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We have recently tested the topological phase predicted by He and McKellar and by Wilkens:
this phase appears when an electric dipole propagates in a transverse magnetic field. In the present
paper, we first recall the physical origin of this phase and its relations to the Aharononov-Bohm and
Aharonov-Casher phases. We then explain possible detection schemes and we briefly describe the
lithium atom interferometer we have used for this purpose. Finally, we analyze in great detail the
phase shifts induced by electric and magnetic fields acting on such an interferometer, taking into
account experimental defects. The experiment and its results are described in a companion paper.
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I. INTRODUCTION

In 1993, X.G. He and B.H.J. McKellar [1] predicted
a new topological phase when an electric dipole encir-
cles a line of magnetic monopoles. Magnetic monopoles
being hypothetical [2], this idea seemed purely specula-
tive but, in 1994, M. Wilkens [3] proposed an experimen-
tal test with an atom (or a molecule) polarized by an
electric field interacting with a feasible magnetic field.
This topological phase is now called the He-McKellar-
Wilkens (HMW) phase and it is the third electromag-
netic topological phase, after the Aharonov-Bohm [4] and
Aharonov-Casher phases [5].

We have recently made an experimental test of the
HMW phase [6]. The present paper describes the theory
of our experiment, which analysis and results are given
in a companion paper [7] called here HMWII. Section
II explains the nature of a topological phase and recalls
what the Aharonov-Bohm phase is. We then discuss the
Aharonov-Casher and HMW phases and the connections
between these three effects. In section III, we describe
various possible ways of detecting the HMW phase and
the principle of our experiment. In section IV, we calcu-
late the effects of phase dispersions on the fringe signal of
an atom interferometer. In sections V and VI, we evalu-
ate the phases induced by electric and magnetic fields in
a lithium atom interferometer. In section VII, we eval-
uate the Aharonov-Casher phase in our experiment and
in section VII, we summarize the various phase shifts
present in our experiments, their magnitude, their veloc-
ity dispersion, their internal state dependence and their
effect on fringe visibility.

II. ELECTROMAGNETIC TOPOLOGICAL

PHASES: THEORY AND PREVIOUS

EXPERIMENTS

Here, we explain the nature of a topological phase
and describe the Aharonov-Bohm, Aharonov-Casher and
HMW phases, and their connections.

A. Topological phases and Aharonov-Bohm effect

Topological (or geometric) phases were introduced in
their general form in 1984 by M.V. Berry [8] as phase
factors associated to adiabatic transport (for a review, see
ref. [9]), and we will consider here only matter waves. It
is interesting to compare topological phases and dynamic
phases.

• A topological phase is a quantum effect without
any other modification of the particle propagation
and it can be detected only by interferometry. It is
independent of the modulus of the velocity but it
changes sign with the direction of propagation.

• A dynamic phase is induced by a classical force
acting on the particle and, at first order of pertur-
bation theory, it is proportional to the difference,
between the two interferometer arms, of the poten-
tial energy from which the force derives and it is
also proportional to the interaction time. There-
fore, a dynamic phase scales like the inverse of the
particle velocity and is independent of the direc-
tion of propagation. Moreover, the classical force
can be detected by other experiments such as the
deflection of the particle trajectory or by the mod-
ification of its time-of-flight.

The vectorial Aharonov-Bohm (AB) phase [4], discov-
ered in 1959, appears when a charged particle propagates
in an electromagnetic time-independent vector potential.
The proposed experiment (see fig. 2 of ref. [4]) involved
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an electron interferometer with its arms encircling an in-
finite solenoid. The AB phase shift reads:

ϕAB =
q

~

∮

A (r) dr =
q

~
Φ0 (1)

where q is the electron charge, r is the electron position
and the closed circuit follows the interferometer arms,
A (r) is the vector potential and Φ0 is the total mag-
netic flux through any surface lying on the closed circuit
(the same result is obtained if the solenoid is replaced
by an infinite line of magnetic dipoles). In the proposi-
tion of Aharonov and Bohm, the magnetic field vanishes
on the interferometer arms and the particle does not feel
any force, nevertheless the AB phase does not vanish.
A controversy followed this surprising prediction [10, 11]
but the AB effect was observed as soon as 1960 by R.G.
Chambers [12] and, thanks to progress in electron inter-
ferometry, all the striking characteristics of the AB effect
have been tested experimentally [13, 14].
M.V. Berry interpreted the vectorial Aharonov-Bohm

phase as a geometric phase [8]: the common use is to
call topological the AB phase and to call geometric a
phase acquired through adiabatic transport but there are
no fundamental differences between these two types of
phase. The AB effect is the first member of a family of
three topological phases occurring in the propagation of
particles in time-independent electromagnetic potentials
or fields, the other members being the Aharonov-Casher
(AC) phase and the He-McKellar-Wilkens (HMW) phase.

B. Theory of the Aharonov-Casher phase

FIG. 1: (color online). Connection between the HMW and
AC phases by electric-magnetic duality. The HMW phase
arises when an electric dipole moment d propagates in the
radial magnetic field created by a line of magnetic monopoles
qm while the AC phase (between parenthesis) appears when
a magnetic dipole µ encircles a line of electric charges qe.

An Aharonov-Bohm phase appears when a charged
particle encircles an infinite line of magnetic dipoles. By
exchanging the roles of the charged particle and of the

magnetic dipole, Y. Aharonov and A. Casher [5] pre-
dicted in 1984 a topological phase when a magnetic dipole
encircles an infinite line of electric charges (see fig. 1).
This phase had already been predicted in 1982 by J.
Anandan [15], with no insistence on its topological char-
acter. The Aharonov-Casher (AC) phase is given by:

ϕAC = − 1

~c2

∮

[E (r)× µ] · dr (2)

where µ is the magnetic dipole and E the electric field.
As for the AB effect, the nature of the AC effect was
widely discussed [16–55]. In the non-relativistic limit (an
excellent approximation for matter wave interferometers
if we except electron interferometers), we can demon-
strate eq. 2, starting from the Lagrangian of a particle
of mass m and velocity v = ṙ carrying a magnetic dipole
µ in an electric field [5]:

L =
1

2
mv2 − 1

c2
v · (E (r)× µ) (3)

The particle acceleration v̇ is given by Lagrange equation
[18]:

mv̇ = (µ · ∇)

(

E (r)× v

c2

)

(4)

In the configuration of ref. [5], with a straight homoge-
neously charged line, the right-hand term of eq. 4 van-
ishes: no force acts on the particle.
A heuristic point of view introduced by A.G. Klein

[16] relates the AC phase results to the interaction of the
magnetic moment µ with the motional magnetic field
Bmot ≈ − (v ×E) /c2 experienced by the particle in its
rest frame, and calculated at first order in v/c. Substitut-
ing dr = vdt into eq. 2 yields ϕAC =

∮

(µ ·Bmot) dt/~,
a result identical to the phase due to the magnetic dipole
interaction −µ ·Bmot. Eq. (3) reads L = mv2/2+LAC ,
where LAC = µ · Bmot is the additional term due to
the electric field. Although −LAC looks like a poten-
tial energy, it is not a potential energy for the motion
of the particle, because mv̇ given by equation (4) is not
equal to ∇ (µ ·Bmot). Indeed, the use of Newton’s equa-
tion with the force ∇ (µ ·Bmot) leads to incorrect results
with regards to the topological nature of the AC phase
[17, 18, 20].
To deduce the AC phase from the Lagrangian (eq. (3)),

we apply Feynman’s path integral [56] to matter-wave
interferometry [57]. At first-order of perturbation theory,
the phase ϕAC is given by the classical action calculated
along the unperturbed interferometer arms:

