ e i , ∇ ∂ ∂r e i = ∇ ∂ ∂r ∂ ∂r = 0.
We are now ready to prove Theorem 5.2. Let σ j = e -jr 2 so that f ′′ (r) = 2j. If λ 2 (L σ j ) is associated to a radial eigenfunction, Lemma 5.3 gives

λ 2 (L σ j ) ≥ 2j + C 1 ,
with C 1 independent of j. It is also clear that if M has non-negative Ricci curvature then λ 2 (L σ j ) ≥ 2j.

Taking into account Lemma 5.2, Theorem 5.2 will now follow from Lemma 5.4. Let λ 2 be the first positive eigenvalue of the problem

   φ ′′ + (n -1) θ ′ θ -2jr φ ′ + λ - n -1 θ 2 φ = 0 φ(0) = φ ′ (R) = 0 Then λ 2 ≥ 2j + C 2 where C 2 = (n -1) inf r -θ ′ θ rθ 2 : r ∈ (0, R) . Moreover, if M has non- negative Ricci curvature, then C 2 ≥ 0.
We observe that C 2 is always finite because since r → rθ ′ θ rθ 2 approaches -2 3 θ ′′′ (0) as r → 0, and then is bounded on [0, R]. Proof. Set φ(r) = ry(r) so that φ ′ = y + ry ′ and φ ′′ = 2y ′ + ry ′′ . Substituting in the equation we obtain 

y ′′ + 2 r + (n -1) θ ′ θ -2jr y ′ + λ -2j + (n -1) θ ′ θ -r rθ 2 y = 0. If β = r 2 θ n-1 e -jr
(βy ′ ) ′ + λ -2j + (n -1) θ ′ θ -r rθ 2 βy = 0.
Multiplying by y and integrating on (0, R) we end-up with

(λ -2j) R 0 βy 2 dr = - R 0 (βy ′ ) ′ y dr + R 0 (n -1) r -θ ′ θ rθ 2 βy 2 dr.
We observe that β(0) = 0 and, as φ ′ (R) = 0, we have y(R) = -Ry ′ (R).

Then, integrating by parts:

- R 0 (βy ′ ) ′ y dr = -β(R)y ′ (R)y(R) + R 0 βy ′2 dr = β(R)y ′ (R) 2 R + R 0 βy ′2 dr ≥ 0.
From the definition of the constant C 2 we obtain

(λ -2j) R 0 βy 2 dr ≥ C 2 R 0 βy 2 dr
which gives the assertion.

Finally, it is well-known that Ric( ∂ ∂r , ∂ ∂r ) = -(n -1)

θ ′′ θ . If M has non-
negative Ricci curvature then θ ′′ ≤ 0; in turn we have θ ′ ≤ 1 and θ ≤ r, which implies that rθ ′ θ ≥ 0 and, then, C 2 ≥ 0.

5.3. Closed revolution manifolds. A closed revolution manifold of dimension n is a compact manifold (M, g) without boundary, having two distinguished points N, S such that (M \{N, S}, g) is isometric to (0, R)× S n-1 endowed with the metric dr 2 + θ 2 (r)g S n , where θ : [0, R] → R is smooth and

θ(0) = θ(R) = 0, θ ′ (0) = -θ ′ (R) = 1, θ ′′ (0) = θ ′′ (R) = 0.
Under these assumptions, the metric g is C 2 . To have a C ∞ metric it is enough to assume that θ (2i) (0) = θ (2i) (R) = 0 for all i = 0, 1, 2, . . . .

Our aim is to construct a sequence of radial densities {σ j } on M such that λ 2 (L σ j ) grows linearly with j. These densities will be Gaussian functions centered at the pole N of M , suitably smoothened near the pole S so that the resulting function is globally C 1 (this is enough for our purpose). Thus, let us define

σ j (r) = e -f j (r) (17) 
where f j (r) = jh 2 j (r) and

h j (r) =      r if 0 ≤ r ≤ r j . = R - 1 αj r - αj 2 (r -r j ) 2 if r j ≤ r ≤ R (18) 
Here α ≥ 1 is a fixed number, which is large enough so that

(n -1)α 2 16 -2αR ≥ 2. The function h j is of class C 1 on [0, R]. Since σ ′ j (0) = σ ′ j (R) = 0, we see that σ j is a C 1 function on M .
Theorem 5.3. Let (M, g) be a closed revolution manifold endowed with the density σ j defined in [START_REF] Grigor | Heat kernels on weighted manifolds and applications[END_REF] and [START_REF] Grigor | Eigenvalues of elliptic operators and geometric applications[END_REF]. Then there exist an integer j 0 and a constant C, not depending on j, such that, for all j ≥ j 0 , one has:

λ 2 (L σ j ) ≥ 2j + C.
We give the proof of Theorem 5.3 in the next subsection. We just want to mention here the analogue of Theorem 5.1.

