
HAL Id: hal-00870031
https://hal.science/hal-00870031

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation of Efficient Real-Time Scheduling and Power
Optimisation

Rym Cheour, Richard Urunuela, Yvon Trinquet, Mohamed Abid

To cite this version:
Rym Cheour, Richard Urunuela, Yvon Trinquet, Mohamed Abid. Simulation of Efficient Real-Time
Scheduling and Power Optimisation. International Journal of Computer Science Issues, 2013, 10 (2).
�hal-00870031�

https://hal.science/hal-00870031
https://hal.archives-ouvertes.fr

Simulation of Efficient Real-time Scheduling and Power
Optimization

Rym Cheour1, Richard Urnuella2 ,Yvon Trinquet2 and Mohamed Abid1

 1 Computer and Embedded System Lab, National School of Engineers of Sfax
Sfax, Tunisia

2 IRCCyN, University of Nantes

 Nantes, France

Abstract
Sophisticated applications turn out to be executed upon more than
one CPU for practical and economic reasons. Due to advances in
circuit technology and performance limitation, multi-core
technology has become the mainstream in CPU designs. However,
the most serious limitation of these devices is the battery lifetime
since battery technology is not keeping up with the rest of the
power-hungry processors and peripherals used in today’s mobile
devices. As a solution, many investigations have turned toward the
algorithms of power management combined with some scheduling
policies. They can make significant energy saving while preserving
the temporal constraints of these embedded systems. Reducing
energy, especially, affect not only the battery lifetime, but also aim
to reduce the heat generated by real-time embedded controller in
various products or even to decrease the conditions of cooling and
the costs, in the large scale, of giant multiprocessor computers. To
assess the behavior and performance of the strategy of scheduling a
flexible multiprocessor scheduling simulation and evaluation
platform is needed. This paper puts forth the claim that the
STORM simulator improves application quality both in terms of
execution time and energy consumption for a high performance
mobile computing embedded system design.

Keywords: Scheduling, Power management, DVFS, DPM,
simulation, EDF.

1. Introduction

In recent years interest in simulation modeling has greatly
increased. Indeed, a simulation environment is essential,
since the test of the hardware and software is hard and
difficult. For instance, new systems, services and
protocols present challenges for testing and require large
and complex environments [1]. The simulations

represent the problem concretely, provide a broader
context allowing a deeper understanding of the situation
and handle problems which are difficult or impossible to
solve analytically. Beyond cost and time savings, the
simulator offers the great opportunity to enhance the
functionalities and the features of the real-time systems
and to achieve the required Quality of Service (QoS) [2].
The simulator allows you to check on the model, the
behavior of the system and therefore the deadlines.
As those simulators are legion, a very interesting open-
source tool we came across was the STORM simulator
[3]. STORM (Simulation TOol for Real time
Multiprocessor scheduling) is able to analyze the behavior
and to evaluate the performances of the policies of
scheduling while taking into account the algorithms of
energy management. We aim to develop scheduling
algorithms to minimize the energy/power consumption
using the energy conservation method called Dynamic
Power Management (DPM) or Dynamic Voltage and
Frequency Scaling (DVFS) on one or more processors.
Our target is to achieve scheduling techniques for a
variety of systems configurations and scheduling policies,
e.g. Earliest Deadline First (EDF), while taking into
account actual processor limitations such as time/energy.
The time (energy) required to change the processor speed
is very small compared to that required to complete a task
[4]. We will integrate voltage, frequency (DVFS) or state
selection (DPM) and task scheduling together in order to
maximize the energy saved when executing an
independent task set on one or more processors. Our goal
is to meet deadlines requirements taking into account the
demands of energy and processing time of all the tasks.
To do so a set of tasks will be generated with desired
statistical properties. The characteristics of the tasks are