ϕAC =
1

~

∮

pAC · dr (5)

where pAC = ∂LAC/∂v = −E (r) × µ/c2 is the modifi-
cation of the particle momentum by the electric field.
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C. Detection of the AC phase

The AC phase was first detected by A. Cimmino et

al. [58, 59] using a neutron interferometer. The neutron
magnetic dipole is small and the AC phase was only 1.50
mrad for E ≈ 30 MV/m. Because of limited neutron flux,
35 days were needed to get one measurement. Further
tests (proportionality to the electric field, independence
with neutron velocity) were not feasible.
A noticeable difference between the AB and AC phases

is that the particle must propagate in an electric field to
get a non-zero AC phase. This circumstance gives more
freedom in the field configurations and, in particular, the
electric charge between the interferometer arms may van-
ish [21, 60]. K. Sangster et al. [61, 62] used this possi-
bility to perform a measurement of the AC phase with
a Ramsey interferometer [63]: a molecular beam, pre-
pared in a coherent superposition of states with opposite
magnetic dipoles, propagates in an electric field perpen-
dicular to the beam velocity. The AC phase shift has op-
posite values for these two states and the resulting phase
difference is directly detected on the fringe signal. The
AC phase, measured with a few percent error bar, was
found in agreement with theory [61, 62]; its proportional-
ity to the electric field and its velocity independence were
both successfully tested. Several other measurements of
the AC phase have been performed, always with Ramsey
interferometers [64–66]. The AC effect has also been ob-
served in interference of vortices in a Josephson-junction
array [67].

D. The He-McKellar-Wilkens phase

In 1993, X.G. He and B.H.J. McKellar [1] applied
Maxwell duality to the AC phase, thus predicting a new
topological phase when a particle with an electric dipole
d encircles an infinite line of magnetic monopoles (see
fig. 1). Because of the hypothetical character of mag-
netic monopoles [2], this paper did not suggest any test
but M. Wilkens [3] proposed an experiment, with an elec-
tric dipole produced by the polarization of an atom or a
molecule, interacting with a magnetic field B guided by
ferromagnetic materials. The general expression of the
HMW phase is:

ϕHMW =
1

~

∮

(B (r)× d) · dr (6)

Fig. 1 is inspired by the work of J.P. Dowling et al. [68]
who gave an overview of the electromagnetic topological
phases. Maxwell duality applied to the AB phase leads
to a fourth topological phase for a magnetic monopole
encircling a line of electric dipoles: this phase will remain
hypothetical as long as magnetic monopoles.
The AB phase involves a particle carrying an elec-

tric charge and the AC and HMW phases involve par-
ticles carrying magnetic and electric dipoles: it is natu-

ral to predict topological phases for particles carrying
higher-order electromagnetic multipoles, in interaction
with electric or magnetic fields of the convenient sym-
metry. A calculation for the case of electric or magnetic
quadrupoles was made by C.-C. Chen [69] who states
that, with quadrupoles of the order of one atomic unit,
the detection of these new topological phases ”would re-
quire an unrealistically huge electromagnetic field”. As a
consequence, these higher-order phases appear to be out
of reach and the HMW phase was the last undetected
topological phase of electromagnetic origin.

E. Some properties of the HMW effect and the

associated particle dynamics

In complete analogy with the AC effect, the HMW
effect can be interpreted as due to the interaction of the
electric dipole d with the motional electric field Emot ≈
v × B, at the lowest order in v/c. Equation (6) can be
rewritten:

ϕHMW =
1

~

∮

d ·Emotdt (7)

A remark first done by Wei et al. [70] suggests a strong
link between the AB and the HMW phases. Consider
the particular field configuration illustrated by fig. 2,
where the electric dipole which undergoes the HMW
phase shift is induced by an external electric field (more
details are given in part III A). If the dipole is described
by two particles with charges ±q at positions r±, with
d = q (r+ − r−), the HMW phase is equal to the alge-
braic sum of the AB phases for the two particles.

FIG. 2: (color online). Connection between the HMW and
the AB phases following Wei et al. [70]. The interferometer
arms (blue full lines) encircle an infinite charged wire (red
vertical cylinder) which produces a radial electric field E and
induces an electric dipole d represented by a positive charge
(+, large bullet) and a negative charge (−, small bullet). Each
charge undergoes the AB effect in the uniform magnetic field
B. The HMW phase is equal to the sum of the two AB phases
and it is proportional to the magnetic flux through the (blue)
shaded surface.
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The HMW effect and its connection with the AB and
AC effects has been the subject of many theoretical works
[71–91]. Let us summarize the main results concern-
ing the dynamics of an electric dipole in a magnetic
field. The electric dipole moment d = qr0 is described
by two charges with r0 = r+ − r− and its internal
dynamics is described by an interaction energy U (r0),
function of the distance r0 between the charges. The
compound particle (mass M , center of mass r, veloc-
ity v = ṙ) interacts with an external electromagnetic
field described by its potential (A (r, t) , V (r, t)), with
the electric field E (r, t) = −∇V − ∂A/∂t and the mag-
netic field B (r, t) = ∇ × A. The standard Lagrangian
for the system, expressed in the dipole approximation, is
[83]:

L =
1

2
M ṙ2 +

1

2
µṙ20 + ṙ · [(d · ∇)A (r, t)] (8)

+ḋ ·A (r, t)− (d · ∇)V (r, t)− U (r0)

where M is the total mass of the compound particle and
µ is the reduced mass of the two particles. Expanding the
total derivative d/dt = ∂/∂t+(ṙ · ∇), it can be rewritten:

L =
1

2
M ṙ2 +

1

2
µṙ20 + LW − U (r0) +

d

dt
(d ·A) (9)

with: LW = d · (E+ v ×B)

LW is the term introduced by M. Wilkens [3] to describe
the interaction of the dipole with the field. In his calcula-
tion, the total derivative term d (d ·A) /dt was omitted.
Because this total derivative is a single valued function
of the dynamical variables and of time, the standard La-
grangian and the Lagrangian proposed by Wilkens are
strictly equivalent [76, 77]. With the Lagrangian used by
Wilkens, the canonical momenta are given by:

p =
∂L

∂ṙ
= Mv+B× d (10)

p0 =
∂L

∂ṙ0
= µṙ0 (11)

As for the AC effect, the extra-contribution pHMW =
B× d to the momentum p yields the HMW phase:

ϕHMW =
1

~

∮

pHMW · dr (12)

The Lagrange equations yield the dynamics of the par-
ticle in the laboratory frame and its internal dynamics:

M r̈ = ḋ×B+ (d · ∇) [E+ v ×B] (13)

µr̈0 = q (E+ v ×B)− ∂U

∂r0
(14)

In the original configuration with an infinite line of
magnetic monopoles line (see Fig. 1), the force on the

particle vanishes. Here is a brief summary of the expla-
nation given by M. Wilkens [3]. The dipole dynamics is
limited to rotation, with the dipole initially parallel to
the line of monopoles, while the particle propagates in a
plane perpendicular to this line. The torque exerted on
the dipole, d × (E+ v ×B) vanishes and we may drop

the term ḋ × B from Eq. ((13)). If the fields E and B

are invariant by a translation along the direction of the
dipole, the force vanishes.
A closer look is needed in the case of an induced dipole.

