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THE GEOMETRY OF SOME PARAMETERIZATIONS AND ENCODINGS

JEAN-MARC COUVEIGNES AND REYNALD LERCIER

ABSTRACT. We explore parameterizations by radicals of low genera algebraic curves. We prove that
for q a prime power that is large enough and prime to 6, a fixed positive proportion of all genus 2
curves over the field with q elements can be parameterized by 3-radicals. This results in the existence
of a deterministic encoding into these curves when q is congruent to 2 modulo 3. We extend this
construction to parameterizations by `-radicals for small odd integers `, and make it explicit for ` = 5.

1. INTRODUCTION

Let Fq be a finite field, let C/Fq be an algebraic curve, we propose in this paper new algorithms for
computing in deterministic polynomial time a point in C(Fq). This is usefull in numerous situations,
for instance in discrete logarithm cryptography [2]. To be more precise, we consider this question for
low genus curves with an emphasis on the genus 2 case.

The mathematical underlying problem is to compute radical expressions for solutions of a system
of algebraic equations. Galois theory provides nice answers, both in theory and practice, for sets
of dimension 0 and degree less than 5. Explicit results are known in dimension 1 too. A famous
theorem of Zariski states that a generic curve of genus at least 7 cannot be parameterized by radicals.
Conversely, a complex curve of genus less than 7 can be parameterized by radicals over the field of
rational fractions [10, 9].

In this work we restrict the degree of radicals involved in the parameterizations. Typically, for C a
curve over the field with q elements, we only allow radicals of degrees l prime to q(q−1). The reason
is that for such l, we can compute l-th roots of elements in Fq in deterministic polynomial time in
log(q). Especially, for odd q, we do not allow square roots. We will be mainly concerned with genus
2 curves.

Shallue and Woestijne came in 2006 to a first practical deterministic algorithm for constructing
points on genus 1 curves over any finite field [18]. In 2009, Icart proposed a deterministic encoding
with quasi-quadratic complexity in log q for elliptic curves over a finite field when q is congruent to
2 modulo 3 [11]. To this end, he constructed a parameterization by 3-radicals for every elliptic curve
over a field with characteristic prime to 6. Couveignes and Kammerer recently proved that there exists
an infinity of such parameterizations [5], corresponding to rational curves on a K3 surface associated
with the elliptic curve.

Nevertheless, in genus 2, only partial results are known. Ulas attempted to generalize Shallue
and Woestijne results [20]. Tibouchi and Fouque designed encodings for curves with automorphism
group containing the dihedral group with 8 elements [8]. Each of these two constructions reaches a
family of dimension 1 inside the dimension 3 moduli space of the genus 2 curves. So the proportion
of target curves for such parameterizations tends to zero when q tends to infinity. At the same time,
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2 JEAN-MARC COUVEIGNES AND REYNALD LERCIER

Kammerer, Lercier and Renault [13] published encodings for a dimension 2 family of genus 2 curves.
In particular their curves have no non-hyperelliptic involution. However these curves still represent a
negligible proportion of all genus 2 curves when q tends to infinity.

In this paper we construct a parameterization by 3-radicals for a genus 2 curve C over a field
K with characteristic p prime to 6 under the unique restriction that C has two K-rational points
whose difference has order 3 in the Jacobian variety. This is a dimension 3 family. In particular,
we parameterize all genus 2 curves when K is algebraically closed. When K is a finite field with
characteristic prime to 6 we parameterize this way a positive proportion of all curves.

Our construction extends the ones by Farashahi [7] for genus 1 curves and Kammerer, Lercier
and Renault [13] for genus 2 curves. Our starting point is the observation that the role played by
Tartaglia-Cardan formulae in these parameterizations can be formalized and generalized using the
theory of torsors under resoluble finite group schemes. This leads us to a systematic exploration and
combination of possibilities offered by the action of small resoluble group schemes over curves of low
genus.

The principles of our method are presented in Section 2. We first recall the basics of parameteri-
zations of curves by radicals and encodings, then we explain how to produce such parameterizations
using the action of resoluble group schemes on algebraic curves. Section 3 provides a first illustration
of this general method in the case of genus 1 curves. This offers a new insight on previous work by
Farashahi, and Kammerer, Lercier, Renault. We present a parameterization of a large (3-dimensional)
family of genus 2 curves in Section 4. Variations on this theme are presented in Section 5. Section 6
presents detailed computations for one of these families. We parameterize Jacobians of dimension 2
with one 5-torsion point. We finish with a few questions and prospects.

We thank Jean Gillibert, Qinq Liu, and Jilong Tong for useful discussions.

2. DEFINITIONS AND GENERALITIES

In this section we recall a few definitions an present the principles of our method. Sections 2.1
and 2.2 recall elementary results about radicals. Section 2.3 recalls the definition of a parameteriza-
tion. Section 2.4 gives elementary definitions about torsors. Basic properties of encodings are recalled
in Section 2.5. Section 2.6 presents Tartaglia-Cardan formulae in the natural language of torsors. Our
strategy for finding new parameterizations is presented in Sections 2.7 and 2.8.

2.1. Radical extensions. The following classical lemma [14, Chapter VI, Theorem 9.1] gives neces-
sary and sufficient conditions for a binomial to be irreducible.

Lemma 1. Let K be a field, let d ≥ 1 be a positive integer, and let a ∈ K∗. The polynomial xd − a
is irreducible in K[x] if and only if the two following conditions hold true

• For every prime integer l dividing d, the scalar a is not the l-th power of an element in K∗,
• If 4 divides d, then −4a is not the 4-th power of an element in K∗.

Let K be a field with characteristic p. Let S be a set of rational primes such that p 6∈ S. Let
M ⊃ K be a finite separable K-algebra, and L ⊂M a K-subalgebra of M . The extension L ⊂M is
said to be S-radical if M is isomorphic, as an L-algebra, to L[x]/(xl − a) for some l ∈ S and some
a ∈ L∗. When S contains all primes but p, we speak of radical extensions.

An extension M ⊃ L is said to be S-multiradical if their exists a finite sequence of K-algebras

K ⊂ L = L0 ⊂ L1 ⊂ · · · ⊂ Ln = M

such that every intermediate extension Li+1/Li for 0 ≤ i ≤ n− 1 is S-radical.
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2.2. Radical morphisms. LetK be a field with characteristic p. Let K̄ ⊃ K be an algebraic closure.
Let f : C → D an epimorphism of (projective, smooth, absolutely integral) curves over K. We

say that f is a radical morphism if the associated function field extension K(D) ⊂ K(C) is radical.
We define similarly multiradical morphisms, S-radical morphisms, S-multiradical morphisms. If f is
a radical morphism then K(C) = K(D, b) where bl = a and a is a non-constant function on D and
l 6= p is a prime integer. Call γb the map

γb : C // D × P1

P � // (f(P ), b(P )).

Let X ⊂ C be the ramification locus of f , and let Y = f(X) ⊂ D be the branch locus. A
geometric point Q on D is branched if and only if a has a zero or a pole at Q with multiplicity prime
to l. We ask if γb induces an injection on C(K̄). Equivalently we ask if b separates points in every
fiber of f . First, there is a unique ramification point above each branched point. Then, if a has neither
a zero nor a pole at Q, then b separates the points in the fiber of f above Q. Finally, if a has a zero
or a pole at Q with multiplicity divisible by l, then b (and γb) fail to separate the points in the fiber of
f above Q. However, there exists a finite covering (Ui)i of C by affine open subsets, and functions
bi ∈ O(Ui −X)∗ such that bi/b ∈ K(D)∗ ⊂ K(C)∗. We set b = (bi)1≤i≤I and define a map

γb : C // D ×
(
P1)I

P � // (f(P ), b1(P ), . . . , bI(P )).