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 338

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

known in advance. Then, the selected scheduler will take
as input the task set and the physical processor description.
The preemption is allowed to adjust the energy
consumption based on the system performance
requirements. The preemption is when a process in
execution is interrupted when a higher priority process
arrives [5].
Since, using well defined algorithms to schedule tasks and
resources in a real-time system yields an understandable
scheduling solution we have chosen to implement an EDF
scheduler [7]. The higher resource utilization and the
greater flexibility in handling aperiodic requests make
EDF highly desirable for real-time embedded systems [7]
[8]. Our work is more specifically to implement and
assess energy management policies in the Linux operating
system and test it via the STORM Simulator. We
implemented our algorithms like plug-ins for the core
Linux 2.2.16. Linux is easily extended through modules
and provides a robust multiprocessor environment [2].
Linux is a multitasking, multi-platform and multi-user
operating system whose main asset is its portability [9].
The paper is organized as follows. The first section is
about the motivation behind this work. Then, we will
present an overview of the STORM simulator. In section
3, we will describe the model and the states of the tasks
considered in the simulation. Besides, we will present the
EDf scheduler and outline some power management
techniques. As DVFS and DPM play a key role in saving
the energy consumption, they will be presented. Next, we
will expose our simulation results. Finally, we are going
to conclude.

2. Motivation of our work

Most of the embedded system are powered by batteries
and store a limited amount of energy. So minimizing the
overall energy consumption meanwhile avoiding the
deadline violations is crucial to achieve high
performances and to enhance the reliability of the system
[4]. Indeed, there is a growing realization that simulation
should be more rigorously considered.
Although a large research investment in low-energy
circuit design and hardware level energy management and
real-time scheduling has led to more energy-efficient
architectures, few tools are available to apply them.
As simulation is becoming a popular option for
conducting studies, STORM has matured a capability of
analysis of the System behaviour and performances as
well as for taking into account many features of hardware
architecture such as multicore design, multiprocessor
architecture with shared memory, distributed architecture

with communication network, memory architecture (L1
and L2 caches, banked memory)[10].
The development of STORM came from the works of the
PHERMA research project ‘Parallel Heterogeneous
Energy efficient Real-time Multiprocessor Architecture’
[11]. Indeed, this simulator is open allowing the
implementation of new algorithms for scheduling in an
external way to the simulation kernel. It also provides a
set of means to develop metrics for characterization of the
scheduler. Therefore, STORM is an excellent tool to
evaluate the behavior and performance of new strategy for
scheduling [10][12]. The scheduler must coordinate
resources to meet the timing constraints of the physical
system. This implies that the scheduler must be able to
predict the behavior of all tasks within the system [13].
The output will be a set of screen shots of the system
behavior. Hence, we will be able to sort out the relevant
information from the execution of the tasks and their
interaction with the different scheduling policy, the
architecture chosen, the available resources…

3. Presentation of STORM

To verify the scheduling results, we have used a
simulation tool called STORM (Simulation TOol for Real
time Multiprocessor scheduling). The original need to
develop STORM came from the works of the IR
 CCyN research unit [3]. This simulator considers
the requirements of tasks, the characteristics and
execution conditions of hardware components and the
scheduling rules. Depending on the scheduling policy and
the resources described in an XML file, it runs every task
over a specified time interval [10][12]. The results of the
simulation are a set of diagrams as illustrated in figure 1.
All these diagrams help to analyze the behavior of the
system (tasks, processors, performances ...).

Fig. 1 The STORM simulator [3].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 339

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

A window displays a Gantt diagram of every task over an
interval from 0 to 50 (default values). The title of the
window refers to the name given to the task in the XML
file (PTASKT1, PTASKT2…). In two other diagrams, we
can observe the tasks assigned to processors CPUA and
CPUB over the same interval. We can verify the
allocation of the tasks on processors according to their
availability and to the priorities.

Fig. 2 Graphical results with STORM

Moreover, STORM allows multiprocessor simulation and
analyzes energy consumption based on estimations. This
simulator also provides support for DPM and DVFS
techniques. Being under development, a preliminary study
of this tool has been necessary to determine its operation
before any action of implementation. To facilitate the
development and the checking of the best performance,
the development of the scheduler was based on the
specification of the EDF scheduler of STORM.

4. Task Management

We consider the preemptive scheduling of a soft real-time
system where occasional violation of deadline constraints
may not result in a useless execution of the application or
calamitous consequences, but decreases utilization
[14].The preemption reduces the latency of the system
when reacting to real-time or interactive events by
allowing low priority processes to be preempted[15].
Preemption helps also to satisfy the constraints especially,
the real time constraint. So if the load is very high, the
system will slow down its response time [16]. We

consider a set of n tasks that will be executed upon m
identical CPUs.