In this case, it is a good approximation to consider that
the variations of the external fields in the frame moving
with the atom are infinitely slow and that the dynamics of
r0 is adiabatic, so that the atom exhibits the dipole d =
4πε0α (E+ v ×B), where α is the polarizability. With
this approximation, one obtains the Lagrangian proposed
by Wei et al [70]:

L =
1

2
M ṙ2 + 2πε0α(E+ v ×B)

2
(15)

From this Lagrangian, it is easy to deduce the force on
the atom and we consider here only three terms which
involve the presence of E and B simultaneously:

F1 = 4πε0α
(

Ė×B
)

F2 = 4πε0α (v ×B) · ∇E

F3 = 4πε0αE · ∇ (v ×B) (16)

We assume that both fields are static i.e. ∂E/∂t = 0 =
∂B/∂t. F1 is non-zero in the regions where the electric

field is inhomogeneous because, in the atom frame, Ė =
(v · ∇)E. When the electric field varies, the dipole varies
too, which induces a current, and F1 is the associated
Lorentz force. If we take the z axis along the velocity
v = vz and the y axis along the magnetic field B = By,
we are interested only in the z-components of the forces
because they are the only ones which can change the
velocity:

F1,z = 4πε0αvB
∂Ex

∂z

F2,z = −4πε0αvB
∂Ez

∂x
F3,z = 0 (17)

As ∇×E = −∂B/∂t = 0, then ∂Ex/∂z = ∂Ez/∂x and
F1,z +F2,z = 0: in the Wilkens-Wei configuration [3, 70],
the HMW phase is a topological phase.

III. TOWARD A DETECTION OF THE HMW

PHASE

In this section, we describe various proposals for the
detection of the HMW phase, and we explain the choices
we have made for our experiment.
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A. Possible detection schemes

The detection of the HMW phase is difficult for two
reasons: we need a particle with an electric dipole and
we must replace the radial magnetic field of a line of mag-
netic monopoles by some other field configuration. Here
are the experimental schemes proposed for this detection:

• M. Wilkens [3] proposed to polarize atoms (or
molecules) by an electric field E, thus inducing a
dipole d = 4πε0αE, and to apply different mag-
netic fields on the two interferometer arms thanks
to a pierced sheet of ferromagnetic material. The
use of such a sheet appears to be very difficult be-
cause of the small distance between interferometer
arms and of the associated perturbation of the elec-
tric field. However, this proposal opened the way
toward experiments.

• H. Wei et al. [70] proposed to introduce a charged
wire between the arms of an atom interferometer,
thus inducing opposite dipoles on the two interfer-
ometer arms, and to use a common homogeneous
magnetic field to induce the HMW phase. Figures
2 and 3 illustrates this scheme, and figure 3 depicts
our own configuration which is directly inspired by
this proposal.

• H. Wei et al. [70] also predicted a persistent current
in a polarizable superfluid (see also [71]). Following
this idea, Y. Sato and R. Packard [92] have pro-
posed to detect the HMW phase with a superfluid
helium interferometer.

It would be very convenient to use a Ramsey interfer-
ometer to detect the HMW phase, as done for most of the
AC phase measurements [61, 62, 64–66]. Such an interfer-
ometer requires a coherent superposition of states with
opposite electric dipole moments [68, 84], which seems
feasible with molecules or with Rydberg atoms, because
they have quasi-degenerate states of opposite parity [68],
but not with ground state atoms. As a consequence,
Ramsey interferometry with ground state atoms cannot
be used for the detection of the HMW phase. Instead,
the HMW phase will be given by the difference of suc-
cessive phase measurements, a technique more sensitive
to systematic effects than Ramsey interferometry.

B. Principle of our experiment

To detect the HMW phase, we have built an experi-
ment [6, 93] with our atom interferometer [94, 95] (see
fig. 4). A highly collimated supersonic beam of lithium
seeded in argon, with a mean lithium velocity vm ≈ 1065
m/s, crosses three quasi-resonant laser standing waves
which diffract the atoms in the Bragg regime. With
first order Bragg diffraction which produces only two
diffracted beams (orders p = 0 and either p = +1 or

FIG. 3: (color online). Geometry of the electric field for the
detection of the HMW phase, following the proposal of Wei et
al. [70]. The atom (blue dots) propagates in the interferome-
ter plane, with the homogeneous magnetic field B perpendic-
ular to this plane. The conductors are shown with their po-
tential (red or black if grounded) and the electric field vector
E (r) is represented by red arrows for some sample positions
along the interferometer arms. Upper panel (similar to fig.
2): the original proposal with a charged wire which produces
a strongly inhomogeneous electric field. Lower panel: our ge-
ometry with homogeneous electric fields produced by plane
capacitors.

M1 M3M2

FIG. 4: (color online). Schematic top-view of our atom inter-
ferometer: the HMW interaction region is placed just before
the second laser standing wave, at the place where the arm
separation is largest. It is thus possible to introduce a septum
between the two interferometer arms without any perturba-
tion of the interferometer signal.

p = −1), we get in this way an almost perfect Mach-
Zehnder interferometer. A slit selects one of the two out-
put beams carrying complementary interference signals
and the intensity I of this beam, measured by a surface
ionization detector, is the output signal of the interfer-
ometer:
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I = I0 [1 + V cos (ϕd + ϕp)] (18)

I0 is the mean intensity, V is the fringe visibility and ϕp

is the phase due to various perturbations. The phase ϕd,
due to laser diffraction, is a function of the positions xi

of the three standing wave mirrors Mi: ϕd = 2kL(x1 −
2x2 + x3), where kL is the laser wavevector. The choice
of the laser frequency, very close to the first resonance
transition of lithium [94], and the natural abundance of
7Li (92.5%) make that the signal is purely due to this
isotope [94, 96].
To observe a non-zero HMW phase, the atom must

propagate in crossed electric and magnetic fields trans-
verse to its velocity and the fields on the two interfer-
ometer arms must be different. Near the second laser
standing wave, the two arms are separated by a distance
close to 100 µm, sufficient to insert a septum between
the two arms. A septum can be used to produce differ-
ent magnetic fields by circulating a current in the septum
[97] or different electric fields with two capacitors sharing
the septum as a common electrode [98]. The difference
of magnetic fields achieved in ref. [97] was quite small,
near 10−5 T, limited by the current in the septum, while
the second arrangement [98] has produced intense elec-
tric fields, of the order of 1 MV/m. We have chosen the
second arrangement with opposite electric fields on the
two interferometer arms and a common magnetic field: in
addition to the HMW phase, this arrangement produces
several other phases discussed in sections V and VI. This
setup is very close to the idea of Wei et al. [70] but the
charged wire is replaced by a septum, which improves
considerably the electric field homogeneity.

IV. EFFECT OF A DISPERSION OF THE

PHASE ON THE INTERFEROMETER SIGNAL

Any dispersion of the phase ϕ = ϕd + ϕp reduces the
fringe visibility V and a good visibility is necessary for
accurate phase measurements. In this part, we study the
origins of phase dispersions and the associated systematic
effects.

A. Origins of phase dispersion

The interferometer phase is dispersed because of its
dependence with the atom velocity, with the atom tra-
jectory and with the atom internal state.
The diffraction phase ϕd is independent of the atom

velocity v but the perturbation phase ϕp is a priori a
function of v. A dynamic phase due to a perturbation
applied to one arm is proportional to 1/v. If the same
perturbation is applied to both arms, the phase shift van-
ishes if the perturbation is homogeneous and is propor-
tional to 1/v2 in the presence of a perturbation gradient,
with an extra 1/v-factor due to the distance between the

interferometer arms which is approximately proportional
to 1/v. The topological AC and HMW phases are inde-
pendent of the velocity. Finally, inertial phase shifts are
proportional to 1/v (Sagnac effect) and to 1/v2 (homo-
geneous gravitational field): in our experiment, there is
a small Sagnac phase due to Earth rotation [99] but the
phase due to the gravitational field vanishes because the
interferometer is an horizontal plane.
In our experiment, the magnetic field is slightly inho-

mogeneous and the electric fields have slightly different
modulus on the two interferometer arms. Atom diffrac-
tion is in the horizontal plane, which means that the
interferometer signal is sensitive to the difference of the
propagation phases on the two arms at the same alti-
tude y. The resulting phase shifts are functions of the
y-coordinate because of the spatial dependence of the
fields.
The diffraction phase shift ϕd is also a function of the

y-coordinate, if the laser standing wave mirrors Mi are
not perfectly aligned (for an analysis, see ref. [100, 101]).
The final alignment of these mirrors is done by optimizing
the fringe visibility [94] and this procedure is not sensitive
to a small residual y-dependence of ϕd.
The Zeeman phase is a function of the hyperfine-

Zeeman F,mF sublevel; this phase, which may be large,
varies rapidly with F,mF (see section VI). The inter-
ferometer signal is the sum of the contributions of these
8 sublevels: in the absence of optical pumping, the sub-
levels are equally populated in the incident atomic beam,
but the interferometer transmission is a function of the
hyperfine level F . As a consequence, the 8 sublevels may
have different populations in the detected signal: this
question is discussed in Appendix A.