This map induces an injection on C(K̄). So every point P ∈ C(K̄) can be characterized by its
image f(P ) on D and the value of the bi at P .

2.3. Parameterizations. An S-parameterization of a projective, absolutely integral, smooth curve
C over K is a triple (D, ρ, π) where D is another projective, absolutely integral, smooth curve over
K, and ρ is an S-multiradical map from D/K onto P1/K, and π is an epimorphism from D/K onto
C/K. In this situation one says that C/K is parameterizable by S-radicals.

(1) D
π

~~
ρ
��

C P1

2.4. Γ-groups. Let K be a field with characteristic p. Let Ks be a separable closure of K. Let Γ be
the Galois group of Ks/K. Let A be a finite set acted on continuously by Γ. We say that A is a finite
Γ-set. We associate to it the separable K-algebra

Alg(A) = HomΓ(A,Ks)
of Γ-equivariant maps from A to Ks. If G is a finite Γ-set and has a group structure compatible with
the Γ-action we say that G is a finite Γ-group, or a finite étale group scheme over K. Now let A be a
finite Γ-set acted on by a finite Γ-group G. If the action of G on A is compatible with the actions of Γ
on G and A, then we say that A is a finite G-set. The quotient A/G is then a finite Γ-set. If further G
acts freely onA we say thatA is a free finiteG-set. A simply transitiveG-set is called aG-torsor. The
left action of G on itself defines a G-torsor called the trivial torsor. The set of isomorphism classes of
G-torsors is isomorphic, as a pointed set, to H1(Γ, G). See [16, Chapter I §2].
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Let l 6= p be a prime and let A be a free finite µl-set. LetB = A/µl. According to Kummer theory,
the inclusion Alg(B) ⊂ Alg(A) is a radical extension of separable K-algebras. It has degree l.

Let S be a finite set of primes. Assume that the characteristic p of K does not belong to S. A finite
Γ-group G is said to be S-resoluble if there exists a sequence of Γ-subgroups 1 = G0 ⊂ G1 ⊂ · · · ⊂
GI = G such that for every i such that 0 ≤ i ≤ I − 1, the group Gi is normal in Gi+1, and the
quotient Gi+1/Gi is isomorphic, as a finite Γ-group, to µli for some li in S.

Let G be a finite Γ-group. Assume that G is S-resoluble. Let A be a free finite G-set. Let
B = A/G. The inclusion Alg(B) ⊂ Alg(A) is an S-multiradical extension of separable K-algebras.
It has degree #G.

2.5. Encodings. We assume that K is a finite field with characteristic p and cardinality q. Let S
be a set of prime integers. We assume that p 6∈ S and S is disjoint from the support of q − 1. Let
f : C → D be a radical morphism of degree l ∈ S. Let X ⊂ C be the ramification locus of f , and let
Y = f(X) ⊂ D be the branch locus. Let F : C(K)→ D(K) the induced map on K-rational points.
We prove that F is a bijection.

A branched point Q in D(K) is totally ramified, so has a unique preimage P in C(K). Let Q ∈
D(K) − Y (K) be a non-branched point. The fiber f (−1)(Q) is a µl-torsor. Since H1(K,µl) =
K∗/(K∗)l is trivial, this torsor is isomorphic to µl with the left action. Since H0(K,µl) = µl(K) is
trivial also, f (−1)(Q) contains a unique K-rational point. Therefore F is a bijection.

Lemma 2. Let K be a finite field with q elements. Let S be a finite set of prime integers. We assume
that p 6∈ S and S is disjoint from the support of q − 1. Let f : C → D be an S-multiradical
morphism between two smooth, projective, absolutely irreducible curves over K. The induced map
F : C(K)→ D(K) on K-rational points is a bijection.

The reciprocal map F (−1) : D(K)→ C(K) can be evaluated in deterministic polynomial time by
computing successive l-th roots for various l ∈ S.

We assume now that we are in the situation of the diagram (1). Let R : D(K) → P1(K) be the
map induced by ρ and let Π : D(K)→ C(K) be the map induced by π. The composition Π ◦R(−1)

is called an encoding.

2.6. Tartaglia-Cardan formulae. Let K be a field with characteristic prime to 6. Let Ks be an
algebraic closure of K. Let Γ be the Galois group of Ks/K. Let µ3 ⊂ Ks be the finite Γ-set
consisting of the three roots of unity. Let Sym(µ3) be the full permutation group on µ3. The Galois
group acts on µ3. So we have a group homomorphism Γ → Sym(µ3) and Γ acts on Sym(µ3) by
conjugation. This action turns Sym(µ3) into a group scheme over K. Because µ3 acts on itself by
translation, we have an inclusion of group schemes µ3 ⊂ Sym(µ3) and µ3 is a normal subgroup of
Sym(µ3). The stabilizer of 1 ∈ µ3 is a subgroup scheme of Sym(µ3). It is not normal in Sym(µ3).
It is isomorphic to µ2. So Sym(µ3) is the semidirect product µ3 o µ2.

Let ζ3 ∈ Ks be a primitive third root of unity. We set
√
−3 = 2ζ3 + 1. Let

h(x) = x3 − s1x
2 + s2x− s3

be a degree 3 separable polynomial in K[x]. Let

R = Roots(h)

be the set of roots of h(x) in Ks. This is a finite Γ-set with cardinality 3. Let

A = Bij(Roots(h), µ3)



THE GEOMETRY OF SOME PARAMETERIZATIONS AND ENCODINGS 5

be the set of bijections from R to µ3. For γ ∈ Γ and f ∈ A we set γf = γ ◦ f ◦ γ−1. This turns A
into a finite Γ-set of cardinality 6. The action of Sym(µ3) on the left turns it into a Sym(µ3)-torsor.
We call

C = A/µ3

the quotient of A by the normal Γ-subgroup µ3 ⊂ Sym(µ3) of order 3. This is a µ2-torsor. We call

B = A/µ2

the quotient of A by the stabilizer of 1 in Sym(µ3). This a finite Γ-set of cardinality 3, naturally
isomorphic to Roots(h). Indeed a function ξ in Alg(B) ⊂ Alg(A) is defined by

ξ : A // Ks

f � // f (−1)(1).
The algebra Alg(B) is generated by ξ, and the characteristic polynomial of ξ is h(x). So

Alg(B) ' K[x]/h(x).
Tartaglia-Cardan formulae construct functions in the algebra Alg(A) of the Sym(µ3)-torsor A.

These functions can be constructed with radicals because Sym(µ3) = µ3 o µ2 is {2, 3}-resoluble. A
first function δ in Alg(C) ⊂ Alg(A) is defined by

δ : A // Ks

f
� // √−3(f (−1)(ζ)−f (−1)(1))(f (−1)(ζ2)−f (−1)(ζ))(f (−1)(1)−f (−1)(ζ2)).

Note that the
√
−3 is necessary to balance the Galois action on µ3. The algebra Alg(C) is generated

by δ. And
δ2 = 81s2

3 − 54s3s1s2 − 3s2
1s

2
2 + 12s3

1s3 + 12s3
2 = −3∆

is the discriminant ∆ of h(x) multiplied by −3. We say that −3∆ is the twisted discriminant. A
natural function ρ in Alg(A) is defined as

ρ : A // Ks

f // ∑
r∈R r × f(r) =

∑
ζ∈µ3 ζ × f

(−1)(ζ).