4.1 Tasks models

Tasks can be grouped into three families: periodic,
aperiodic and sporadic. The periodic tasks execute critical
control activities with hard timing constraints aimed at
guaranteeing regular activation rates. Aperiodic tasks
respond to randomly arriving events. The aperiodic tasks
cannot be guaranteed to be served within a hard deadline
(the deadlines must be soft) [17]. Aperiodic tasks,
typically used to handle the processing requirements of
random events such as operator requests. However, the
sporadic tasks can arrive at the system at arbitrary points
in time, but with defined minimum inter-arrival times
between two consecutive invocations [18].
The simplest and the most fundamental model is provided
by the periodic task model of Liu and Layland [19]. The
periodic tasks are those whose processing is repeated on a
regular basis such as the regular monitoring of the state of
a physical sensor or sampling of the serial communication
line.
Ti a periodic task is characterized by the quadruplet
(Oi, Ti, Di, Ci)[16], where :

 The date of arrival Oi, is the moment of the
first activation of the task τi

 Time of execution Ci specifies an upper limit
on the time of execution of each task τi

 The relative deadline Di denotes the separation
between the arrival of the task and the deadline
(a task that arrives at time t has a deadline at
t+Di);

 A period Ti denoting the duration between two
successive activations of the same task.

Each task is independent from the other tasks. This
means, the temporal behavior of each task (its ability to
meet its deadlines) is not affected by the behavior of any
other task in the system.

4.2 States of tasks

 As the multitasking system runs, we assign for each
task one of these four states: Running, Ready for
execution, Waiting or Unexisting as shown in figure 3[2].
The transition from one state to another is done through
system calls or a decision made by the scheduler[13].
When a multitasking kernel decides to move the running
task to another state and to give control of the CPU to a
new task, a context switch should be performed [13].

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 340

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig 3 Task states

Each time a task enters the ‘Ready’ state (its methods
onActivate() and onUnBlock()), it has to be added to the
end of this list by calling its addLast() method. Each time
a task leaves the ‘Running’ state (its methods
onTerminat() and onBlock()), it has to be removed from
this list by calling its remove() method. Besides, the first
activation (onActivate) and the following activations
(onUnblock) will add the corresponding task to the ready
queue, whereas the events of termination of jobs
(onBlock) or of task (onTerminate) correspond to a
rejection of the corresponding task from the ready tasks
queue. When a state changes from ‘Ready’ to ‘Running’
for such a task, it simply requires calling the onRunning
method of its equivalent object[3].

5. EDF scheduler

The algorithm “Earliest Deadline First” (EDF) is a real-
time scheduling algorithm[19] . It assigns priority to each
task depending on the deadline and always select the
highest priority task to execute, preempting lower priority
tasks when necessary [2] [13]. EDF is particularly
beneficial for time-sensitive workloads, such as
multimedia and/or control applications [20]. Since EDF is
more efficient than fixed-priority in term of
schedulability, it will be easier for it to achieve high
utilization. This algorithm is proved to be optimal in the
sense that if a system of tasks can be sequenced using any
policy of assigning priorities, the system can also be
sequenced with the EDF algorithm [20]. The study of
schedulability gives a necessary and sufficient condition
formulated by the following theorem: a system of periodic
tasks can be sequenced using the EDF algorithm if and
only if:

 (1)

Ti represents the period, Ci the worst execution time.
Also, EDF ensures a maximum occupancy of the CPU up
to an upper limit of 100 % CPU utilization.

6. Power management technique

The ultimate goal of any power management technique is
to reduce an entity's consumption. When power
management techniques are applied to microprocessors,
they may improve the imminent energy shortage in
portable equipment[21]. In order to extract the highest
possible performance while simultaneously avoiding any
associated instabilities, dynamic optimization algorithms
must be based upon a deep and accurate understanding of
the system behavior [22]. We cite the main used technique
which are the DPM (Dynamic Power Management) and
the DVFS (Dynamic Voltage and Frequency Scaling).
Detailed description of power management technique is
exposed in the next section.