B. Effect of the velocity dependence of the

phase-shifts

The normalized velocity distribution of a supersonic
beam is given by:

P (v) =
S‖

vm
√
π
exp

[

−
(

(v − vm)S‖

vm

)2
]

(19)

vm is the mean velocity, S‖ is the parallel speed ratio.

A v3 pre-factor, usually included [102], has been omitted
for two reasons: - when S‖ is large, this pre-factor has
small effects; - because of the use of Bragg diffraction, the
interferometer transmission is a function of the velocity
and this effect modifies the velocity distribution. We
consider a perturbation phase ϕp(v) ∝ 1/vn so that we
can write ϕp(v) = ϕp(vm)(vm/v)n. The interferometer
signal is the velocity-average of eq. (18):

I = I0

∫

dvP (v)
[

1 + V cos
(

ϕd + ϕp(vm)
(vm

v

)n)]

(20)
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If the ratio ϕp(vm)/S‖ is not too large, it is a good ap-
proximation to expand vm/v up to the second order in
powers of (v − vm)/vm and the integral can be calcu-
lated analytically [95, 103]. The phase shift differs from
ϕp(vm) by a term linear in ϕp(vm)/S2

‖ because of the

non-linear dependence of ϕp with v and the visibility
decreases rapidly when ϕp(vm) ≈ S‖/n, with a quasi-
Gaussian dependence.

C. Calculation of the effect of a narrow

distribution of phase shift

Eq. (20) uses analytical expressions of ϕ(v) and of
P (v). For other types of phase dispersion, this informa-
tion is not generally available. For instance, for the de-
pendence of the phase with the atom trajectory, we may
assume that the phase is a function ϕ(y) of a continu-
ous variable y with a normalized probability P (y) and
we must average eq. (18):

〈I〉 = I0

∫

dyP (y) [1 + V cos (ϕ(y))] (21)

〈...〉 denotes the average over y with the weight P (y).
We assume that the visibility V is independent of y be-
cause the fringe visibility has a very low sensitivity to the
diffraction amplitudes [94]. We introduce:

〈ϕ〉 =
∫

dyP (y)ϕ(y) (22)

δϕ = ϕ(y)− 〈ϕ〉

Obviously 〈δϕ〉 = 0. Assuming that δϕ is small, we ex-
pand sin (δϕ) and cos (δϕ) up to third order in δϕ (these
expansions are of reasonable accuracy even if |δϕ| ≈ 1
rad). Once averaged over y, eq. (21) is similar to eq.
(18) with a modified visibility Vm and a modified phase
ϕm:

Vm/V0 = 1−
〈

(δϕ)2 /2
〉

ϕm = 〈ϕ〉 −
〈

(δϕ)
3
/6

〉

(23)

The reduced visibility Vr = Vm/V0 carries interesting
information when two perturbations a and b inducing
the phases ϕa and ϕb are simultaneously applied:

Vr,a+b =
Vm,a+b

V0
= 1−

〈

(δϕa + δϕb)
2
/2

〉

2

≈ Vr,aVr,b [1− 〈δϕaδϕb〉] (24)

By measuring three reduced visibility Vr,a, Vr,b and
Vr,a+b, we have access to the correlation 〈δϕaδϕb〉 of the
dispersions of the two phases. The phase shift ϕm due to

the perturbation is not equal to the mean phase 〈ϕ〉 be-
cause, even if, by definition, 〈δϕ〉 = 0,

〈

(δϕ)
3
〉

is usually

not equal to 0. Moreover, if two perturbations a and b are
simultaneously applied, the phase shifts are not additive,
because of the cross-terms

〈

δϕ2
aδϕb

〉

and
〈

δϕaδϕ
2
b

〉

.

D. Discrete average over Zeeman-hyperfine

sublevels

The signal is given by:

I = I0
∑

j

Pj [1 + Vj cos (〈ϕj〉)] (25)

where the signal due to the sublevel j is characterized
by a normalized population Pj (

∑

j Pj = 1), a visibility
Vj and a phase ϕj . The visibility Vj varies with the
sublevel because the reduction of visibility given by eq.

(23) is a function of the sublevel. The −
〈

(δϕj)
3
/6

〉

term, omitted in eq. (25), will be taken into account in
the complete calculation. For the contribution of sublevel
j to the signal, we define a complex fringe visibility Vj

given by:

Vj = Vj exp (i 〈ϕj〉) (26)

The complex visibility for the total signal is given by:

V =
∑

j PjVj (27)

This is a Fresnel construction from which we deduce the
modified fringe visibility Vm and phase ϕm:

Vm =

√

[

∑

PjVj cos 〈ϕj〉
]2

+
[

∑

PjVj sin 〈ϕj〉
]2

tanϕm =
(

∑

PjVj sin 〈ϕj〉
)

/
(

∑

PjVj cos 〈ϕj〉
)

(28)

When the phases 〈ϕj〉 are very close to their mean, the
resulting phase ϕm is their weighted average, but the
weights are the products PjVj and not the populations
Pj . This result has an important consequence: when
a perturbation modifies the visibility Vj , the modified
phase ϕm is not a simple average of 〈ϕj〉. In this case
too, even without the non-linear term

〈

δϕ3
〉

/6, the phase
shifts resulting from two perturbations are not additive,
because the weights PjVj are different in the three cases :
application of perturbation a, application of perturbation
b and simultaneous application of both perturbations.

V. EFFECTS OF THE ELECTRIC FIELD ON

THE INTERFEROMETER SIGNALS

An electric field induces a large phase due to Stark ef-
fect and a small one due to Aharonov-Casher effect [5].
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Because of its dependence on the magnetic dipole mo-
ment, the AC phase appears as a modification of the
Zeeman effect and we will discuss it after the Zeeman
phase in section VII.

A. Effective Stark Hamiltonian

If we neglect hyperfine structure, an electric field E in-
duces only a global displacement of lithium 2S1/2 ground
state described by the Stark Hamiltonian HS :

HS = −2πε0αE
2 (29)

α is the electric polarizability, α = (24.34±0.16)×10−30

m3 [99, 103]. Theoretical values [104] are considerably
more accurate and in good agrement with this experi-
mental value. For our largest field Emax ≈ 0.8 MV/m,
the Stark energy is ES ≈ 10−27 J while the atom kinetic
energy is K = mv2m/2 ≈ 7×10−21 J. With ES/K smaller
than 2 × 10−7, a first order perturbation calculation of
the Stark phase is fully justified:

ϕS = 2πε0α

∮

E2dt/~ (30)

If the field Emax ≈ 0.8 MV/m was applied on one in-
terferometer arm only, the Stark phase would be large,
ϕS ≈ 300 rad. In the experiments devoted to the de-
tection of the HMW phase, opposite electric fields are
applied on the two interferometer arms, resulting in a
very small detected Stark phase shift.
Because of its 3/2 nuclear spin, 7Li has 8 hyperfine-

Zeeman sublevels. The Stark shift is only approximately
independent of the sublevel but this dependence is very
weak. This question is very important for atomic clocks
and it has been studied theoretically by Sandars [105] and
Ulzega et al. [106]: the results are in good agreement
with experiments for the cesium clock [107, 108]. For
7Li, only the energy shift difference ∆ES of the F = 1,
mF = 0 and F = 2, mF = 0 sublevels has been measured
[109], ∆ES/h = −0.061(2)×10−10E2 Hz with E in V/m.
This measurement is in good agreement with theoretical
values [104, 110]. The ratio of this differential shift to the
mean energy shift is ∆ES/ES ≈ 3 × 10−6 and we may
deduce that the F,mF -dependence of the Stark phase is
negligible in our experiment.