It is clear that ρ3 is invariant by µ3 ⊂ Sym(µ3) or equivalently belongs to Alg(C). So it can be
expressed as a combination of 1 and δ. Indeed a simple calculation shows that

ρ3 = s3
1 + 27

2 s3 −
9
2s1s2 −

3
2δ.

A variant of ρ is

ρ′ : A // Ks

f // ∑
r∈R r × f(r)−1.

One has

ρ′3 = s3
1 + 27

2 s3 −
9
2s1s2 + 3

2δ
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and
ρρ′ = s2

1 − 3s2.

Finally, the root ξ of h(x) can be expressed in terms of ρ and ρ′ as

ξ = s1 + ρ+ ρ′

3 .

Note that the algebra Alg(A) is not the Galois closure of K[x]/h(x). If we wanted to construct
a Galois closure we would rather consider the Sym({1, 2, 3})-torsor Bij(R, {1, 2, 3}) of indexations
of the roots. We are not interested in this torsor however. This is because µ3 o µ2 is resoluble while
C3 oC2 is not, in general. The algebra constructed by Tartaglia and Cardan contains the initial cubic
extension, because the quotient of Bij(Roots(h), µ3) by the stabilizer of 1 in Sym(µ3) is isomorphic
to the quotient of Bij(R, {1, 2, 3}) by the stabilizer of 1 in Sym({1, 2, 3}), that is Roots(h). On the
other hand, the quotient of Bij(R, {1, 2, 3}) by the 3-cycle (123) ∈ Sym({1, 2, 3}) is associated with
the algebra K[x]/(x2 − ∆) while the quotient of Bij(R,µ3) by the 3-cycle (1ζζ2) ∈ Sym(µ3) is
associated with the algebra K[x]/(x2 + 3∆).

2.7. Curves with a µ3 o µ2 action. We still assume that the characteristic of K is prime to 6. Let
A be a projective, absolutely integral, smooth curve over K. We assume that the automorphism
group Aut(A⊗K Ks) contains a finite étale K-group-scheme isomorphic to µ3 o µ2. The quotients
B = A/µ2, andC = A/µ3 are projective, absolutely integral, smooth curves overK. In this situation,
we say that C is the resolvent of B. By abuse of language we may say also that we have constructed
a parameterization of B by C.

Assume now that C admits a parameterization by S-radical as in diagram (1). We call D′ the
normalization of the fiber product of A and D above C. We assume that D′ is absolutely integral.

D′

~~

µ3

  
A

µ2

��

µ3

  

D
π

~~
ρ
��

B C P1

We set S′ = S ∪ {3}. We let ρ′ be the composite map

ρ′ : D′ µ3−→ D
ρ−→ P1,

and π′ the composite map

π′ : D′ −→ A
µ2−→ B.

Then (D′, ρ′, π′) is an S′-parameterization of B. The mild condition that D′ be absolutely integral
is granted in the following cases:

(1) When C = P1 and π and ρ are trivial.
(2) When the µ3-quotient A→ C is branched at some point P of C, and π is not branched at P .

Indeed the two coverings are linearly disjoint in that case. We note that when C has genus 1
we may compose π with a translation to ensure that it is not branched at P .

(3) When the degree of π is prime to 3, because A → C and π are linearly disjoint then. Note
that the resulting parameterization π′ has degree prime to 3 also. We can iterate in that case.
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2.8. Selecting curves. We still assume that the characteristic of K is prime to 6. We now look for
interesting examples of curves with a µ3 oµ2 action. We keep the notation introduced in Section 2.7.
We set E = A/(µ3 o µ2).

A
µ2

~~

µ3

��
B

  

C

��
E

The curve C is the one we already know how to parameterize. The curve B is the one we want
to parameterize. It should be as generic as possible. In particular, we will assume that E = P1.
Otherwise, the Jacobian of B would contain a subvariety isogenous to the Jacobian of E. It would not
be so generic then.

Assuming now that E = P1 we denote by r the number of branched points of the cover B → E.
Let rs be the number of branched points with ramification type 2, 1. These are called simple branched
points. Let rt the number of branched points with ramification type 3. These are totally branched
points. We have r = rs + rt. According to the Hurwitz Genus Formula [19, III.4.12, III.5.1] the
genus of B is

gB = rs
2 + rt − 2.

We note that every simple branched point of the cover B → E gives rise to a branched point of type
2, 2, 2 of the cover A→ E and to a (necessarily simple) branched point of C → E. And every totally
branched point of the cover B → E gives rise to a branched point of type 3, 3 of the cover A → E
and to a non-branched point of C → E. So

gA = 3rs
2 + 2rt − 5, and gC = rs

2 − 1.

We set

m = r − 3 = rs + rt − 3

and call it the modular dimension. It is the dimension of the family of covers obtained by letting the r
branched points move along E = P1. The−3 stands for the action of Aut(P1) = PGL2. If we aim at
all curves of genus gB we should have m greater than or equal to the dimension of the moduli space
of curves of genus gB . We deduce the genericity condition

rs + 4rt ≤ 12− 2ε(rs2 + rt − 2),

where ε(0) = 3, ε(1) = 1, and ε(n) = 0 for n ≥ 2. This is a necessary condition.
The first case to consider is when C has genus 0 (because we know how to parameterize genus 0

curves). So we first take rs = 2. So gB = rt − 1 and the genericity condition reads rt ≤ 2. Only
rt = 2 is of interest. We shall see in Section 3 that we find a parameterization similar to those by
Farashahi and Kammerer, Lercier, Renault in this case.

Assuming we know how to parameterize some genus 1 curves, we may consider the case when C
itself has genus 1. We have rs = 4 in that case. And gB = rt. The genericity assumption reads
rt ≤ 2. The case rt = 2 will be studied in detail in Section 4.
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3. CURVES OF GENUS 1

Let K be a field of characteristic prime to 6. Let B/K be a projective, smooth, absolutely integral
curve of genus 1. This is the curve we want to parameterize, following the strategy presented in
Sections 2.7 and 2.8. Since rs = rt = 2 in this case, we look for a map B → P1 of degree 3 with two
fully branched points and two simply branched points. Such a map has two totally ramified points.
They may be either K-rational or conjugated over K. We will assume that they are K-rational. We
call them P0 and P∞. The two divisors 3P0 and 3P∞ are linearly equivalent because they both are
fibers of the same degree three map to P1. So the difference P∞ − P0 has order 3 in the Jacobian of
B. Our starting point will thus be a genus 1 curve B/K and two points P0, P∞ in B(K) such that
P∞ − P0 has order 3 in the Jacobian.

Let z ∈ K(B) be a function with divisor 3(P0 − P∞). There is a unique hyperelliptic involution
σ : B → B sending P0 onto P∞. It is defined over K. There exists a scalar a0,0 ∈ K∗ such that
σ(z) × z = a0,0. Let x be a degree 2 function, invariant by σ, with polar divisor (x)∞ = P0 + P∞.
Associated to the inclusion K(x) ⊂ K(x, z) there is a map B → P1 of degree 2. The sum z + σ(z)
belongs to K(x). As a function on P1 it has a single pole of multiplicity 3 at x = ∞. So z + a0,0/z
is a polynomial of degree 3 in x. Multiplying z by a scalar, and adding a scalar to x, we may assume
that

(2) z + a0,0
z

= x3 + a1,1x+ a0,1.

The image of x× z : B → P1 × P1 has equation

Z0Z1
(
X3

1 + a1,1X1X
2
0 + a0,1X

3
0

)
= X3

0

(
Z2

1 + a0,0Z
2
0

)
.

