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INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Consider a bounded operator A on a Hilbert space H with spectrum σ(A), for example a square matrix A ∈ C N ×N , and denote by P n the space of polynomials of degree ≤ n. Following [START_REF] Greenbaum | GMRES/CR and Arnoldi/Lanczos as matrix approximation problems[END_REF][START_REF] Toh | The Kreiss matrix theorem on a general complex domain[END_REF], we are interested in giving upper bounds for the quantity δ n (A) = min{ p(A) ; p ∈ P n , p(0) = 1}, n = 1, 2, 3, ..., [START_REF] Atzmon | Spectral inclusions and analytic continuation[END_REF] sometimes referred to as the ideal GMRES approximation problem [START_REF] Greenbaum | GMRES/CR and Arnoldi/Lanczos as matrix approximation problems[END_REF][START_REF] Toh | The Chebyshev polynomials of a matrix[END_REF]. For normal A, problem [START_REF] Atzmon | Spectral inclusions and analytic continuation[END_REF] is closely related to the so-called constrained Chebyshev approximation problem δ(n, E) = min{ p L ∞ (E) ; p ∈ P n , p(0) = 1},

for a suitable compact E ⊂ C not containing 0 (since otherwise δ(n, E) = 1). This latter quantity has been discussed for intervals/ellipses E for instance in [START_REF] Fischer | On the constrained Chebyshev approximation problem on ellipses[END_REF][START_REF] Fischer | Chebyshev polynomials are not always optimal[END_REF][START_REF] Fischer | Chebyshev approximation via polynomial mappings and the convergence behaviour of Krylov subspace methods[END_REF][START_REF] Freund | On a class of Chebyshev approximation problems which arise in connection with a conjugate gradient type method[END_REF], see also the monograph [START_REF] Fischer | Polynomial based iteration methods for symmetric linear systems[END_REF]. Though in general it is difficult to find extremal polynomials for (2), we can find nearly optimal ones. Given a compact E ⊂ C with a rectifiable Jordan curve boundary, we define as usual the nth Faber polynomial F n = F E n to be the polynomial part of the Laurent expansion at infinity of Φ, where the Riemann map Φ maps conformally the exterior of E onto the exterior of the closed unit disk D, and

Φ(∞) = ∞, Φ (∞) > 0. Thus, F n (z) = Φ(z) n + O(1/z), as z → ∞.
We also introduce the geometric quantity

v(E) = supess{ 1 π ∂Ez |d σ arg(σ -z)| ; z ∈ ∂E}, where ∂E z = ∂E \ {z}, (3) 
which we assume to be finite. Note that v(E) ≥ 1, and v(E) = 1 if E is convex. An estimate due to Radon [START_REF] Radon | Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF] tells us that 1+v(E) ≤ T V (θ)/2π, where T V (θ) denotes the total variation of the angle θ between the positive real axis and the tangent on the boundary ∂E. The following properties have essentially been given established by Kövari and Pommerenke in [START_REF] Kövari | On Faber Polynomials and Faber Expansions[END_REF][START_REF] Ch | Konforme Abbildungen und Fekete-Punkte[END_REF].

Lemma 1. Let E be as above, 0 ∈ E, γ = 1/|Φ(0)|, then F n L ∞ (E) ≤ 1 + v(E), and 
1 |F n (0)| ≤ γ n 1 -γ n+1 v(E) (4) 
provided that γ n+1 v(E) < 1.

For the sake of completeness, we will give in §2 a proof of this statement. From Lemma 1 and the maximum principle for p/Φ n , p ∈ P n , we conclude that, provided that γ n+1 v(E) < 1

γ n ≤ δ(n, E) ≤ F n L ∞ (E) |F n (0)| ≤ γ n 1 + v(E) 1 -γ n+1 v(E) .
One attempt to relate this inequality to the matrix-valued extremal problem (1) could be to make use of the notion of K-spectral sets, see for instance [START_REF] Badea | Spectral sets. Chapter in the second edition of the Handbook of Linear Algebra[END_REF] and the references therein: we look for E ⊂ C containing σ(A) and a constant K > 0 such that p(A) ≤ K p L ∞ (E) for all p ∈ P n , and thus δ n (A) ≤ K δ(n, E). For instance, if X -1 AX is normal, then K = X X -1 . Natural candidates for E are obtained by the pseudo-spectrum, or the numerical range being defined by