6.1 DPM

The basic idea of DPM is to stop devices including the
processor when they are not required and to wake them up
when they are[24]. A Wireless Sensor Networks test-bed
developed in cooperation with the start-up company SeNet
s.r.l. for agricultural monitoring has measured the
consumption of the nodes in differnt states [23]. Each
node is composed of an IEEE 802.15.4 radio transceiver
based on Chipcon CC2430 operating in the 2.4 GHz
band, photovoltaic panels, rechargeable batteries,
temperature and humidity sensors. It has shown that in
sleeping mode, the consumption of the system is only 0.5
mA, whereas during the activity mode the overall
consumption is 30 mA[22][24]. Currently, the DPM is
done thanks to the ability of the hardware to support
mechanisms of sleep state ranging from total activity of
the system up to full sleep implementation or
disconnection of the system. Indeed, idle state transitions
and implementation cost is running a bit expensive in the
point of view of energy.

Fig 4 Optimization of consumption with DPM

 onTerminate

onUnblock

Ready Waiting

Unexisting

onActivate

onBlock

Running

onBlock onRunning

onUnblock
onBlock

preempt

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 341

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

6.2 Dynamic voltage and frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is an
efficient technique for reducing CPU energy. Most micro-
processor systems are characterized by a time-varying
computational load. It is better to run the processor at the
weakest frequency compatible with the necessary
performance level. When used at a reduced frequency, the
processor can operate at a lower supply voltage [24].
DVFS exploits the CMOS property as shown in equation
2 that a linear reduction in the supply voltage results in a
cubic reduction in the power consumption at the expense
of a linear slowdown in the processor frequency.
 P=A*C*V 2*F (2)
P is the power consumed, A is the activity factor, i.e., the
fraction of the circuit that is switching, C is the switched
capacitance, V is the supply voltage, and F is the clock
frequency.
Lowering only the operating frequency can reduce the
power consumption but the energy consumption remains
the same because the computation needs more time to
finish. Lowering the supply voltage can reduce a
significant amount of energy because of the quadratic
relation between the power and the voltage. A number of
modern microprocessors such as Intel’s XScale and
Transmeta’s Cruso are equipped with the DVFS
functionality [2].

Fig 5 Optimization of consumption with DVFS

7. Test and results

In this section, we will expose the results obtained by the
simulation of the DPM and DVFS techniques via
STORM. The basic idea of the DMP is to stop the devices
when they are not required and to wake them up when
they are. The DVFS method modulates the voltage and
frequency used by the CPU. Most of the time, the
processor does not have to run at maximum speed, we can
thus slow and largely reduce the consumed power,
without loss of performance. A STORM strength is that
we can easily extend the algorithm using an external java
code and using the correct name in the appropriate

“classname” tag. The method already implemented in
STORM with the name dpm_leat is in fact, to declare the
characteristics of the type leat_processors. This processor
is PXA270. The PXA270 controller is based on the ARM
core of the family of Marvell XScale (Ex-Intel). It has all
the necessary features for a typical embedded application.
It supports the dynamic adjustment of the power and the
performance of the processor based on CPU demand. The
frequency of the CPU can take the following values:
312/416 / 520/624 MHz. This kind of processor supports
some low power consumption states for the DPM
(example: sleep, deep sleep, standby etc). Admittedly, we
have advocated the use of this processor for test purposes.

7.1 Experimentation

We based our work on the EDF scheduler
"edf_p_scheduler" described in STORM. EDF is not real-
time under Linux because of the time allocated by the
kernel for decision-making. However, STORM is for the
real-time execution, in the sense of the scheduling
decisions taken by the kernel. In basic STORM EDF,
when a processor is not used in select(), we choose a
particular state such as sleep, deepsleep, standby, etc for
PXA270. We have considered the following parameters
which are also introduced in the XML file in figure 6. A
number of temporal parameters are attached to each task
in the simulation. They are either fixed or variable and
updated over the events of the simulation.