B. Stark phase-shift of an ideal experiment

We first assume defect-free capacitors, with plane par-
allel electrodes. We use the same notations as in ref.
[103]: electrode spacing hi and length between the guard
electrodes 2ai. The electric field Ei(z) is easily calculated
[103] and the Stark phase shift ϕS,i for an atom in the
interferometer arm i is given by:

ϕS,i =
2πǫ0α

~v

∫

E2
i (z)dz

=
2πǫ0α

~v

V 2
i

h2
i

Li (31)

where Li = [2ai − (2hi/π)] is the effective length of ca-
pacitor i and Vi the potential difference across the capac-
itor. The small correction [103] due to the fact that the
atom passes at a distance ca. 40 µm of the septum, is
negligible. The Stark phase shift ϕS is the difference of
these two phase shifts:

ϕS = ϕS,l − ϕS,u =
2πǫ0α

~v

[

V 2
l

h2
l

Ll −
V 2
u

h2
u

Lu

]

(32)

where l (u) refers to the upper (lower) arm of the inter-
ferometer as schemed in fig. 4. By tuning the voltage
ratio Vu/Vl, we can cancel ϕS for all atom velocities.

C. Taking into account capacitor defects

The two capacitors present geometrical defects: the
electrodes and the septum are not perfectly plane and
parallel and the design of the guard electrodes is imper-
fect. We describe these defects by assuming that the
spacing hi(y, z) of capacitor i is a slowly varying func-
tion of y and z and that the length Li(y) between guard
electrodes is a slowly varying function of y. Finally, the
voltage across the capacitor i is the sum of the applied
voltage Vi and of contact potentials Vc,i(y, z) which is
the difference of the work functions of the two electrodes
(Vc,i(y, z) is of the order of 100 mV). An exact calcu-
lation of the field would be complicated and we assume
that the local field Ei(y, z) is the field of a perfect plane
capacitor of spacing hi(y, z):

Ei(y, z) =
Vi + Vc,i(y, z)

hi(y, z)
(33)

The phase ϕS,i is a function of y:

ϕS,i(y) =
2πǫ0α

~v

∫

Li(y)

E2
i (y, z)dz (34)

In an exact calculation of Ei(y, z), the small-scale vari-
ations of hi(y, z) and Vc,i(y, z) would be washed out be-
cause the atoms sample the electric field at a distance
ca. 40 µm of the septum and only variations with a scale
larger than this distance may play a role. We will not
try to take this effect into account but most of the rapid
variations of the electric field are already washed out
in the phase because of the integral appearing in equa-
tion (34). The calculation of ϕS,i(y) is detailed in Ap-
pendix B. Because Vc,i(y, z) is always much smaller than
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Vi, the quadratic term in Vc,i(y, z) is negligible and we
get ϕS,i(y) = ϕS,g,i(y) + ϕS,c,i(y) with a dominant term
ϕS,g,i ∝ V 2

i and a minor term ϕS,c,i(y) ∝ ViVc,i(y, z).
The y-variations of ϕS,g are due to geometrical defects:

ϕS,g,i(y) =
2πǫ0α

~v
V 2
i

∫

Li(y)

dz

h2
i (y, z)

(35)

while the y-variations of ϕS,c,i(y) are mostly due to con-
tact potentials Vc,i(y, z):

ϕS,c,i(y) =
4πǫ0α

~v
Vi

∫

Li(y)

Vc,i(y, z)dz

h2
i (y, z)

(36)

As in eq. (32), the Stark phase shift is the difference of
the phases on the two arms i = l, u.

VI. EFFECTS OF THE MAGNETIC FIELD ON

THE INTERFEROMETER SIGNALS

In this section, we recall the hyperfine-Zeeman Hamil-
tonian and we discuss the Zeeman phase shifts resulting
from a gradient of the magnetic field between the two
interferometer arms.

A. The hyperfine-Zeeman Hamiltonian

For lithium ground state, the hyperfine-Zeeman Hamil-
tonian HHFS+Z is given by:

HHFS+Z = AI · S− gSµBS ·B− gIµBI ·B (37)

S and I are the electronic (S = 1/2) and nuclear
(I = 3/2) spins respectively. The ground state is split
in two hyperfine levels F = 1, 2 and 8 F,mF sublevels.
The Fermi-contact hyperfine parameter A, the electronic
Landé factor gS and the nuclear Landé factor gI are very
accurately known [111, 112].
We have omitted the diamagnetic term Hdia =

−∑

i q
2(r2⊥,i)B

2/8m, where r⊥,i is the projection of the
nucleus-electron vector on a plane perpendicular to B.
Using

∑

i < r2i > given by ref. [113], for our largest
field, Bmax ≈ 1.4× 10−2 T, the energy shift is ∆Edia ≈
2.4 × 10−32 J, which is very small and independent of
the sublevel. Moreover, as the interferometer signal is
sensitive only to the difference of ∆Edia between the two
interferometer arms and as the magnetic field homogene-
ity is very good, the resulting phase is fully negligible.
The Zeeman energy shifts are always smaller than

µBBmax ≈ 1.3 × 10−25 J and the ratio of these shifts
to the kinetic energy is smaller than 2 × 10−5, which
remains small. The magnetic field extends over ≈ 80
mm corresponding to an interaction time tint ≈ 75 µs.
If the magnetic field was applied to one interferometer

arm only, a first-order perturbation calculation predicts a
maximum phase ϕZ,max = µBBmaxtint/~ ≈ 105 rad and
the second-order term of the perturbation expansion is of
the order of 1 rad, which is not at all negligible. In our ex-
periment, the field homogeneity is good, ∆B/B ≈ 10−4,
where ∆B is the difference of the field on the two inter-
ferometer arms: with this field difference, the first order
term induces a Zeeman phase shift of the order of 10 rad
at most, while the second order terms compensate each
other and their contribution to the Zeeman phase shift
is negligible, below 1 mrad. Finally, hyperfine uncou-
pling cannot be neglected for our maximum field and the
hyperfine Zeeman energies are given by:

E(F,mF , B) = −A

4
− gIµBmFB ±A

√

1 +mFX +X2

with X = − (gS − gI)µBB

2A
(38)

with X = 34.9B (B in Tesla) so that for our largest
field X ≈ 0.5. If X < 1, the ± sign is associated to the
F = I ± 1/2 level. If we forget the small gIµBmFB term
in eq. (38), there are four pairs of levels with opposite
Zeeman energy shifts, the three pairs of levels with the
same mF value and the pair F = 2,mF = ±2 and this
property will be useful. The variations of E(F,mF , X)
are plotted in fig. 5. Later, we will use the derivatives of
E(F,mF , X) with respect to X , given by:

∂E(F,mF , B)

A∂X
≈ −gFmF ±

[

1− m2
F

4

]

X

±3mF

4

[

m2
F

4
− 1

]

X2 (39)

This expansion, limited to the X2 terms, is exact for the
F = 2,mF = ±2 sublevels. For |X | < 0.5, its accuracy
is better than 3% for the mF = ±1 sublevels, but only
12% for the mF = 0 sublevels.