This is a curve B? ⊂ P1 × P1 with arithmetic genus 2. Since B has geometric genus 1, we deduce
that B? has one ordinary double point (with finite x and z coordinates). Let (x, z) = (j, k) be this
singular point. We find

a0,0 = k2, a1,1 = −3j2, a0,1 = 2k + 2j3.

The plane affine model B? has equation

(3) z2 + k2 = z
(
x3 − 3j2x+ 2(k + j3)

)
.

This is a degree 3 equation in x with twisted discriminant 81(1− k/z)2 times

h(z) = z2 − (2k + 4j3)z + k2.

We can parameterize B with cubic radicals. We first parameterize the conic C with equation

(4) v2 = h(z)
using the rational point (z, v) = (0, k). Applying Tartaglia-Cardan formulae to the cubic Equation (3)
we deduce a parameterization of B with one cubic radical. In order to relate Equation (3) to a Weier-
strass model, we simply sort in z and find the degree 2 equation in z,

z2 − (x3 − 3j2x+ 2k + 2j3)z + k2 = 0
with discriminant

(x3 − 3j2x+ 2k + 2j3)2 − 4k2 = (x− j)2(x+ 2j)(x3 − 3j2x+ 4k + 2j3).
A Weierstrass model for B is then u2 = (x + 2j)(x3 − 3j2x + 4k + 2j3). Replacing j by λj

and k by λ3k for some non-zero λ in K we obtain an isomorphic curve. So we may assume that
j ∈ {0, 1} without loss of generality. This construction is not substantially different from the ones
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given by Farashahi [7] and Kammerer, Lercier, Renault [13]. Starting from any genus 1 curve B and
two points P0 and P∞ such that P∞ − P0 has order 3 in the Jacobian, we can construct a model of B
as in Equation (3) and a parameterization of B.

Example. Let us consider an elliptic curve given in Weierstrass form Y 2 = X3+aX+b, for example
the curve Y 2 = X3 + 3X − 11 over R, together with a 3-torsion point (x0, y0) = (3,−5).

Define the scalars α and β by

α = − 3x0
2 + a

2 y0
and β = −y0 − αx0.

The functions x = α/3 + (Y + y0)/(X − x0) and z = Y + αX + β have divisors with zeros and
poles as prescribed. On our particular curve, these functions are

(5) x = Y − 5
X − 3 + 1 and z = Y + 3X − 4 .

The functions x and z are related by Equation (2) where

a0,0 = 4 y2
0 = 100 , a1,1 = −4x0 = −12 , a0,1 = −4 4 a3 + 27 b2

27 y03 = 4 .

So

z + 100
z

= x3 − 12x+ 4 .

The double point on the latter is (x, z) = (j, k) with

j = −2α
3 = −2 and k = −2 y0 = 10 .

A parameterization of the conic C given by Equation (4) that reaches the point (z, v) = (0, k) at
t =∞ is

z = 2 kt− k − 2 j3

t2 − 1 = 4 5 t+ 3
t2 − 1 , v = k − tz = (2k + 4j3)t− kt2 − k

t2 − 1 .

and using Tartaglia-Cardan formulae we find x = ρ/3 + 3j2/ρ with

ρ = 3j2 × 3

√
2(t+ 1)

(2 j3 − kt+ k) (1− t) .

It remains to invert Eq. (5) in order to express X and Y as functions of x and y, i.e. as functions of
the parameter t. For t = 0, we obtain in this way the point

(X,Y ) = (2 ( 3√3)2 + 4 3√3 + 3, −6 ( 3√3)2 − 12 3√3− 17) .

4. CURVES OF GENUS 2

We look for parameterizations of genus 2 curves. We will follow the strategy of Sections 2.7
and 2.8. We take rs = 4 and rt = 2 this time. Given a genus 2 curve B, we look for a degree
three map B → P1 having 4 simply branched points and 2 totally branched points. Such a map
has two totally ramified points. We will assume that they are K-rational. We call them P0 and P∞.
The difference P∞ − P0 has order 3 in the Jacobian of B. Our starting point will thus be a genus 2
curve B/K and two points P0, P∞ in B(K) such that P∞ − P0 has order 3 in the Jacobian. The
calculations will be slightly different depending on whether the set {P0, P∞} is stable under the action
of the hyperelliptic involution of B or not. These two cases will be treated in Sections 4.2 and 4.3
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respectively. Section 4.1 recalls simple facts about genus 2 curves. Explicit calculations are detailed
in Sections 4.4 and 4.5.

4.1. Generalities. Let K be a field of odd characteristic. Let K̄ be an algebraic closure of K. Let
B/K be a projective, smooth, absolutely integral curve of genus 2. Take two non-proportional holo-
morphic differential forms and let x be their quotient. This is a function onB of degree 2. Any degree
2 function y on B belongs to the field K(x) ⊂ K(B). Otherwise the image of x× y : B → P1 × P1

would be a curve birationally equivalent to B with arithmetic genus (2 − 1) × (2 − 1) = 1. A
contradiction. So every degree two function on B has the form (ix + j)/(kx + l) with i, j, k and
l in K. And B has a unique hyperelliptic involution σ. This is the non-trivial automorphism of the
Galois extension K(x) ⊂ K(B). From Hurwitz genus formula, this extension is ramified at exactly
6 geometric points (Pi)1≤i≤6 in B(K̄). If #K > 5 we can assume that the unique pole of x is not
one of the Pi. Set F (x) =

∏
i(x−x(Pi)) ∈ K[x]. According to Kummer theory, there exists a scalar

F0 ∈ K∗ such that F0F has a square root y in K(B). We set f = F0F and obtain an affine model for
B with equation

y2 = f(x)

and two K̄-points O and σ(O) at infinity. Every function c in K(B) can be written as

c = a(x) + yb(x)

with a and b in K(x). If P = (xP , yP ) is a K̄-point on B we denote by vP the associated valuation
of K̄(B). If P is one of the (Pi)1≤i≤6 then

(6) vP (c) = min(2vxP (a), 2vxP (b) + 1),

where xP = x(P ) ∈ K̄ and vxP is the valuation of K̄(x) at x = xP . If P is a finite point which is
not fixed by σ then

(7) min(vP (c), vσ(P )(c)) = min(vxP (a), vxP (b)).

Finally

(8) min(vO(c), vσ(O)(c)) = min(−deg(a),−deg(b)− 3).

Let J be the Jacobian of B. A point x in J can be represented by a divisor in the corresponding
linear equivalence class. We may fix a degree 2 divisor Ω and associate to x a degree 2 effective
divisor Dx such that Dx − Ω belongs to the linear equivalence class associated with x. This Dx is
generically unique. Indeed the only special effective divisors of degree 2 are the fibers of the map
B → P1. We may also represent linear equivalence classes by divisors of the form P − Q where P
and Q are points on B. There usually are two such representations as the map

B2 // Jac(B)

(P,Q) � // P −Q,

is surjective and its restriction to the open set defined by

P 6= Q,P 6= σ(Q)

is finite étale of degree 2.
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4.2. A 2-dimensional family. Let K be a field of characteristic prime to 6. In this paragraph we
study genus 2 curves B/K satisfying the condition that there exists a point P in B(K) such that the
class of σ(P ) − P has order 3 in the Picard group. In particular P is not fixed by σ. We let x and
y be functions as in Section 4.1. We can assume that x(P ) = ∞. Let z be a function with divisor
3(σ(P )− P ). There exists a scalar w ∈ K∗ such that σ(z)× z = w. We write

z = a(x) + yb(x)

with a and b in K(x). We deduce from Equations (6), (7), (8), that a and b are polynomials and
deg(a) ≤ 3 and deg(b) ≤ 0. From zσ(z) = a2 − b2f = w ∈ K∗ we deduce that deg(b) = 0 and
deg(a) = 3. We may divide z by a scalar in K∗ and assume that a is unitary. Replacing x by x + β
for some β in K, we may even assume that a(x) = x3 + kx+ l with k and l in K. Replacing y by by
we may assume that b = 1 so

z = y + x3 + kx+ l.