Fig 6 xml file to introduce the task parameters

The hardware architecture is composed of 3 identical
processors. The identifier of the CPU is "LEATProcessor"
which is a component of the library. Six tasks are present
in the software architecture. Their own period, the date of
the first activation, the worst case execution time (

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 342

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

WCET), the amount of time remaining to finish the
current task RET (Remaining Execution Time), the EET
(Effective Execution Time), the duration of the
occupancy of the processor by the task and ET (or
Execution Time) and the deadline (if it is not equal to the
period) are internal to the simulator. The scheduling
algorithm is in charge of fixing the computing time of
each task when it is activated. By default, the ‘Actual
Execution Time’ (AET) of a new task on arrival is simply
equal to the WCET (the value which is specified in the
input file XML).
The table1 shows the task parameters.

Table 1Task parameters

 Period Activation WCE BCE Deadline
1 80 0 50 30 80
2 100 0 55 35 100
3 120 0 60 40 120
4 150 0 60 30 150
5 200 0 85 45 200
6 250 0 120 60 250

For efficient manipulation, we migrate the tasks among
the run queues (PTASKT1 is running on CPUA and the
CPUB)in a way such that we always try to have, on an m
CPU system, the m earliest deadline ready tasks running
on the CPUs (here we have m=3). The temporal behavior
of each task (its ability to meet its deadlines) is not
affected by the behavior of the other tasks: if a task
misbehaves and requires a large execution time, it cannot
jeopardize the processor.

7.2 EDF simulation results

Sorting the queue of the ready tasks will be in ascending
order of deadlines which are characteristic of tasks
entered in the XML specification as shown in figure 6.
We note that STORM checks initially the utilization ratio
of processors and then assign the tasks so that they can
run in parallel (figure 7). However, we note that some
tasks switch from one CPU to another unlike their
execution such as the task 3. Therefore, we should draw
attention to the fact that the algorithm relies on the
priority of the tasks more than on the processor affinity.

Processor affinity refers to the tendency of a process to get
scheduled constantly on the same processor[20].

7.3 DPM simulation results

We have chosen in our example an activation date equal
to 0 for all the tasks in the XML specification as shown in
figure 6. But, all tasks do not begin at t=0 because the
number of the considered tasks is greater than the number
of processors available in the simulation. This allocation
of processors is established according to their availability
and to the priority of the considered task. However, it
allows us to browse through the chronogram. We have
noticed that the revival of the processor (the transition
from the DeepSleep state to Idle) is 261.75 ms what leads
to an important delay for the effective execution of the
task in its second activation. Thus, over the total duration
of simulation, we will accumulate an important delay as
illustrated in figure 8. Indeed, the cost of transitions
between the states idle and starting is a little expensive
from the energy point of view. Consequently, the
implementation of the correct strategy of the transition
between states is essential for the success of the DPM.

7.4 DVFS simulation results

The approaches suggested by DVFS are based on the
principle of slowing down the execution of a task by
lowering the frequency of the processor. The slowdown
takes into account the deadline of the task. Thus, the
choice of the frequency is not arbitrary and is quite related
mainly to the policy of the considered scheduling policy
and to the technology of the processor and the points of
operation it offers. The speed of the processor is
recalculated and updated after each activation. The more
the task advances during its execution, the more the
selected frequency is closer to the optimal one. In a
schematic way, decreasing the frequency of a processor
lengthens (with respect to the “normal” execution time)
the execution time of the processor that is necessary to
accomplish a task. Increasing this frequency reduces then
the working time previously increased until, at best,
finding the “normal” remaining execution time as shown
in figure 9. The temporal cost for a change of frequency
on this processor is null.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 343

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig 7 Execution of the tasks with EDF

Fig 8 Task execution with DPM

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 344

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig 9 Task execution with DVFS

7.5 Comparison of results

We have proposed an approach which is to describe and
compare the energy efficiency of various power
management techniques and this combined with an EDF
preemptive scheduler. Also, we could raise the energy
profile of each processor in addition to the execution of the
the tasks in order to give more visiblity concerning the
performances of STORM to highlight the energy savings.
In addition, we determined, via the simulator, the power
consumed by each processor calculated for a period of 1
second. The CPU power consumption diagram of a
processor shows over time its electrical power (in watts)
computed according to the physical characteristics of its
chip and its functioning states. Insofar, as the processors,
generally, function with less possible downtime, the energy
energy consumption and costs obtained for each technique
of power management differ considerably. Energy saving
can mostly reach 95% of the costs of the consumption
compared to the use of EDF. At first glance, it should be
noted that the techniques of energy management contribute
contribute significantly to the reduction in power
consumption, although the use of DVFS seems more
efficient in terms of gain. It is about 0.05J only whereas
without energy consideration it reaches 0.93J and this
without negative incidence on the performance of the
systems.