Theorem 5.4. Let (M, g) be a revolution manifold with boundary (resp. a closed revolution manifold) endowed with the density σ j as in Theorem 5.2 (resp. Theorem 5.3). Then, for j sufficiently large,

A σ j n n-2 σ j 1 ≤ λ 2 (L σ j ) ≤ B σ j n n-2 σ j 1
where A and B are positive constants depending on M , but not on j. Moreover, λ 2 (L σ j ) tends to infinity with a linear growth as j → ∞.

The proof of Theorem 5.4 is quite similar to that of the corresponding statement in Theorem 5.1, and we only sketch it. Assume that M has a boundary and n ≥ 3. We start from:

σ j p p = M σ p j (r)dv g = |S n-1 | R 0 θ n-1 (r)σ p j (r) dr.
Now |θ(r) -r| ≤ cr 3 and θ n-1 (r) ∼ r n-1 as r → 0; since, for p = n n-2 and j large: R 0 r n-1 e -jpr 2 dr

1 p R 0 r n-1 e -jr 2 dr ≤ C ′ j, we get in turn σ j n n-2 σ j 1 ≤ C ′′ j.
The assertion follows from the last inequality and the estimate of λ 2 (L σ j ) we have obtained in Theorem 5.2. If M is closed the only change is in the definition of σ j . However, this change occurs far from the pole and thus contributes with exponentially decreasing terms, which, modulo a change in the constants, do not show up in the final estimate. We omit further details.

5.4. Proof of Theorem 5.3. We start the proof by observing, as in the previous section, that there is an eigenfunction associated to λ 2 (L σ j ) of type u(r, x) = φ(r)ξ(x) with φ satisying a suitable Sturm-Liouville problem on the interval [0, R] and ξ being an eigenfunction of the Laplacian on S n-1 . For a closed manifold, Lemma 5.2 takes the following form.

Lemma 5.5. Let (M, g) be a closed revolution manifold endowed with a radial density σ(r) = e -f (r) . Then, either L σ admits a radial eigenfunction associated to λ 2 (L σ ), or λ 2 (L σ ) is the first positive eigenvalue of the following Sturm-Liouville problem on [0, R]:

   φ ′′ + (n -1) θ ′ θ -f ′ φ ′ + λ - n -1 θ 2 φ = 0 φ(0) = φ(R) = 0
Note the boundary conditions on φ, which are imposed so that the corresponding eigenfunction u is continuous at both poles N and S.

By definition, Rr j = 1 αj and, as j → ∞ we have r j → R. Since θ ′ is continuous and θ ′ (R) = -1, there exists an integer j 1 such that, for all j ≥ j 1 , -2 ≤ θ ′ (r) ≤ -1 2 for all r ∈ [r j , R]. Consequently, on that interval we also have

1 2 (R -r) ≤ θ(r) ≤ 2(R -r) and | θ ′ (r) θ(r) | ≥ 1 4(R -r) . (19) 
According to Lemma 5.5 there are two cases to discuss.

First case: there is a radial eigenfunction associated to λ = λ 2 (L σ j ). Then, we apply Lemma 5.3 (which holds without change) and for the lower bound it suffices to verify the inequality:

(n -1) θ ′ (r) θ(r)

2 + f ′′ j (r) ≥ 2j (20) 
for all r ∈ (0, R). Indeed, one has f ′′ j = 2j(h ′2 j + h j h ′′ j ). Thus, on the interval (0, r j ) one gets f ′′ j = 2j and ( 20) is immediate. On the interval (r j , R) one has h j ≤ r ≤ R and h ′′ j = -αj. Then:

f ′′ j ≥ 2jh j h ′′ j ≥ -2αj 2 R.
On the other hand, as Rr ≤ Rr j = 1 αj , we see from [START_REF] Gromov | A topological application of the isoperimetric inequality[END_REF]:

θ ′ (r) θ(r) 2 ≥ 1 16(R -r) 2 ≥ α 2 j 2 16
.