An affine plane model for B has thus equation

z2 − 2a(x)z + w = 0

that is

(9) x3 + kx+ l = z + wz−1

2 .

This a degree 3 equation in x with coefficients s1 = 0, s2 = k, s3 = (z+wz−1)/2− l, and twisted
discriminant 81/4 times

h(z) = z2 + w2z−2 − 4l(z + wz−1) + 2w + 4l2 + 16k3

27 .

We can parameterizeB with cubic radicals. We first parameterize the elliptic curveC with equation
v2 = h(z) with one cubic radical, using e.g. Icart’s method [11]. We deduce a parameterization of B
applying Tartaglia-Cardan formulae to the cubic Equation (9). This introduces another cubic radical.
This is essentially the construction given by Kammerer, Lercier and Renault [13]. Note that this
family of genus 2 curves has dimension 2: when K is algebraically closed we may assume that w = 1
without loss of generality.

4.3. The complementary 3-dimensional family. We still assume that K has prime to 6 character-
istic. We consider a genus 2 curve B and two points P0 and P∞ in B(K) such that the difference
P0 − P∞ has order 3 in the Picard group. This time we assume that P∞ 6= σ(P0). There exists a
degree 2 function x having a zero at P0 and a pole at P∞. Let z be a function with divisor 3(P0−P∞).
The image of x× z : B → P1 × P1 has equation

(10)
∑

06i63
06j62

ai,jX
i
1X

3−i
0 Zj1Z

2−j
0 = 0.

The function z takes the value ∞ at a single point, and x has a pole at this point. So if we set
Z0 = 0 in Equation (10) the form we find must be proportional to Z2

1X
3
0 . We deduce that

a3,2 = a2,2 = a1,2 = 0

and
a0,2 6= 0.
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The function z takes value 0 at a single point, and x has a zero at this point. So if we set Z1 = 0 in
Equation (10) the form we find must be proportional to Z2

0X
3
1 . We deduce that

a2,0 = a1,0 = a0,0 = 0
and

a3,0 6= 0.
Equation (10) now reads

(a3,0Z0 + a3,1Z1)Z0X
3
1 + (a1,1X0 + a2,1X1)Z0Z1X0X1 + (a0,1Z0 + a0,2Z1)Z1X

3
0 = 0.

This is a curve of arithmetic genus 2 in P1 × P1. It must be smooth because it has geometric genus
2. The corresponding plane affine model has equation

(11) (a3,0 + a3,1z)x3 + (a1,1 + a2,1x)zx+ (a0,1 + a0,2z)z = 0.
This is a degree 3 equation in x with twisted discriminant z2(a3,0 + a3,1z)−4 times

h(z) = (9a0,2a3,1)2z4 + (12a0,2a
3
2,1 + 162a3,0a

2
0,2a3,1 − 54a1,1a2,1a0,2a3,1 + 162a0,1a

2
3,1a0,2)z3

+ (81a2
3,0a

2
0,2 + 12a0,1a

3
2,1 − 54a1,1a2,1a0,1a3,1 + 324a3,0a0,1a0,2a3,1 − 3a2

1,1a
2
2,1

−54a3,0a1,1a2,1a0,2 + 81a2
0,1a

2
3,1 + 12a3,1a

3
1,1)z2

+ (12a3
1,1a3,0 − 54a3,0a1,1a2,1a0,1 + 162a2

3,0a0,1a0,2 + 162a3,0a
2
0,1a3,1)z + (9a3,0a0,1)2.

We can parameterize B with cubic radicals. We first parameterize the elliptic curve with equation
v2 = h(z) with one cubic radical, using Icart’s method. We deduce a parameterization of B applying
Tartaglia-Cardan formulae to the cubic Equation (11). This introduces another cubic radical.

In order to relate Equation (11) to an hyperelliptic model, we simply sort in z and find the degree 2
equation in z,

a0,2z
2 + (a3,1x

3 + a2,1x
2 + a1,1x+ a0,1)z + a3,0x

3 = 0
with discriminant

(12) m(x) = (a3,1x
3 + a2,1x

2 + a1,1x+ a0,1)2 − 4a0,2a3,0x
3.

An hyperelliptic model for B is then
y2 = m(x).

The construction will succeed for every genus 2 curve having a rational 3-torsion point in its Jacobian
that splits in the sense that it can be represented as a difference between two K-rational points on B.

4.4. Rational 3-torsion points in genus 2 Jacobians. In this section we start from an hyperelliptic
curve

y2 = m(x),
where m(x) is a degree 6 polynomial. We look for a parameterization of it, following Sections 4.2
or 4.3. To this end we need a model as in Equations (11) and (12). Such a model is obtained by writing
m(x) as a difference m3(x)2 −m2(x)3 where m3 is a degree ≤ 3 polynomial and m2 is a degree
≤ 2 polynomial with rational roots. We now are very close to investigations by Clebsh [4] and Elkies
[6]. Three-torsion points in the Jacobian of the curve y2 = m(x) correspond to expressions of m as
a difference between a square and a cube. When the base field K is finite, we may first compute the
Zeta function of the curve, deduce the cardinality of the Picard group and obtain elements of order 3
in it by multiplying random elements in the Picard group by the prime to three part of its order. For
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a general base field K, we can look for solutions to m(x) = m3(x)2 −m2(x)3 by a direct Gröbner
basis computation. Our experiments with the computer algebra softwares MAPLE or MAGMA show
that this approach is efficient enough when K is a finite field of reasonable (say cryptographic) size.
When K is the field Q of rationals, this direct approach becomes quite slow.

In this section we explain how to accelerate the computation using invariant theory. Our method
takes as input, instead of m(x), the standard homogeneous invariants for the action of GL2 evalu-
ated at m(X1,X0), the degree 6 projective form associated with m(x). Classical invariant theory
results [1, 4] show that the orbit under GL2 of a degree 6 non-singular form m(X1,X0) is character-
ized by 5 homogeneous invariants I2, I4, I6, I10, I15, of respective degrees 2, 4, 6, 10, and 15. There
is a degree 30 algebraic relation between the Ii (see [12]).

The action of GL2 on pairs (m2(X1,X0),m3(X1,X0)) consisting of a quadric and a cubic gives
rise to well known invariants also: ι2 (the discriminant of m2), ι4 (the discriminant of m6) and 3 joint
invariants ι3, ι5 and ι7, of respective degrees 2, 4, 3, 5 and 7. There is a degree 14 algebraic relation
between the ιi [17, p.187-189]. Since the map (m2,m3) 7→ m = m2

3 −m3
2 is GL2-equivariant we

can describe its fibers in terms of the invariants on each side. We easily obtain the Ii’s as functions of
the ιi’s,

22 I2 = 120 ι5 + 4 ι4 − 12 ι3 ι2 + 3 ι23 ,

27 I4 = 2640 ι52 + 96 ι5 ι4 − 768 ι5 ι3 ι2 + 240 ι5 ι23 − 24 ι4 ι3 ι2 + 8 ι4 ι23

−8 ι33 + 48 ι32ι2
2 − 24 ι3 ι24 + 3 ι26 ,

210 I6 = −5120 ι53 − 192 ι52ι4 − 2304 ι52ι3 ι2 + 3504 ι52ι2
3 − 96 ι5 ι4 ι3 ι2

+240 ι5 ι4 ι23 − 288 ι5 ι33 + 1008 ι5 ι32ι2
2 − 768 ι5 ι3 ι24 + 120 ι5 ι26

+4 ι42ι2
3 + 24 ι4 ι32ι2

2 − 24 ι4 ι3 ι24 + 4 ι4 ι26 + 36 ι34ι2(13)
−72 ι33ι2

3 + 48 ι32ι2
5 − 12 ι3 ι27 + ι2

9 ,

212 I10 = 46656 ι55 + 3456 ι54ι4 − 3888 ι54ι3 ι2 + 729 ι54ι2
3 + 64 ι53ι4

2

−144 ι53ι4 ι3 ι2 + 27 ι53ι4 ι2
3 + 128 ι53ι3

3 − 27 ι53ι3
2ι2

2 .