8. Conclusion

There is a growing recognition within different
researchers’ communities of the importance of simulation
tools that help design and test new hardware and software
approaches. That’s why we have chosen the STORM
simulator which is an under-development framework for
real-time multiprocessor scheduling evaluation. The paper
outlines several facets of STORM. Indeed, this tool gives
a global insight about the execution of the different tasks
and allows an evaluation via simulation of the potential
gains with scheduling and power management techniques.
As it supports multiple types of schedulers, through
simulation we can compare scheduling algorithms in
terms of schedulability performance as well as of energy
efficiency. We have considered, particularly, the EDF
scheduler by taking into account the task management
service to provide significant energy savings while
maintaining real-time deadline guarantees. Future works
tries to improve the performances of this new simulator,
to explore the memory architecture modeling, the
partitioning and the hierarchy of schedulers…

References
[1] K. Lahmar, R. Cheour, M. Abid. Wireless Sensor Networks:

Trends, Power Consumption and Simulators. Modelling
Symposium, pp. 200-204, 2012.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 345

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[2] R.Cheour, S.Bilavarn, M.Abid, Exploitation of the EDF
scheduling in the wireless sensors networks, International
Journal on Measurement Technologies and Instrumentation
Engineering, Volume 1, Issue 2, pages 14-27, 2011.

[3] STORM. http://storm.rts-software.org/, Sept. 2011.
[4] E.Saad, M.Awadalla, M.Shalan and A.Elewi, Energy-Aware

Task Partitioning on Heterogeneous Multiprocessor Platforms.
International Journal of Computer Science Issues (IJCSI),
2012.

[5] A.Noon, A.Kalakech, S.Kadry, A New Round Robin Based
Scheduling Algorithm for Operating Systems: Dynamic
Quantum Using the Mean Average, IJCSI International
Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1,
May 2011 ISSN (Online): 1694-0814.

[6] J.Sun, Y.Zhang, J.Fan, Providing Real-Time Guarantees to
smart car, Symposia and Workshops on Ubiquitous,
Autonomic and Trusted Computing, Xian, Shaanxi, pp 13-17,
2010.

[7] G. Buttazzo, P. Gai. Efficient EDF implementation for small
embedded systems. In Proc. International Workshop on
Operating Systems Platforms for Embedded Real-Time
Applications. 2006.

[8] G.Buttazzo, Rate Monotonic vs. EDF: Judgment Day, Real-
Time Systems, Vol. 28, pp. 1-22,

2005.
[9] R. Love Linux kernel development, Addison-Wesley

Professional, 2010.
[10]R.Urunuela, A. Deplanche, Y.Trinquet , Simulation for

multiprocessor real-time scheduling evaluation, 7th
EUROSIM Congress on Modelling and Simulation, Prague,
2010.

[11] Pherma http://pherma.irccyn.ec-nantes.fr, Sept. 2011.
[12] R.Urunuela, A. Deplanche, Y.Trinquet, A Simulation Tool

for Real-time Multiprocessor Scheduling Evaluation, 15th
IEEE International Conference on Emerging Technologies
and Factory Automation, (ETFA), Bilbao, Spain, 2010.

[13] R.Cheour, S.Bilavarn, M.Abid, EDF Scheduler for wireless
sensor networks under Linux: case study, Fourth International
Conference on Sensing Technology, Lecce, Italy, pp 530,
June 2010.

[14] W. Lifeng and Y. Haibin, Research on a soft real-time
scheduling algorithm based on hybrid adaptive control
architecture, in Proc. American Control Conf, Lisbon,
Portugal, pp. 4022-4027 vol.5, 2003.