Recalling the definition of α we see that, for j ≥ j 1 :

(n -1) θ ′ (r) θ(r) 2 + f ′′ j (r) ≥ (n -1)

α 2 16 -2αR j 2 ≥ 2j 2 ≥ 2j,
and the assertion follows.

Second case: λ 2 (L σ j ) is the first positive eigenvalue of the problem:

   φ ′′ + (n -1) θ ′ θ -f ′ j φ ′ + λ - n -1 θ 2 φ = 0 φ(0) = φ(R) = 0
First observe that there exists R ∈ (0, R) such that φ ′ ( R) = 0 (note that R depends on j). It follows that u is a Neumann eigenfunction associated to λ 2 (L σ j ) for both of the following domains: Ω 1 = {(r, x) ∈ M : r ≤ R}, Ω 2 = {(r, x) ∈ M : r ≥ R}.

We first assume that R < r j and focus our attention on Ω 1 . As f ′ j = 2jr on [0, R], we see that λ 2 (L σ j ) is bounded below by the first positive eigenvalue of the problem

   φ ′′ + (n -1) θ ′ θ -2jr φ ′ + λ - n -1 θ 2 φ = 0 φ(0) = φ ′ ( R) = 0.
By Lemma 5.4 we have λ 2 (L σ j ) ≥ 2j + C2 , where C2 = (n -1) inf 0>r> R rθ ′ θ rθ 2 ≥ (n -1) inf 0>r>R rθ ′ θ rθ 2 , a constant which does not depend on j, and we are done.

Finally, it remains to examine the case where R ≥ r j . In this case, we view u as a Neumann eigenfunction on the domain Ω 2 . Let us briefly sketch the argument. As j → ∞, Ω 2 is quasi-isometric to a Euclidean ball of small radius (of the order of 1/j) and has a density with uniformly controlled variation. Therefore, its first positive eigenvalue must be large (of the order of j 2 ). Let us clarify the details. We know that λ 2 (L σ j ) = Ω 2 |∇u| 2 σ j dv g Ω 2 u 2 σ j dv g .

Since h j (r) is increasing in r ∈ (r j , R), one has r j = h j (r j ) ≤ h j (r) ≤ h j (R) ≤ R. Thus, for all r ∈ ( R, R), one has (recall that r j = R -1 αj )

e -jR 2 ≤ σ j (r) ≤ e -j(R-1 αj ) 2

.

Consequently,

λ 2 (L σ j ) ≥ Ω 2 |∇u| 2 dv g Ω 2 u 2 dv g e -2R α . (21) 
As u(r, x) = φ(r)ξ(x) and S n-1 ξ = 0, we see that Ω 2 udv g = 0. Hence, by the min-max principle:

Ω 2 |∇u| 2 dv g Ω 2 u 2 dv g ≥ µ 2 (Ω 2 , g) (22) 
where µ 2 (Ω 2 , g) denotes the first positive Neumann eigenvalue of the Laplacian on the domain (Ω 2 , g). On the other hand, the first inequality in [START_REF] Gromov | A topological application of the isoperimetric inequality[END_REF] shows that the metric g is quasi-isometric, on Ω 2 , to the standard Euclidean metric g euc = dr 2 + r 2 g S n-1 , with quasi-isometry ratio bounded by 4. Thus, (Ω 2 , g) is quasi-isometric to the Euclidean ball (Ω 2 , g euc ) of radius R -R. Therefore:

µ 2 (Ω 2 , g) ≥ 4 -(n+2) µ 2 (Ω 2 , g euc ) ≥ 4 -(n+2) µ(n + 1) (R -R) 2 (23) 
where µ(n+1) is the first positive Neumann eigenvalue of the unit Euclidean ball. Since R -R ≤ Rr j = 1 αj , we conclude from ( 21), ( 22), ( 23) that:

λ 2 (L σ j ) ≥ C 3 j 2
where C 3 is a constant depending only on n, α and R. By taking j larger than a suitable integer j 2 we see that λ 2 (L σ j ) ≥ 2j as asserted. The conclusion is that, if j ≥ j 0 . = max{j 1 , j 2 }, then the inequality of Theorem 5.3 is verified. This ends the proof.

Lemma 5 . 1 .

 51 Let j ∈ N * . a) For all p > 1 one has σ j p ≤ C n,p j n 2p