Given the Ii’s evaluated at m(X1,X0), the generic change of variable λ = ι2
3 and µ = ι2 × ι3

turns these equations into a system of 4 equations of total degrees 1, 3, 4 and 6 in the 4 variables λ,
µ, ι4 and ι5 . A Gröbner basis can be easily computed for the lexicographic order (note that the first
equation is linear). This yields a degree 40 polynomial in λ. If none of the roots of this polynomial
are squares, we can abort the calculation because we need m2(x) to have rational roots in order to
parameterize the curve y2 = m(x).

Considering Equation (12) of Section 4.3 it is natural to look for a form m in the GL2-orbite of
m such that m = m2

3 − m3
2 for some m2(x) = e x and m3(x) = a x3 + b x2 + c x + d, where

e3 = 4a0,2a3,0, a = a3,1, b = a2,1, c = a1,1, d = a0,1. The invariants of (m2,m3) are

ι2 = e2 , ι3 = −e(9 ad− bc) , ι5 = −e3ad , ι7 = e3(ac3 − b3d) ,(14)

ι4 = −27 a2d2 + 18 abcd− 4 ac3 − 4 b3d+ b2c2 .

So for each candidate (ι2, ι3, ι4, ι5) issued from Equations (13), we invert Eq. (14). A Groebner
basis for the lexicographic order d, c, b, a, e yields generically a 1-dimensional system the last two
equations of which are

0 = e2 − ι2 ,
0 = ι2

3ι5 b
6 − ι2 (ι23ι4 − ι22ι3

2 + 36 ι2 ι3 ι5 − 216 ι52) e a b3 − 4 (ι2 ι3 − 9 ι5)3 a2 .
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We keep solutionsm2(x) andm3(x) that yield a polynomialm(x) = m3(x)2−m2(x)3 which is GL2-
equivalent to m(x) over the base field (see [15] for efficient algorithms). Applying the isomorphism
to m2(x) and m3(x) gives m2(x) and m3(x).

4.5. An example. Let K be a field with 83 elements. We start from the genus 2 curve with affine
equation y2 = m(x) with m(x) = x6 +39x5 +64x4 +7x3 +x2 +19x+36. In order to find m3(x)
and m2(x) such that m(x) = m3(x)2 −m2(x)3, we first compute the invariants of the degree six
form m

(I2, I4, I6, I10) = (23, 9, 38, 53, 59) .
A Groebner basis for the relations between λ, µ and ι4 is

ι4 = 27λ39 + 58λ38 + 3λ37 + 18λ36 + 42λ35 + 26λ34 + 52λ33 + 60λ32 + 78λ31 + 17λ30

+50λ29 + 12λ28 + 75λ27 + 20λ26 + 75λ25 + 38λ24 + 19λ23 + 21λ22 + 35λ21

+31λ20 + 27λ19 + 49λ18 + 44λ17 + 30λ16 + 38λ15 + 55λ14 + 59λ13 + 6λ12 + 2λ11

+36λ10 + 18λ9 + 2λ8 + 41λ7 + 62λ6 + 3λ5 + 49λ4 + λ3 + 33λ2 + 36λ+ 69 ,
µ = 62λ40 + 46λ39 + 11λ38 + 33λ37 + 75λ36 + 19λ35 + 53λ34 + 10λ33 + 48λ32 + 47λ31

+77λ30 + 14λ29 + 49λ28 + 47λ27 + 38λ26 + 19λ25 + 25λ24 + 44λ23 + 68λ22

+15λ21 + 36λ20 + 9λ19 + 73λ18 + 13λ17 + 64λ16 + 5λ15 + 67λ14 + 82λ13 + 69λ12

+9λ11 + 69λ10 + 35λ9 + 57λ8 + 57λ7 + 7λ6 + 11λ5 + 37λ4 + 78λ3 + 10λ2 + 73λ ,
0 = λ40 + 48λ39 + 67λ38 + 35λ37 + 50λ36 + 23λ35 + 4λ34 + 12λ33 + 37λ32 + 49λ31 +

40λ30 + 71λ29 + 60λ28 + 79λ27 + 19λ26 + 81λ25 + 82λ24 + 26λ23 + 9λ22 + 19λ21

+82λ20 + 40λ19 + 50λ18 + 67λ17 + 80λ16 + 29λ15 + 73λ14 + 38λ13 + 81λ12

+73λ11 + 5λ10 + 14λ9 + 82λ8 + 46λ7 + 62λ6 + 32λ5 + 17λ4 + 74λ3

+15λ2 + 30λ+ 43 .

Here, we only have two rational candidates for (λ, µ, ι4), the first one gives

(ι2, ι3, ι4, ι5) = (17, 51, 35, 55) .

Now, inverting Eq. (14) yields 4 possibilities, all parameterized by a:
(1) { d+ 74 c3 = 0, c b+ 45 = 0, c a+ 63 b2 = 0, b3 + 23 a = 0, e+ 73 = 0 } ,
(2) or { d+ 65 c3 = 0, c b+ 45 = 0, c a+ 73 b2 = 0, b3 + 46 a = 0, e+ 73 = 0 } ,
(3) or { d+ 18 c3 = 0, c b+ 38 = 0, c a+ 73 b2 = 0, b3 + 37 a = 0, e+ 10 = 0 } ,
(4) or { d+ 9 c3 = 0, c b+ 38 = 0, c a+ 63 b2 = 0, b3 + 60 a = 0, e+ 10 = 0 } .

A solution to the first set of equations is, for a = 1,

m3(x) = x3 + 46x2 + 73x+ 47 and m2(x) = 10x,

and the polynomial
m(x) = m3(x)2 −m2(x)3

is GL2-equivalent to m(x). Indeed

m(76x + 70
36x + 43)× (36x + 43)6 = m(x).

So we set

m3(x) = m3(76x + 70
36x + 43)× (36x + 43)3 = 15x3 + 30x2 + 46x + 7
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and
m2(x) = m2(76x + 70

36x + 43)× (36x + 43)2 = 53x2 + 29x + 54

and we check that m = m2
3 −m3

2.

Parameterization. The curve with equation y2 = m(x) over the field with 83 elements is isomorphic
to the curve with equation

y2 = (ax3 + b x2 + c x+ d)2 − (e x)3 = (x3 + 46x2 + 73x+ 47)2 − (10x)3

through the change of variables

(15) x = 76x + 70
36x + 43 , and y = y

(36x + 43)3 .

