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The Cahn-Hilliard/Allen-Cahn equation with noise is a simplified mean field model of stochastic microscopic dynamics associated with adsorption and desorption-spin flip mechanisms in the context of surface processes. For such an equation we consider a multiplicative space-time white noise with diffusion coefficient of sub-linear growth. Using technics from semigroup theory, we prove existence, and path regularity of stochastic solution depending on that of the initial condition. Our results are also valid for the stochastic Cahn-Hilliard equation with unbounded noise diffusion, for which previous results were established only in the framework of a bounded diffusion coefficient. We prove that the path regularity of stochastic solution depends on that of the initial condition, and are identical to those proved for the stochastic Cahn-Hilliard equation and a bounded noise diffusion coefficient. If the initial condition vanishes, they are strictly less than 2 -d 2 in space and 1 2 -d 8 in time. As expected from the theory of parabolic operators in the sense of Petrovskȋı, the bi-Laplacian operator seems to be dominant in the combined model.

Here, D is a rectangular domain in R d with d = 1, 2, 3, ̺ > 0 is a "physical diffusion" constant, f is a polynomial of degree 3 with a positive leading coefficient, such as f = F ′ where F (u) = (1 -u 2 ) 2 is a double equal-well potential. The "noise diffusion" coefficient σ(•) is a Lipschitz function with sub-linear growth, Ẇ is a space-time white noise in the sense of Walsh [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF], and ν is the outward normal vector. In addition, we assume that the initial condition u 0 is sufficiently integrable or regular, depending on the desired results on the solution. Obviously, when σ := 1, the noise in (1.1) becomes additive.

In this paper, as in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], we will analyze the more general case of multiplicative noise. Thus, in the sequel we will give sufficient conditions on the initial condition u 0 and on the coefficient σ so that a unique global solution exists with Lipschitz path-regularity. However, unlike [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], we consider a more general Lipschitz coefficient σ with sub-linear growth such that

(1.2) |σ(u)| ≤ C(1 + |u| α ),
for some α ∈ (0, 1 9 ) and C a positive constant.

The stochastic Cahn-Hilliard equation can be considered as a special case of our model. Therefore, our method shows that all the results of [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] on well-posedeness and path-regularity for the solution of the stochastic Cahn-Hilliard equation with a multiplicative noise extend to the case where the function σ satisfies the aforementioned sub-linear growth assumption. Furthermore, using the factorization method for the stochastic term we derive a better path regularity than that obtained in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF].

1.2. The physical background. Surface diffusion and adsorption/desorption consist the micromechanisms that are typically involved in surface processes or on cluster interface morphology. Chemical vapor deposition, catalysis, and epitaxial growth are surface processes involving transport and chemistry of precursors in a gas phase where the unconsumed reactants and radicals adsorb onto the surface of a substrate so that surface diffusion, or reaction and desorption back to the gas phase is observed. Such processes have been modelled by continuum-type reaction diffusion models where interactions between particles are neglected or treated phenomenologically, [START_REF] Imbihl | Oscillatory kinetics in heterogeneous catalysis[END_REF][START_REF] Ertl | Oscillatory kinetics and spatio-temporal self-organization in reactions at solid surfaces[END_REF]. Alternatively, a more precise microscocpic description is provided in statistical mechanics theories, [START_REF] Gilmer | Simulation of crystal growth with surface diffusion[END_REF]. For instance we can consider a combination of Arrhenius adsorption/desorption dynamics, Metropolis surface diffusion and simple unimolecular reaction; the corresponding mesoscopic equation is:

(1.3) u t -D∇ • ∇u -βu(1 -u)∇J * u -k a p(1 -u) -k d u exp -βJ * u + k r u = 0 .
Here, D is the diffusion constant, k r , k d and k a denote respectively the reaction, desorption and adsorption constants while p is the partial pressure of the gaseous species. The partial pressure p is assumed to be a constant, although realistically it is given by the fluids equations in the gas phase. Furthermore, J is the particle-particle interaction energy and β is the inverse temperature.