W (A) = { Au, u ; u ∈ H, u = 1},
see for instance the discussion in [START_REF] Greenbaum | Iterative Methods for Solving Linear Systems[END_REF] and [START_REF] Crouzeix | Numerical range and functional calculus in Hilbert space[END_REF][START_REF] Crouzeix | Numerical range, holomorphic calculus and applications[END_REF]. In the present paper we will use instead the inequality

δ n (A) ≤ F n (A) |F n (0)| ≤ γ n F n (A) 1 -γ n+1 v(E) (5) 
being a consequence of (4), where it remains the simpler task of bounding F n (A) for a suitable E ⊂ C. Previous work on this subject includes [START_REF] Toh | The Kreiss matrix theorem on a general complex domain[END_REF] where the bound of Kreiss type depends on n or on the dimension of H, see also [START_REF] Hochbruck | On Krylov subspace approximation to the matrix exponential operator[END_REF] for related work in terms of the pseudo-spectrum. It has been shown in [START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF] and was previously known for ellipses [START_REF] Eiermann | Fields of Values and Iterative Methods[END_REF] that

F n (A) ≤ 2 = 1 + v(E)
provided that E is convex and contains W (A). Bounding F n (A) for a suitable E ⊂ C is also of interest for various other tasks, for instance for spectral inclusions [START_REF] Atzmon | Spectral inclusions and analytic continuation[END_REF], Faber hypercyclicity [START_REF] Badea | Faber-hypercyclic operators[END_REF], or the approximate computation of matrix functions [START_REF] Beckermann | Error estimation and evaluation of matrix functions via the Faber transform[END_REF]. In view of (5), we would like E containing σ(A) to be well separated from 0 and to be as small as possible, and thus also allow for non-convex sets. In the present paper we show the following result.

Theorem 2. Let 0 ∈ σ(A), and consider E = {z ∈ E 1 ; |z| ≥ r} for some r > 0, with E 1 containing W (A) being convex, and E supposed to be simply connected.

(a) If 1/r ≥ A -1 then F n (A) ≤ 1 + v(E), (b) If 1/r ≥ max{|z| : z ∈ W (A -1 )} then F n (A) ≤ 2v(E).
The remainder of the paper is organized as follows. In §2 we introduce in Lemma 4 our new technique of estimating F n (A) for sets E which are not necessarily convex. This formula is based on an integral formula for Faber polynomials stated in Lemma 3, and used already in [START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF]. As a by-product, we give a proof of Lemma 1. We then provide a proof of Theorem 2, and discuss in Remark 5 possible variations and generalizations of Theorem 2. §3 is devoted to a generalization of the well-known Elman bound [START_REF] Eisenstat | Variational Iterative Methods for Nonsymmetric Systems of Linear Equations[END_REF][START_REF] Elman | Iterative Methods for Sparse Nonsymmetric Systems of Linear Equations[END_REF] and its recent generalizations in [5, Theorem 1] and [START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF]Corollaire 3] for the convergence of Krylov subspace methods, where E is lens-shaped, allowing to make all constants explicit.

PROOF OF THE MAIN RESULTS

In what follows we will always suppose that the boundary of E is a rectifiable Jordan curve. Also, in order to avoid technical difficulties, in what follows we will assume that σ(A) is a subset of the interior of E (the general case following by limit considerations).

We start from a representation of Faber polynomials given already in [START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF], which is a special case of an integral formula given in [START_REF] Crouzeix | Numerical range and functional calculus in Hilbert space[END_REF] for general polynomials. 