With the notation in Section 4.3 we have a = a3,1 = 1, b = a2,1 = 46, c = a1,1 = 73, d = a0,1 = 47,
e = 10, a0,2 = −1/2, a3,0 = −e3/2. Let P0 be the point with coordinates x = 0 and y = −47. Let
P∞ be the point where x has a pole and y/x3 = 1. The functions x has a zero at P0 and a pole at P∞.
The function z = y + a x3 + b x2 + c x+ d has divisor 3(P0 − P∞). These two functions are related
by the equation

(16) (−e3/2 + az)x3 + (bx+ c)zx+ (d− z/2)z = 0,
that is (z + 81)x3 + (46x + 73)zx + (47 + 41 z)z = 0 . The resolvent elliptic curve has equation
v2 = h(z) with

h(z) = 41 z4 + 15 z3 + 38 z2 + 46 z + 7 .
It is birationally isomorphic to the Weierstrass curve with equation Y 2 = X3 + 37X + 60 , whose
Icart’s parameterization in t is

X = κ/6 + t2/3 , Y = (t3 + t κ+ 28/t)/6
where

κ = 3

√
81 t6 + 79 t2 + 71 + 56

t2
.

After a birational change of variable, we obtain

z = 10Y + 16X + 72
74X2 + 79X + 49 , v = (47X2 + 8X + 64)Y + 51X4 + 5X3 + 20X2 + 20X + 18

81X4 + 72X3 + 47X2 + 23X + 77 .

We then apply Tartaglia-Cardan formulae to Eq. (16) in order to obtain x and y = z − m3(x) as
functions of t. Inverting the change of variables in Equation (15) gives a point (x,y) on the initial
curve.

4.6. The density of target curves. We prove that the construction in Section 4.3 provides a param-
eterization for a fixed positive proportion of genus 2 curves over Fq when q is prime to 6 and large
enough. We call S the set of non-degenerate sextic binary forms with coefficients in Fq. Scalar
multiplication

(λ,m(X1, X0)) 7→ λm(X1, X0)
defines an action of the multiplicative group F∗q on S. The linear group GL2(Fq) also acts on S.
Call G the subgroup of GL2(Fq) × F∗q consisting of pairs (γ, λ) where λ is a square. To every non-
degenerate sextic binary form m(X1, X0) with coefficients in Fq we associate the Fq-isomorphism
class of the curve with equation y2 = m(x, 1). This defines a surjective map ν from S onto the set I
of Fq-isomorphism classes of genus 2 curves over Fq. The fibers of ν are the orbites for the action of
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G on S. When q tends to infinity, the proportion of forms in S with non-trivial stabilizer in G tends
to zero. So it is equivalent to count isomorphism classes of curves in I or to count forms in S.

We call P the set of pairs (m2,m3) consisting of a split quadratic form

m2(X1, X0) = (aX1 − bX0)(cX1 − dX0)

and a cubic form m3, such that m2
3 − m3

2 is a non-degenerate sextic form. The cardinality of P is
q7 × (1/2 + o(1)) when q tends to infinity. Let χ : P → S be the map that sends (m2,m3) onto
m2

3 − m3
2. According to work by Clebsh [4] and Elkies [6, Theorem 3], fibers of χ have no more

than 240 elements. So the image of χ has cardinality at least q7× (1/480 + o(1)) and density at least
1/480 + o(1).

Theorem 1. Let q be a prime power that is prime to 6. The proportion of all genus 2 curves over the
field with q elements that can be parameterized by 3-radicals is at least 1/480 + ε(q) where ε tends
to zero when q tends to infinity.

5. OTHER FAMILIES OF COVERS

In Sections 3 and 4 we have studied two families of µ3oµ2 covers corresponding to (rs, rt) = (2, 2)
and (rs, rt) = (4, 2) respectively. In this section we quickly review a few other possibilities. We also
present an interesting family of µ5 o µ2 covers.

5.1. The case (rs, rt) = (4, 1). Both B and C have genus 1. The map B → E is any degree three
map having a triple pole. If B is given by a Weierstrass model, then for every scalar t, the function
y + tx will do. So we obtain a one parameter family of parameterization of B by elliptic curves Ct.
The resolventsCt form a non-isotrivial family. However, we observed that the 3-torsion group scheme
Ct[3] is isomorphic to B[3] for every value of t.

5.2. The case (rs, rt) = (6, 1). Both B and C have genus 2. The map B → E is any degree three
map having a triple pole. There is one such map for every non-Weierstrass point P on B. We obtain
a one parameter family of parameterization of B by genus 2 curves CP . The resolvents CP form a
non-isotrivial family. However, we observed that the 3-torsion group scheme JCP

[3] is isomorphic to
JB[3] for every P ∈ B.

5.3. The case (rs, rt) = (8, 1). Both B and C have genus 3. The map B → E is a degree three map
having a triple pole P . This pole is a rational Weierstrass point. The curve C is hyperelliptic. For
every genus 3 curve B having a rational Weierstrass point, we thus obtain a parameterization of B by
an hyperelliptic curve of genus 2. Conversely, for every hyperelliptic curve of genus 3 which we can
parameterize, we obtain a parameterization for a 1-dimensional family of non-hyperelliptic genus 3
curves.

5.4. Curves with a µ5 o µ2 action. This time we assume that the characteristic of K is prime to
10. Let ζ5 ⊂ K̄ be a primitive 5-th root of unity. We denote by µ5 o µ2 the subgroup scheme of
Sym(µ5) generated by x 7→ x−1 and x 7→ ζ5x. Let A be a projective, absolutely integral, smooth
curve over K. We assume that Aut(C ⊗K K̄) contains the finite étale K-group scheme µ5 o µ2. We
set B = A/µ2, and C = A/µ5. If C admits a parameterization by S-radical as in Equation (1), and
if the normalization D′ of the fiber product of A and D above C is absolutely integral, then we can
construct an S ∪ {5}-parameterization of B just as in Section 2.7. We assume that E = A/(µ5 o µ2)
has genus 0. Let rd be the number of branched points with ramification type 2, 2, 1. Let rt the number
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of branched points with ramification type 5. According to the Hurwitz Genus Formula [19, III.4.12,
III.5.1] the genus of B is

gB = rd + 2rt − 4.
Every branched point of type 2, 2, 1 of the cover B → E gives rise to a branched point of type
2, 2, 2, 2, 2 of the cover A → E and to a simple branched point of C → E. And every totally
branched point of the cover B → E gives rise to a branched point of type 5, 5 of the cover A → E
and to a non-branched point of C → E. So

gA = 5rd
2 + 4rt − 9, and gC = rd

2 − 1.

We still call
m = a+ b− 3

the modular dimension. The genericity condition is

2rd + 5rt ≤ 12− 2ε(rd + 2rt − 4),
where ε(0) = 3, ε(1) = 1, and ε(n) = 0 for n ≥ 2.

An interesting case is when rd = 6 and rt = 0. Then bothB and C have genus 2. The mapB → E
is a µ5 o µ2-cover. The cover A→ C is unramified. It is a quotient by µ5. Associated to it, there is a
C5 inside JC . So we are just dealing with a genus 2 curve C having a 5-torsion point in its Jacobian.
We provide explicit equations for this situation in Section 6.

6. GENUS 2 CURVES WITH A 5-TORSION DIVISOR

We assume that K has characteristic prime to 10. Let C be a genus 2 curve having a K-rational
point of order 5 in its Jacobian. We assume that this point is the class of P∞ − P0 where P∞ and P0
are two K-rational points on C. We give explicit equations for C, P0 and P∞ depending on rational
parameters. In Sections 6.1, 6.2, and 6.3, we distinguish three cases depending on the action of the
hyperelliptic involution σ on P0 and P∞. We note that these two points cannot be both Weierstrass
points. We finally give in Section 6.4 an example of how to combine this construction and the previous
ones in order to parameterize more genus 2 curves.