[15] A.Youssef, A.Hamdy, R.Ammar, Efficient Processing
Power Reservation Approach to Improve Real-Time Task
Schedulability and Reliability. International Journal of
Computer Science Issues (IJCSI). 9(5):196-205, 2012.

[16] A. Burns and A. J. Wellings. “RealTime Systems and
Programming Languages”. Addison Wesley Longman, 4th
edition, 2009.

[17] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time Systems,
1(1):27–60, 1989.

[18] D. Isovic, G. Fohler. “Efficient Scheduling of S. poradic,
poradic, Aperiodic, and Periodic Tasks with Complex
Constraints” In Proc. Of 21st IEEE Real-Time Systems
Symposium, Orlando Florida, USANovember 2000.

[19] C. L. Liu and J. W. Layland. “Scheduling algorithms for
multiprogramming in a hard-real-time environment”. ACM,
20(1):46-61, January 1973.-

[20] J. A. Stankovic and M. Spuri and K. Ramamritham and G.
Buttazzo, Deadline Scheduling for Real-Time Systems: EDF
and Related Algorithms, Kluwer Academic Publishers, 0-
7923- 8269-2, 1998.

[21] A.Abdelmotalib and W.Zhibo "Power Management
Techniques in Smartphones Operating Systems." IJCSI
International Journal of Computer Science Issues, Vol. 9,
Issue 3, No 3, May 2012.

[22] K.Lahmar, ‘Study and validation of an energy simulation
environment in the WSN’, Master degree, National School of
Engineers of Sfax, Tunisia, 2007.

[23] C.Buratti, A.Conti , D.Dardari , R.Verdone An overview on
wireless sensor networks technology and evolution. Sensors.
2009;9:6869–6896.

[24] R.Cheour, K.Lahmar, M.Abid: Evolution of wireless sensor
networks and necessity of power management technique,
IEEE CAS, The 10th edition of Faible Tension Faible
Consommation, Morocco, pp82, 2011.

Rym Cheour received the Engineering and M.S. degrees from the
National School of Engineers of Sfax, Tunisia in 2008 and 2009,
respectively. She is currently working toward the Ph.D. degree in
Department of Computer Science at National Engineering School of
Sfax, Sfax, Tunisia. Her research interests include Real Time
scheduling, power management and wireless sensor networks

Urunuela Richard is a research engineer of the IRCCyN laboratory
in the ”Real-Time Systems” group. Since 2003 he is interested in the
design of real-time systems and more particularly: operating systems,
power management for such systems, and real-time scheduling. At
present, he is in charge of the implementation of STORM, a
Simulation TOol for Real time Multiprocessor scheduling. He is also
focusing on the development of engineering tools for helping to the
design of power management policies. Previously he worked around
scheduling and power management in the OBASCO research group
at the Ecole des Mines of Nantes.

Yvon Trinquet is professor at the University of Nantes (Electrical
Engineering department). He was leader of the Real-Time Systems
team of IRCCyN laboratory since 1995 until 2012. His research
focuses on real-time systems, especially real-time scheduling and
simulation.

Mohamed Abid received the Ph.D. degree from the National
Institute of Applicated Sciences, Toulouse (France) in 1989 and the
‘‘thèse d’état” degree from the National School of Engineering of
Tunis (Tunisia) 2000 in the area of Computer Engineering and
Microelectronics. He is working now as Professor in the Department
of Electrical Engineering at National School ofEngineering of Sfax
(Tunisia). Currently he is founding member and responsible of
doctoral degree ‘‘Computer System Engineering” at ENIS since 2003.
In 1992, he was founding responsible of Electronic Systems
Synthesis Group at Laboratory of Electronic and Micro-Electronic in
Sciences Faculty in Monastir (Tunisia). Since 2000 he is founding
member of System on Chip at Computer, Electronic and Smart
engineering system Laboratory at National School of Engineering of
in Sfax (Tunisia). Since 2005, he has occupied the director position
of the laboratory. His current research interests include: hardware–
software co-design, System on Chip, Reconfigurable System, and
Embedded System, etc. He has also been investigating the design
and implementation issues of FPGA embedded systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 346

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