F n (A) = L 0 Φ(σ(s)) n µ(s, A) ds, µ(s, A) := 1 2π ν(σ-A) -1 + ν(σ-A * ) -1 . (6) Proof. Since (F n (σ) -Φ(σ) n )(σ-A) -1 is analytic outside of E with a behaviour O(σ -2 ) at ∞, we have that ∂E (F n (σ)-Φ(σ) n )(σ-A) -1 dσ = 0.
Next, we note that

∂E Φ(σ) n (σ-A * ) -1 dσ = ∂E Φ(σ) -n (σ-A) -1 dσ * = 0, since |Φ| = 1 on ∂E and Φ(σ) -n (σ-A) -1 is analytic outside of E with a behaviour O(σ -(n+1)
) at ∞. Thus, from the Cauchy formula,

F n (A) = 1 2πi ∂E F n (σ)(σ-A) -1 dσ = 1 2πi ∂E Φ(σ) n (σ-A) -1 dσ = 1 2πi ∂E Φ(σ) n (σ-A) -1 dσ -(σ-A * ) -1 dσ = L 0 Φ(σ) n µ(s, A) ds.
Proof of Lemma 1. The statement of Lemma 3 remains valid in the scalar case A = z with z in the interior of E. Letting z tend to the boundary ∂E shows the following formula implicitly given by Kövari and Pommerenke in [START_REF] Kövari | On Faber Polynomials and Faber Expansions[END_REF][START_REF] Ch | Konforme Abbildungen und Fekete-Punkte[END_REF]: we have for z ∈ ∂E,

F n (z) = Φ(z) n + 1 π ∂Ez Φ(σ) n d σ arg(σ-z),
provided that a tangent exists in z (which by assumption on E is true almost everywhere on ∂E). Comparing with (3), it follows that

F n -Φ n L ∞ (∂E) ≤ v(E), and thus F n L ∞ (E) = F n L ∞ (∂E) ≤ 1 + v(E)
, as claimed in Lemma 1. Finally, formula (4) follows from the estimate

|(F n (0)-Φ n (0))Φ(0)| ≤ F n -Φ n L ∞ (∂E) ≤ v(E)
, obtained by applying the maximum principle to the function (F n -Φ n )Φ being holomorphic outside of E including at ∞.

We are now prepared of stating our main tool for estimating F n (A) . Thus, Lemma 4 follows from Lemma 3 and the triangular inequality

F n (A) ≤ L 0 Φ(σ) n (µ(s, A)+α -(s)) ds + L 0 Φ(σ) n α -(s) ds .
We observe that α -(s) = 0 iff µ(s, A) is positive semi-definite, or, in other words, the numerical range W (A) is a subset of the half plane Π s := {z ∈ C ; Re ν(s)(σ(s)-z) ≥ 0}, with boundary being tangent to ∂E in σ(s). Thus for convex E containing W (A) we deduce from Lemma 4 the bound F n (A) ≤ 2 mentioned before.

Proof of Theorem 2. According to Fig. 1, we have to distinguish two cases: if σ(s) ⊂ ∂E ∩ E 1 , the convex part of ∂E, then by assumption W (A) ⊂ E 1 ⊂ Π s and thus α -(s) = 0.

It remains to analyze the circular part of the boundary which can be parametrized by σ(s) = re iθ , with θ decreasing from θ 1 to θ 1 -ω, ω being the opening angle as introduced in Fig. 1. Then ds = -r dθ and ν(s) = -e iθ . Consider the operator B := re iθ A -1 . We first consider the case (a) in which B ≤ 1, implying that

2πrµ(s, A) + 1 = 1 -re iθ (re iθ -A) -1 -re -iθ (re -iθ -A * ) -1 = 1 + B(I-B) -1 + B * (I-B * ) -1 = Re (I + B)(I -B) -1 ) ≥ 0.

Hence, on this part of the boundary, α

-(s) ≤ 1/(2πr). It follows from Lemma 4, that F n (A) ≤ 2 - θ 1 -ω θ 1 dθ/π = 2+ω/π.
In case (b) we have the weaker assumption W (B) ⊂ D and thus 2 -B -B * ≥ 0, implying that

2πrµ(s, A) + 2 = 2 -re iθ (re iθ -A) -1 -re -iθ (re -iθ -A * ) -1 = 2 + B(I-B) -1 + B * (I-B * ) -1 = (I-B) -1 (2I-B-B * )(I-B * ) -1 ≥ 0.
Thus as before we conclude from Lemma 4 that F n (A) ≤ 2+2ω/π.