B. Calculation of the Zeeman phases and their

effects on the fringe phase and visibility

If the magnetic field never vanishes and if its direction
is slowly varying along the atom trajectory, it is a good
approximation to assume an adiabatic behavior [96, 97,
114] : the projection mF of the total angular momentum
F on an axis parallel to B is constant and the Zeeman
phase is given by:

ϕZ (F,mF ) = − 1

~v

∮

l−u

E(F,mF , B)ds

≈ 1

~v

∫

∂E(F,mF , B)

∂B

∂B

∂x
δx(z)dz (40)

where δx(z) is the distance between the interferometer
arms at the coordinate z and B is the modulus of the
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FIG. 5: (color online). Hyperfine-Zeeman ener-
gies E(F,mF )/A plotted as a function of X =
− (gS − gI)µBB/(2A). It appears clearly that there
are four pair of levels with almost opposite Zeeman energy
shifts.

magnetic field. When the magnetic field is produced by
a current I circulating in a coil, the dependence with I
of the Zeeman phase shifts are complicated. We obtain
an approximate analytic expression using the power ex-
pansion, eq. (39):

ϕZ (F,mF ) = −gFmFJ1 ±
[

1− m2
F

4

]

J2

±3mF

4

[

m2
F

4
− 1

]

J3

J1 =
µB

~v

∫

∂B

∂x
δx(z)dz

J2 =
(gS − gI)

2
µ2
B

8A~v

∫

∂(B2)

∂x
δx(z)dz

J3 =
3 (gS − gI)

3
µ3
B

128A2~v

∫

∂(B3)

∂x
δx(z)dz(41)

Jk is proportional to |I|k and the Zeeman phase shifts are
expressed as third order polynomials of I. Moreover, the
presence and inhomogeneity of the laboratory field, which
exists when I = 0, must be taken into account. In this
aim, we introduce corrections to the linear Zeeman effect
(coefficient J1): in consistency with the weak value of the
laboratory field, these corrections will be most accurate
when the field produced by the coil is weak.

C. The case of linear Zeeman effect

If the field B is smaller than about 2 × 10−3 T
corresponding to |X | < 0.07, Zeeman effect is al-
most purely linear, with Landé factors gF equal to
g1 = (−gS + 5gI) /4 ≈ −0.502053 ≈ −1/2 and g2 =

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0
     =     0    

= -0.1
    =  0.1

J1

m
(rad)

0 2 4 6 8
0

1

2

3

0

m

FIG. 6: Calculated relative visibility and phase as a function
of J1, for a velocity distribution with a typical value of the
parallel speed ratio S‖ = 8 and for three values of the pop-
ulation unbalance parameter χ: χ = 0 full curve; χ = 0.1
dash-dotted curve; χ = −0.1 dotted curve. This parameter
has a large effect especially when the visibility is very low.

(gS + 3gI) /4 ≈ 0.499689 ≈ 1/2, the approximate values
±1/2 being sufficiently accurate. Taking into account
the population unbalance described by the parameter χ
given by eq. (52), the complex visibility defined by eq.
(26) and (27) is equal to:

V
V0

=
1

4
[1 + 2(1 + 5χ) cos (g1J1) + (1 − 3χ) cos (g2J1)

+(1− 3χ) cos (2g2J1)] (42)

In this case, the complex visibility remains real i.e. the
fringe phase is exactly equal to 0 or π. For a well defined
atom velocity, when J1 increases, the visibility first de-
creases and presents revivals with V = V0 when J1/(4π)
is equal to an integer. In fig. 6, the modulus and the
phase of the complex visibility are plotted as a function
of J1, for different values of the parameter χ, with the
velocity distribution parameter S‖ = 8: the visibility re-
vivals are less intense because of the velocity average.
We now calculate corrections of J1 to describe the

influence of the laboratory field B0, which is not per-
fectly homogeneous. We express the total magnetic field
Btot = Bcoil + B0, where Bcoil is the coil field propor-
tional to the coil current Icoil. Its modulus is:

Btot =

√

(Bcoil +B0)
2

≈ Bcoil

(

1± u ·B0

Bcoil

)

(43)

an approximation valid when B0 ≪ Bcoil. u is a local
vector parallel to Bcoil so thatBcoil = ±uBcoil where the
± sign is the sign of Icoil. We split the integral giving J1
in two regions, the region where the coil field is dominant
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(in) and the region where the laboratory field is dominant
(out):

J1 ≈ µB

~v

[
∫

in

∂Bcoil

∂x
δx(z)dz ±

∫

in

∂u ·B0

∂x
δx(z)dz

+

∫

out

∂B0

∂x
δx(z)dz

]

(44)

The first term, proportional to |Icoil|, is written
AJ1,coil |Icoil|. The second term is constant and it is con-
venient to write it −AJ1,coilI0,coil which defines a quan-
tity I0,coil homogeneous to a current. The third term is
independent of the current in the coil and we write it
J0,coil. In this way, we get:

J1 = AJ1,coil |Icoil − I0,coil|+ J0,coil (45)

It is important to note that J0,coil depends on the coil
because of integration in the out region. We call J0 the
integral as in equation (44) extended to the whole inter-
ferometer:

J0 =
µB

~v

∫

∂B0

∂x
δx(z)dz (46)

We need a formula which interpolates smoothly when
Icoil varies. When Icoil → 0, the quantity J1 must tend
toward J0. This property is verified by eq. (45) if we take
J0,coil = J0−AJ1,coil |I0,coil|. Finally, as we use two coils,
a main coil (current I) and a compensator coil (current
IC), we generalize eq. (45) which becomes:

J1 = AJ1 |I − I0|+AJ1,C |IC − I0,C |+ J0,I+C (47)

where J0,I+C = J0 − AJ1 |I0| − AJ1 |I0,C |. To establish
eq. (47), we must assume that the (in) regions of the
two coils do not overlap, which is satisfied by our exper-
imental apparatus [7, 93]. Eq. (47) will be used to fit
experimental data.

D. The case of larger magnetic fields

We consider here only J1 and J2 to simplify the equa-
tions. The complex visibility is then given by:

V
V0

=
1

4

[

(1 + χ)

(

cos (J2) + 2 cos

(

3J2
4

)

cos

(

J1
2

))

+(1− 3χ) cos (J1)]

+iχ

[

sin (J2) + 2 cos

(

J1
2

)

sin

(

3J2
4

)]

(48)

In fig. 7, we have plotted the complex fringe visibility
as a function of the magnetic field inhomogeneity. When
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FIG. 7: Calculated real and imaginary parts of the complex
visibility V/V0 as a function of the coil current I . We use the
values J1/I = 0.5 rad/A and J2/I

2 = 0.01 rad/A2, which are
close to our experimental values. Same S‖ and χ values as in
fig. 6.

χ = 0, the imaginary part of V almost vanishes but it
differs slightly from 0 because we have taken into account
the nuclear spin contribution (an effect neglected in eq.
(48)). When χ differs from 0, the imaginary part is not
at all negligible and the fringe phase may be large, of
the order of 1 rad, when the real part of the visibility is
small.

We should also calculate corrections to J2 and J3 for
the inhomogeneity of the laboratory field, but these re-
finements are expected to be of weak influence and did
not appear to improve the quality of the fits. As a conse-
quence, only the correction to J1 given by eq. (47) have
been taken into account.