Stochastic microscopic dynamics such as Glauber and Metropolis dynamics have been analyzed for adsorption/desorption-spin flip mechanisms in the context of surface processes; for more details we refer to the review article [START_REF] Katsoulakis | Multiscale Models for Surface Evolution and Reacting Flows[END_REF]. In addition, the Kawasaki and Metropolis stochastic dynamics models describe the diffusion of a particle on a surface, where sites cannot be occupied by more than one particle. Stochastic time-dependent Ginzburg-Landau type equations with additive Gaussian white noise source such as Cahn-Hilliard and Allen-Cahn appear as Model B and Model A respectively in the classical theory of phase transitions according to the universality classification of Hohenberg and Halperin [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF]. A simplified mean field mathematical model, associated with the aforementioned mechanisms that describes surface diffusion, particle-particle interactions and as well as adsorption to and desorption from the surface, is a partial differential equation written as a combination of Cahn-Hilliard and Allen-Cahn type equations with noise. The Cahn-Hilliard operator is related to mass conservative phase separation and surface diffusion in the presence of interacting particles. On the other hand, the Allen-Cahn operator is related to adsorption and desorption and serves as a diffuse interface model for antiphase grain boundary coarsening.

At large space-time scales the random fluctuations are suppressed and a deterministic pattern emerges. Such a deterministic model has been analyzed by Katsoulakis and Karali in [20]. The so called mean field partial differential equation has the following form:

(1.4)    u t = -ε 2 ̺∆ ∆u - f (u) ε 2 + ∆u - f (u) ε 2 , u(x, 0) = u 0 (x),
where f (u) = F ′ for F = (1 -u 2 ) 2 /4 a double-well potential with wells ±1, ̺ > 0 is the diffusion constant and 0 < ε ≪ 1 is a small parameter. In [START_REF] Karali | The role of multiple microscopic mechanisms in cluster interface evolution[END_REF], the authors rigorously derived the macroscopic cluster evolution laws and transport structure as a motion by mean curvature depending on surface tension to observe that due to multiple mechanisms an effective mobility speeds up the cluster evolution.

Remark 1.1. The stochastic equation analyzed in this work is a simplified mean field model for interacting particle systems used in statistical mechanics. These systems are Markov processes set on a lattice corresponding to a solid surface. A typical example is the Ising-type systems defined on a multi-dimensional lattice; see [START_REF] Giacomin | Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems[END_REF]. Assuming that the particle-particle interactions are attractive, then the resulting system's Hamiltonian is nonnegative (attractive potential). Hence, the diffusion constant ̺ of the SPDE (1.1) is considered positive, as in [START_REF] Karali | The role of multiple microscopic mechanisms in cluster interface evolution[END_REF]. 1.3. Main results. As a first step for a rigorous mathematical analysis of the stochastic model, in Section 2, we will prove existence and uniqueness of a solution to (1.1) when the initial condition u 0 belongs to L q (D) for q ∈ [3, ∞) if d = 1, 2 and q ∈ [6, ∞) if d = 3. Section 3 describes some possible general assumptions on the domain D which would lead to the same result and presents the stochastic Cahn-Hilliard equation as a special case of a Cahn-Hilliard/Allen-Cahn stochastic model. Note that the approach used in this paper to solve this non linear SPDE with a polynomial growth is similar to that developed by J.B. Walsh [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] and I. Gyöngy [START_REF] Gyönly | Existence and uniqueness results for semi-linear stochastic partial differential equations[END_REF] for the stochastic heat equation and related SPDEs. Note that unlike these references, the smoothing effect of the bi-Laplace operator enables us to deal with a stochastic perturbation driven by a space-time white noise in dimension 1 up to 3.

The existence-uniqueness proof is similar to that of Cardon-Weber in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], and relies on upper estimates of the fundamental solution, Galerkin approximations and the application of a cut-off function. However, the fact that the diffusion coefficient σ is unbounded requires to multiply σ by the cut-off function in order to estimate properly the stochastic integral, and then to use a priori estimates for the remaining part.

With our method we prove existence of a global solution under the requirement that σ satisfies the following sub-linear growth condition: |σ(u)| ≤ C(1 + |u| α ) for some α ∈ (0, 1 9 ) and some positive constant C. Finally note that the upper estimates on the Green's function stated in section 2 obviously show that all the results in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] can be extended to our framework if σ is bounded. Therefore, one of the main contributions of this paper is to deal with some unbounded noise coefficient σ. Note that we could not apply the technique introduced by S. Cerrai [START_REF] Cerrai | Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term[END_REF] for the stochastic Allen-Cahn equation (see also the work of M. Kuntze and J. van Neerven, [START_REF] Kuntze | Continuous dependence of the coefficients and global existence for stochastic reaction diffusion equations[END_REF], for a more general framework) and obtain global solutions for more general diffusion coefficients. This is due to the fact that in our model, in contrast to the Allen-Cahn equation, the Laplace operator is applied to the nonlinearity. However, we believe that global solutions could exist for unbounded noise diffusion coefficients satisfying a growth condition more general than (1.2).