6.1. A first special case. We first assume that P0 is a Weierstrass point. So P∞ is not. Let x be a
degree 2 function having a pole at P∞ and a zero at P0. Let y be a function as in Section (4.1). We
have y2 = f(x) for some degree 6 polynomial in K[x]. Let z ∈ K(C) be a function with divisor
5(P0 − P∞). We write

z = a(x) + yb(x)
with a(x) and b(x) in K(x). We deduce from Equations (6), (7), (8), that a and b are polynomials
and deg(a) ≤ 5 and deg(b) ≤ 2. Since z has a pole of order 5 at P∞ and has valuation 0 at σ(P∞)
we actually know that deg(a) = 5 and deg(b) = 2. Also b is divisible by x exactly twice, and a is
divisible by x at least thrice. Multiplying z by a scalar we may ensure that a is unitary. Multiplying y
by a scalar we may ensure that b = x2. And a(x) = x3(x2 + kx + l) for some k and some l in K.
There exists a scalar w ∈ K∗ such that

z × σ(z) = wx5 = x4(x2(x2 + kx+ l)2 − f(x)).
So f(x) = x2(x2 + kx+ l)2 − wx. The curve C has affine equation

y2 = x2(x2 + kx+ l)2 − wx,
P∞ is one of the two points at infinity, and P0 is the point (0, 0). This is essentially the model given
by Boxall, Grant and Leprévost [3].
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6.2. Another special case. We assume now that σ(P0) = P∞. Let x be a degree two function having
poles at P0 and P∞. Let y and f(x) be as in Section 4.1. Let z be a function with divisor 5(P0−P∞).
We write z = a(x) + yb(x) where a and b are polynomials in x with degrees 5 and 2. Multiplying z
by a constant inK we may assume that a is unitary. Multiplying y by a constant inK we may assume
that b is unitary. Adding a constant to x we may assume that

b(x) = x2 − k
for some k ∈ K. There is a scalar w ∈ K∗ such that

z × σ(z) = w = a2 − fb2.
So w is a square in the algebra K[x]/b(x). This leaves two possibilities. Either w = W 2 for some
W ∈ K∗ and a(x) = W mod b(x), or w = W 2k for some W ∈ K∗ and a(x) = Wx mod b(x). We
study these two subcases successively.

6.2.1. If w = W 2 and a(x) = W mod b(x). We check that

a(x) = W mod b(x)2

indeed. Since a is unitary, there exists a scalar j ∈ K such that a = W + (x + j)b2. We deduce
expressions for a, b and f in the parameters k, W , and j. The actual dimension of the family is 2
because we may multiply x by a scalar.

6.2.2. If w = W 2k and a(x) = Wx mod b(x). In particular k is not 0. We check that a(x) =
Wx+ a1(x)b(x) mod b(x)2 with a1(x) = −Wx/(2k). So there exist a scalar j ∈ K such that

a = Wx−Wxb(x)/(2k) + (x+ j)b(x)2.

We deduce expressions for a, b and f in the parameters k, W , and j. The actual dimension of the
family is 2 again.

6.3. Generic case. We assume that none of P0 and P∞ is a Weierstrass point and σ(P0) 6= P∞. Let
x be a degree 2 function having a zero at P0 and a pole at P∞. Let y be a function as in Section 4.1.
We have y2 = f(x) where f ∈ K[x] is a degree 6 polynomial. Both f(0) and the leading coefficient
of f are squares in K. Let z ∈ K(C) be a function with divisor 5(P0 − P∞). We write

z = a(x) + yb(x)
with a(x) and b(x) in K(x). We deduce from Equations (6), (7), (8), that a and b are polynomials
and deg(a) ≤ 5 and deg(b) ≤ 2. Since z has a pole of order 5 at P∞ and has valuation 0 at σ(P∞)
we actually know that deg(a) = 5 and deg(b) = 2. Multiplying z by a scalar, we may ensure that a
is unitary. Multiplying y by a scalar, we may ensure that b is unitary. Since z has a zero of order 5 at
P0 and has valuation 0 at σ(P0) we know that a(0) 6= 0 and b(0) 6= 0.

The three polynomials a(x), b(x), and f(x) are related by the equation

a2 − fb2 = wx5

for some w ∈ K∗. In particular, wx is a square modulo b(x). We can easily deduce that

b(x) = x2 + (2k − wl2)x+ k2

for some k and l in K∗. A square root of wx modulo b(x) is then (k + x)/l. A square root of wx5

modulo b is then

a0(x) = (k2 − 3kwl2 + w2l4)x+ (k − wl2)k2

l
.



THE GEOMETRY OF SOME PARAMETERIZATIONS AND ENCODINGS 19

D2

vv

µ5

&&
D1

xx

µ3

&&
A2

µ2

xx

µ5

((

A1
µ2

vv
µ3

&&

D
π

xx
ρ��

B2 C2 = B1 C1 P1

FIGURE 1. Composing parameterizations.

Using Hensel’s lemma we deduce that a is the square root of wx5 modulo b2 of the form a0 + a1b
with

a1(x) = k2 − 2wkl2 + 2w2l4 + x(wl2 + k)
2wl3 .

So there exists j ∈ K such that a = a0 + a1b+ a2b
2 with

a2(x) = x+ j.

We deduce the expressions for a, b and f = (a2 − x5)/b2 in the parameters j, k, l, w.

6.4. An example. Let K be a field with 83 elements. We set w = 1, j = 2, k = 3, l = 14 and find
a(x) = x5 + 37x4 + 78x3 + 18x2 + 26x+ 29 and b(x) = x2 + 59x+ 9, and

f(x) = x6 + 39x5 + 64x4 + 7x3 + x2 + 19x+ 36.
The curve C with equation y2 = f(x) has genus 2. Its Jacobian has 3.5.7.71 points over K. We set
z = a(x) + yb(x) and define a cyclic unramified covering A of C by setting t5 = z. We lift the action
of the hyperelliptic involution σ onto A by setting σ(t) = x/t. The function u = t+ x/t is invariant
by σ. The field K(u, x) is the function field of the quotient curve B = A/σ. A singular plane model
for B is given by the equation

u5 + 78xu3 + 5x2u = 2a(x) = 2(x5 + 37x4 + 78x3 + 18x2 + 26x+ 29).
Note the Tchebychev polynomial on the left hand side. The Jacobian ofB has 5.372 points overK. In
particular, its 3-torsion is trivial. However we can parameterize the curveB using the parameterization
of C constructed in Section 4.5. Note that C appears in Section 4.5 under the name B.

6.5. Composing parameterizations. In Section 6.4 we parameterize a genus 2 curve (call it B2) by
another genus 2 curve (call it C2), using a µ5 o µ2 action on some curve A2. In Section 4.5 we had
constructed a parameterization of C2 = B1 by a genus one curve (call it C1) using a µ3 o µ2 action
on some curve A1. This C1 can be parameterized e.g. using Icart’s parameterization. Composing the
three parameterizations we obtain a parameterization of B2 by P1.

This situation is represented on Figure (6.5). The curve D1 is the fiber product of D and A1 over
C1. The curve D2 is the fiber product of D1 and A2 over C2. We can prove that D1 and D2 are
absolutely irreducible by observing that all down left arrows have degree a power of two, while all
down right arrows are Galois of odd degree. The interest of this construction is that, the Jacobian of
B2 having trivial 3-torsion, we reach a curve that was inaccessible before. We may compose again
and again e.g. with parameterizations as in Section 5.2. It is natural to ask if we can reach that way
all genus 2 curves over a large enough finite field or cardinality q when q is prime to 30. Answering
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this question requires to study some morphisms from a moduli space of covers to the moduli space of
genus 2 curves : proving in particular that the morphism is surjective and that the geometric fibers are
absolutely irreducible.
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