VII. THE AHARONOV-CASHER PHASE SHIFT

As explained above, the Aharonov-Casher phase ϕAC ,
given by eq. (2), can be considered as being due to the
motional magnetic field Bmot = E × v/c2. This field is
usually very small, Bmot ≈ 10−8 T for our largest electric
field Emax ≈ 0.8 MV/m and v = vm = 1065 m/s, but it
has opposite values on the two interferometer arms as we
use opposite electric fields. In practice, Bmot is always
smaller than 10−3 of the magnetic field and only the com-
ponent of Bmot parallel to this local magnetic field can
play a role, but it cannot be neglected. The magnetic
moment µ(F,mF ) of the F,mF sublevel is a function of
the magnetic field B. We introduce a vector utot = B/B
parallel to the total magnetic field at the location r, and
we approximate the magnetic dipole moment value by
using an expansion similar to eq. (39):
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µ(F,mF ) = µ(F,mF )utot

with µ(F,mF ) = ∓µB
mF + 2X

2
√
1 +mFX +X2

≈ ∓µB

[

mF

2
+

(

1− m2
F

4

)

X

+
3mF

4

(

m2
F

4
− 1

)

X2

]

(49)

with the notations of eq. (38). We then use equation (2)
to calculate the AC phase shift as a function of F , mF .

VIII. SUMMARY OF THE VARIOUS PHASE

SHIFTS

In this section, we rapidly review the various phase
shifts discussed in the previous sections and we estimate
their magnitude in our experimental setup. We also ex-
plain their effects on the fringe visibility. The phase ϕp

in equation (18) is the sum of 5 contributions:

ϕp = ϕSagnac + ϕS + ϕZ (F,mF )

+ϕAC(F,mF ) + ϕHMW (50)

Let us discuss each term separately:

• the Sagnac phase shift ϕSagnac due to Earth ro-
tation is easily calculated from the latitude of our
experiment and the size of the interferometer:

ϕSagnac = 688/v (51)

where v is the atom velocity in m/s and ϕSagnac is
measured in rad. With vm = 1065 m/s, this phase
is rather small, ϕSagnac ≈ 0.65 rad [99] and, as its
dispersion is solely due to its velocity dependence,
it has only minor effects on the fringe visibility V .

Phase Shift Maximum value Dependence Effect on

(rad) with F , mF fringe visibility

Sagnac 0.64 no negligible

Polarizability ≈ 0.1 no weak

Zeeman ≈ 10 yes strong

AC 0.07 yes weak

HMW 0.027 no no

TABLE I: The phase shifts present in our experiment: for
each phase shift, we give its value for the maximum fields
Emax ≈ 0.8 MV/m and Bmax ≈ 14 mT available in the inter-
action region used for the detection of the HMW phase, the
existence of a dependence with the sublevel and its effect on
the fringe visibility.

• the Stark phase shift ϕS can be very large, about
300 rad if we applied the largest electric field E =
0.8 MV/m on one arm only. Because of its ve-
locity dependence, ϕS ∝ 1/v, the fringe visibility
V decreases when ϕS increases and becomes very
small for ϕS > 30 rad because the velocity distri-
bution of our atomic beam has a relative full width
of the order of 25%. In order to measure the HMW
phase, we need the best possible fringe visibility
and we tune the electric fields on the two arms so
that the mean ϕS is of the order of 100 mrad. The
reduction of fringe visibility due to the velocity av-
eraging is then completely negligible but, because
of defects of the geometry of the two capacitors,
the y-dependence of ϕS(y) discussed above induces
a minor reduction of the fringe visibility.

• the Zeeman phase shift ϕZ (F,mF ) would be ex-
tremely large, about 105 rad if our maximum field
B = 14 mT was applied on one interferometer arm
only, but with a relative field difference δB/B ∼
10−4 between the two interferometer arms, the Zee-
man phase shift is reduced to about 10 rad for the
F = 2,mF = ±2 sublevels. Because of the depen-
dence of ϕZ with F,mF and with the atom velocity,
ϕZ ∝ 1/v2, this phase shift would still be sufficient
to reduce the fringe visibility to a very small value.
A compensating coil creating an opposite field gra-
dient between the two interferometer arms is nec-
essary to preserve a good visibility but, because of
non-linear Zeeman effect due hyperfine uncoupling,
this compensation is not complete.

• the Aharonov-Casher phase shift ϕAC(F,mF ) is a
function of the F , mF sublevel and it is largest
for the F = 2, mF = ±2 sublevels. Because
of its geometric character, it is independent of
the atom velocity. For our largest electric field,
ϕAC(F = 2,mF = 2) ≈ 70 mrad. Because of its
F,mF -dependence, the AC phase shift has a weak
but detectable effect on the fringe visibility.

• the He-McKellar-Wilkens phase shift ϕHMW is in-
dependent of the F,mF hyperfine sublevel and of
the atom velocity, because of its geometric char-
acter. For our largest electric and magnetic fields,
ϕHMW ≈ 27 mrad. As the HMW phase shift is not
dispersed, it has no effect on the fringe visibility.

Table I summarizes the main properties of these phase
shifts present in our experiment. We have two comments.
The existence of phase shifts larger than the one we want
to measure is not a problem as long these large phase
shifts are stable: in order to observe the weak HMW
phase shift, we subtract the phase shift due to the electric
field and the one due to the magnetic field from the one
observed when both fields are applied. The real prob-
lem comes from the fact that the signal is the sum of
the signals due to 8 hyperfine sublevels and, as shown by
equation (28), the weights of the sublevel j is the product
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PjVj . The visibility Vj varies with the applied perturba-
tions and this is the basis of systematic effects analyzed
in section IV.

IX. CONCLUSION

In this paper, we have recalled what are the topological
phases of electromagnetic origin, namely the Aharonov-
Bohm, the Aharonov-Casher and He-McKellar-Wilkens
phases and the theoretical connections between these var-
ious effects. We have also discussed the possible detec-
tion schemes of the HMW phase and we have explained
the principle of our experiment based on a separated-arm
lithium-atom interferometer.
During our experiment, which is briefly described in

ref. [6] (with more details in the companion paper
HMWII [7]), we have observed unexpected stray phases:
most of them have been explained by our calculations
and they result from phase-averaging effects due to ex-
perimental defects. We have discussed these effects on
general grounds in section IV.
In order to develop a model of our experiment, we

have analyzed in detail the Stark and Zeeman effective
Hamiltonian in the 2S1/2 ground state of 7Li atom and
we have discussed the validity of several approximations.
We have thus shown that we may assume that the Stark
shift is independent of the F,mF sublevel and that the
diamagnetic term is negligible. We have explained why
we use a first-order calculation of the Stark and Zeeman
phases. We have also discussed in detail the phase shifts
resulting of the inhomogeneities of the electric or mag-
netic fields and the consequences of these phase shifts on
the fringe phase and visibility. Finally, we have evalu-
ated the Aharonov-Casher phase in our experiment and
shown that it is small but not fully negligible.
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X. APPENDIX A: RELATIVE

CONTRIBUTIONS OF THE F,mF SUBLEVELS

TO THE SIGNAL

In this appendix, we discuss various effects which may
modify the relative populations of the F,mF sublevels.