It remains to show that v(E) = 1+ω/π. For that, we note that 1 π d σ (arg(σ(s)-z)) = µ(s, z) ds, whence A-c) -1 )}. The reader will not have difficulty to generalize this to simply connected domains of the form

v(E) = 1 + 2 supess{ ∂Ez µ -(s, z) ds ; z ∈ ∂E}. For z ∈ ∂E, it holds µ -(s, z) = 0 if σ(s) ∈ ∂E ∩ E 1 , µ -(s, z) ≤ 1/2πr if σ(s)
E = {z ∈ E 1 ; |z -c 1 | ≥ r 1 , . . . , |z - c k | ≥ r k }. (b)
Other variations are possible. For instance, if we consider E 1 a compact convex set such that

W (A) ⊂ E 1 , then E = {z ∈ E 1 ; |z+x| ≥ r for all x ≥ 0} is simply connected, see Fig. 2.
If we suppose in addition that 1/r ≥ sup{|z| ; z ∈ W ((A+x) -1 )} for all x ≥ 0, then we have α -(s) = 0 on ∂E ∩ E 1 and α -(s) ≤ 1/(πr) on the remaining part of the boundary. It seems
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Shape of the set E of Corollary 6 and angles 0 < θ 0 < θ 1 < π.

however that in general there is no obvious link between the resulting bound for F n (A) and v(E).

AN APPLICATION TO KRYLOV SUBSPACE METHODS

An interesting application of the estimation of the quantity δ n (A) defined in (1) concerns the study of convergence of Krylov subspace methods such as FOM, GMRES, BiCG, QMR,. . . , see for instance [START_REF] Greenbaum | Iterative Methods for Solving Linear Systems[END_REF] and the references therein. These methods are very popular for solving linear systems Ax = b of large dimension N . Here A is a N × N matrix with complex entries and b ∈ C N a given vector. At the step n, one constructs an approximation x n of the solution x which belongs to the Krylov subspace K n = Span{b, Ab, . . . , A n-1 b}. The above-mentioned Krylov subspace methods differ in two ways, namely the choice of the basis of K n , and the choice of the linear combination on this basis. But, they all allow for an error estimate of the following type

x -x n ≤ A -1 Π n min p(0)=1, p∈Pn p(A)b ≤ δ n (A) A -1 Π n b .
Here, I-Π n is a projector on the Krylov subspace A K n , the orthogonal projector in the GMRES case.

We want to make our bounds (5) together with Theorem 2 more explicit by choosing a particular non-convex lens-shaped set E, which allows us to express the occuring constants F n (A) and γ in terms of angles related to A. andW ((A-c 0 ) -1 ) being contained in some ball of radius 1/r 0 > 0 centered at 0, where c 0 ∈ R. We suppose that c 0 -r 0 < c 1 -r 1 < c 0 +r 0 < c 1 +r 1 and 0 < c 0 +r 0 such that E is (lens-shaped and) simply connected as in Fig. 3 and does not contain 0.

Corollary 6. Consider E = {z ∈ C ; |z-c 1 | ≤ r 1 and |z-c 0 | ≥ r 0 } with W (A) being contained in some ball of radius r 1 > 0 centered at c 1 ∈ R,
For the endpoint a of the circular arcs composing ∂E, we introduce the angles θ 0 = arg(a-c 0 ), θ 1 = arg(a-c 1 ), arg(a) ∈ (0, π), Then F n (A) ≤ 2+4θ 0 /π and γ = sin( π arg a 2π-θ 1 +θ 0 ) sin( π(π+θ 0 -arg a)

2π-θ 1 +θ 0 )

.