A. The populations of the F,mF sublevels in the

incident atomic beam

The atomic beam, when it enters the atom interfer-
ometer, is not optically pumped. We may assume that

the 8 Zeeman-hyperfine sublevels are equally populated
for the following reasons: the only effects which could
induce a partial selection of the internal states are the
supersonic expansion and Stern-Gerlach forces and they
are too weak to play a role in our experiment.
Supersonic expansions are well known to align the rota-

tional angular momentum of molecules by collisions with
the carrier gas, because the collisions between the seeded
molecule and the carrier gas are not isotropically dis-
tributed, an anisotropy due to the velocity difference be-
tween the two species (the so-called velocity slip effect).
A similar effect can align an atomic angular momentum.
However, lithium atom in its ground state is in a spin
1/2 state which cannot be aligned. Nuclear spins are
uncoupled during a collision, because of the weakness of
the hyperfine Hamiltonian with respect to a typical col-
lision duration, below 10−12 s, so that collisions are not
expected to align the total angular momentum F.
Stern-Gerlach forces due to a magnetic field gradi-

ent can deflect differently the various F,mF sublevels
and a F,mF -dependent deflection can produce a popula-
tion unbalance between these sublevels. The only places
where such a deflection could occur are in the collimation
slits and this would require a magnetic field gradient of
the order of 103 Tesla/m. We have chosen to use collima-
tion slits made of silicon, a non-ferromagnetic material,
so that the magnetic field gradient is surely very small.

B. The transmission of the interferometer

As we are using linear polarization of the laser stand-
ing waves and as the hyperfine structure of the 2P first
resonance state of lithium is quite small, the diffraction
amplitude is independent of mF for a given F level [101].
This is true even in the presence of a weak magnetic field,
comparable to the Earth field, 4 × 10−5 T, because the
Zeeman splitting of the transitions, of the order of 1 MHz
in frequency units, is negligible with respect to the laser
frequency detuning δL/(2π) ∼ 2 GHz [94].
The diffraction amplitude still depends on F because

the laser frequency detuning is not the same for the two
hyperfine levels, the ground state hyperfine splitting be-
ing equal to ωHFS/(2π) = 0.803 GHz in frequency units.
We define the population unbalance by writing the rela-
tive population P (F,mF ) of the F,mF sub-level in the
form:

P (F,mF ) = (1 + 5χ) /8 if F = 1

P (F,mF ) = (1− 3χ) /8 if F = 2 (52)

The total population is normalized and the unbalance
parameter χ must verify −1/5 ≤ χ ≤ 1/3 so that
P (F,mF ) ≥ 0. We have developed a simplified model of
the interferometer transmission, neglecting the variation
of the diffraction amplitudes with the atom velocity vec-
tor (the modulus of the velocity has a distribution given
by eq. 19, with S‖ ≈ 8 and the direction of the velocity
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FIG. 8: The population unbalance parameter χ as a func-
tion of laser frequency detuning δL/(2π) GHz as given by
the simple model (eq. 54). The β parameter has been taken
equal to β/(2π) = 3.65 GHz, which is optimum for a detuning
δL/(2π) = 2 GHz.

vector is characterized by an angular distribution with
a full width at half maximum close to 20 µrad). In this
way, we can write the first-order diffraction amplitude by
the ith laser standing wave in the form:

|αi| = sin (βi/δL(F ))

with δL(F = 1) = δL

and δL(F = 2) = δL + ωHFS (53)

where βi is a parameter proportional to the integral of
the laser power density seen by an atom which crosses
the ith laser standing wave. We assume that the βi pa-
rameters are optimum for a Mach Zehnder interferometer
with β2 = 2β1 = 2β3 = β. The transmission of the in-
terferometer is proportional to |αi|4 and we thus get the
unbalance parameter χ:

χ =
sin4 (β/δL)− sin4 (β/ (δL + ωHFS))

3 sin4 (β/δL) + 5 sin4 (β/ (δL + ωHFS))
(54)

The variations of the unbalance parameter χ are plotted
as a function of the laser detuning δL in fig. 8, for a
typical value of the experimental parameter β.

XI. APPENDIX B: THE STARK PHASE

INCLUDING CAPACITOR DEFECTS

The Stark phase ϕi(y), given by eq. (34), is propor-
tional to the integral

∫

E2
i (y, z)dz. We use an over-

line .̄.. to note the average over z defined by the in-
tegral over the capacitor length Li(y), for instance,
h̄i(y) =

∫

hi(y, z)dz/Li(y) and we note δi(y, z) the di-
mensionless deviation from a plane capacitor defined by
hi(y, z) = h̄i(y) [1 + δi(y, z)]. By definition, δ̄i(y) = 0

and we assume that δi(y, z) ≪ 1. We also define
V̄c,i(y) =

∫

Vc,i(y, z)dz/Li(y).
To calculate the Stark phase ϕi(y), we expand the

electric field Ei(y, z) up to first order in δi(y, z) and in
Vc,i(y, z)/Vi. Both assumptions are excellent, first be-
cause the design of the capacitors ensures δi ≪ 1, sec-
ondly because the contact potential term is of the order
of ±100 mV while the applied voltage Vi is of the order of
100 V at least (when Vi = 0, the Stark phase solely due
to contact potentials, of the order of 10−5 rad at most,
is completely negligible). Then E2

i (y, z) is given by:

E2
i (y, z) ≈ V 2

i
(

h̄i(y)
)2

[

1 + 2
Vc,i(y, z)

Vi
− 2δi(y, z)

]

(55)

The phase ϕi(y) is obtained by integration over z:

ϕi(y) ≈ 2πǫ0αV
2
i

~v

Li(y)
(

h̄i(y)
)2

[

1 + 2
V̄c,i(y)

Vi

]

(56)

We introduce ηi(y) which measures the y-dependence of
the z-integrated geometrical defect of the capacitor i.
ηi(y) measures the relative y-variation of the z-averaged
thickness of the capacitor i; it is defined by:

Li(y)
(

h̄i(y)
)2 =

〈

Li

h̄2
i

〉

[1 + ηi(y)] (57)

where 〈...〉 denotes the y-average with the weight function
P (y). By definition, 〈ηi〉 = 0. We get:

ϕi(y) ≈ ϕ0i

[

1 + ηi(y) + 2
V̄c,i(y)

Vi

]

with ϕ0i =
2πǫ0αV

2
i

~v

〈

Li

h̄2
i

〉

(58)

In the HMW detection experiments discussed in HMWII
[7], the voltage ratio Vl/Vu is tuned so that it compen-
sates the fact that the two capacitors have not exactly
the same value of the quantity

〈

Li/h̄
2
i

〉

. In this way we

get |〈ϕl〉 / 〈ϕu〉 − 1| < 10−3. Hence for the defect terms
which are expressed by a first order expansion, it is jus-
tified to use the mean value ϕ0 of the induced phases ϕ0i

and the mean value V of the voltages Vi. We thus ob-
tain the Stark phase shift, including the influence of the
capacitor defects:

ϕS(y) = ϕ0l − ϕ0u + 〈ϕSc〉
+δϕSg(y) + δϕSc(y) (59)

In eq. (59), the mean phase shift (first line) is given by:

〈ϕS〉 = ϕ0l − ϕ0u + 〈ϕSc〉

with 〈ϕSc〉 = 2ϕ0

[

〈

V̄c,l

〉

−
〈

V̄c,u

〉

V

]

(60)
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The term (ϕ0l − ϕ0u), which is dominant if the voltage
ratio Vu/Vl is not perfectly tuned, scales like V 2. The
mean term due to the contact potentials 〈ϕSc〉, which is
expected to be considerably smaller, scales like V . The
dispersion of the Stark phase shift with the atom trajec-
tory is described by the terms of the type δϕ(y) (second
line of eq. 59), with 〈δϕ〉 = 0. The dispersion due to
geometrical defects scale like V 2, while that due to the
contact potentials scale with V :

δϕSg(y) = ϕ0 [ηl(y)− ηu(y)]

δϕSc(y) = 2ϕ0
V̄c,l(y)− V̄c,u(y)

V
− 〈ϕSc〉 (61)

Although we expect the dispersion originating from the
contact potentials to be smaller, and to exhibit weak cor-
relations because of rapid small-scale variations, its influ-
ence could not be ruled out prior to our experiment.
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