Proof. The upper bound for F n (A) follows from Theorem 2 and Remark 5(a) by recalling that v(E) = 1 + 2θ 0 /π. For showing the claimed formula for γ, let us construct explicitly the corresponding map Φ. We consider ϕ 1 (z) := e -i θ 1 +θ 0 2 za zā and S = {ρ e iµ ; ρ > 0, -π+ θ 1 -θ 0 2 < µ < π-θ 1 -θ 0 2 }, where we notice that c 0 < c 1 by assumption, and thus 0 < θ 1 -θ 0 < π. It is easily seen that ϕ 1 maps the exterior of E onto the sector S. For z exterior to E, we can define in the canonical way ϕ 2 (z) := ϕ 1 (z) π/(2π-θ 1 +θ 0 ) , so that ϕ 2 maps the exterior of E onto the half-plane Re z > 0. 2π-θ 1 +θ 0 )

.

As an illustration of Corollary 6, consider the situation of [START_REF] Beckermann | Image numérique, GMRES et polynômes de Faber[END_REF]Corollaire 3] where c 1 = 0, r 1 = max{|z| ; z ∈ W (A)}, and Re(A) ≥ α = cos(β) r 1 > 0 for some β ∈ (0, π/2). Then for all c 0 < α we find that

(A -c 0 ) -1 ≤ 1 dist(c 0 , W (A)) ≤ 1 α -c 0 =: 1 r 0 ,
and, for c 0 → -∞, we see that θ 0 → 0, and arg a = θ 1 → β. Hence the generalization [4, Corollaire 3] of Elman's bound [START_REF] Eisenstat | Variational Iterative Methods for Nonsymmetric Systems of Linear Equations[END_REF][START_REF] Elman | Iterative Methods for Sparse Nonsymmetric Systems of Linear Equations[END_REF] with γ = sin( πβ 2π-β )/sin( π(π-β) 2π-β ) = 2 sin( πβ/2 2π-β ) follows as a limiting case from Corollary 6.

Lemma 3 .

 3 Let σ = σ(s) be a parametrization of ∂E through arc length, L the length of ∂E, and denote by ν = 1 i ∂σ ∂n the unit outer normal of ∂E at σ(s) (which by assumption on E exists for almost all s). Then for n ≥ 1
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 1 FIGURE 1. Shape of the set E of Theorem 2.

Lemma 4 . 0 Φ

 40 Denote by α(s) the minimum of the (real and compact) spectrum of the self-adjoint operator µ(s, A) introduced in (6), and by α -(s) = max{0, -α(s)} its negative part. Then for n ≥ 1, we haveF n (A) ≤ 2 1 + L 0 α -(s) ds .Proof. We first observe that L 0 µ(s, A) ds = 2 Re 1 2πi ∂E (σ -A) -1 dσ = 2 I, twice the identity. Taking into account that µ(s, A) + α -(s) is positive semi-definite for s ∈ [0, L] and |Φ| = 1 on ∂E, we conclude that L (σ) n (µ(s, A)+α -(s)) ds ≤ L 0 (µ(s, A)+α -(s)) ds ≤ 2 + L 0 α -(s) ds.

1 FIGURE 2 .

 12 FIGURE 2. Shape of the set E of Remark 5(b).

  belongs to the circular part and µ -(s, z) = 1/2πr if σ(s) and z belong to the circular part. This shows that ∂Ez µ -(s, z) ds ≤ 2 ω/π, with equality if z belongs to the circular part.Let us discuss variations and generalizations of Theorem 2. Remark 5. (a) Theorem 2(b) remains valid if we replace|z| ≥ r by |z-c| ≥ r in the definition of E, and if we assume 1/r ≥ sup{|z| ; z ∈ W ((

2 and β = 2 π 2 cos α-β 2 =

 2222 Finally, we defineΦ(z) := ϕ 2 (∞) + ϕ 2 (z) ϕ 2 (∞) -ϕ 2 (z) e iµ , µ ∈ R being chosen such that Φ (∞) > 0,and note that Φ maps the exterior of E onto the exterior of the unit disk and Φ(∞) = ∞. We have ϕ 2 (∞) = e -iα and ϕ 2 (0) = e iβ with α =π 2π-θ 1 +θ 0 θ 1 +θ 2 2π-θ 1 +θ 0 arg aα. Therefore γ = 1 |Φ(0)| = e -iαe iβ e iα + e iβ =sin α+β sin( π arg a 2π-θ 1 +θ 0 ) sin( π(π+θ 0 -arg a)
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