Path regularity of the solution is proved in section 4. If the initial condition vanishes, the domain D can again be quite general. Otherwise, we have to impose that D is a rectangle.

Our method shows that all the results of [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] on well-posedeness and path regularity of the solution to the stochastic Cahn-Hilliard equation extend to the case of an unbounded noise diffusion. In addition, we prove path regularity of the considered Cahn-Hilliard/Allen Cahn SPDE. The method, based on the factorization method for the deterministic and random forcing terms, yields the same regularity as that proven in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], where σ is bounded.

As usual we demote by C a generic constant and by C(s) a constant depending on some parameter s. For p ∈ [1, ∞], the L p (D)-norm is denoted by • p . Finally, given real numbers a and b we let a ∨ b (resp. a ∧ b) denote the maximum (resp. the minimum) of a and b.

Existence of stochastic solution

2.1. Preliminaries. For simplicity and to ease notation, without restriction of generality, we will assume that the "physical diffusion" constant ̺ is equal to 1 and that D is the unitary cub. Extension to more general domains will be addressed in the next section.

In order to give a mathematical meaning to the stochastic PDE (1.1) we integrate in time and space and use the initial and boundary conditions (see e.g. [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]). For a strict definition of solution, we say that u is a weak (analytic) solution of the equation (1.1) if it satisfies the following weak formulation:

D u(x, t) -u 0 (x) φ(x) dx = t 0 D -∆ 2 φ(x)u(x, s) + ∆φ(x)[f (u(x, s)) + u(x, s)] -φ(x)f (u(x, s) dxds + t 0 D φ(x)σ(u(x, s)) W (dx, ds), (2.1)
for all φ ∈ C 4 (D) with ∂φ ∂ν = ∂∆φ ∂ν = 0 on ∂D. Note that this u stands as a probabilistic "strong solution" since we keep the given space-time white noise and do not only deal with the distribution of the processes.

The random measure W (dx, ds) is the d-dimensional space-time white noise, that is induced by the one-dimensional (d + 1)-parameter (with d space variables and one time variable) Wiener process W defined as W := W (x, t) : t ∈ [0, T ], x ∈ D . For every t ≥ 0 we let F t := σ W (x, s) : s ≤ t, x ∈ D denote the filtration generated by W , cf. [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF][START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF][START_REF] Antonopoulou | Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains[END_REF]. Furthermore, we assume that the coefficient σ : R → R is a Lipschitz function and satisfies the following growth condition for some α ∈ (0, 1] and C > 0: i . We set ǫ 0 (x) := 1 √ π , and for any positive integer j we define ǫ j (x) := 2 π cos(jx). Finally for k

|σ(x)| ≤ C(1 + |x| α ), ∀x ∈ R.
= (k i ) ∈ N d and x ∈ D let ǫ k (x) := i ǫ i (x i ). Then (ǫ k , k ∈ N d
) is an orthonormal basis of L 2 (D) consisting on eigenfunctions of T corresponding to the eigenvalues -λ 2 k -λ k where λ k = k 2 . Of course, ǫ 0 is related to the null eigenvalue. Let S(t) := e (-∆ 2 +∆)t be the semi-group generated by the operator T ; if

u := k (u, ǫ k ) ǫ k then T u = k -(λ 2 k + λ k )(u, ǫ k ) L 2 (D) ǫ k ,
and (see e.g. [START_REF] Da Prato | Stochastic Cahn-Hilliard equation[END_REF][START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]) the convolution semigroup is defined by

S(t)U (x) := k e -(λ 2 k +λ k )t (U, ǫ k ) L 2 (D) ǫ k (x),
for any U in L 2 (D) with the associated Green's function given by

(2.2) G(x, y, t) = k e -(λ 2 k +λ k )t ǫ k (x) ǫ k (y)
for t > 0, x, y ∈ D. Using the Definition 1.3 of [START_REF] Eidelman | Parabolic Bounary Value Problems[END_REF], we deduce that T = -∆ 2 + ∆ is uniformly strongly parabolic in the sense of Petrovskȋı. Thus, as proved in [START_REF] Eidelman | Investigation of the green matrix for homogeneous para-bolic boundary value problem[END_REF], the following upper estimates of the Green function G and its various derivatives hold true. Notice that they are similar to those of the Green's function used in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] for the operator -∆ 2 .

Lemma 2.1. Let G be the Green's function defined by (2.2). Then there exist positive constants c 1 and c 2 such that for any t ∈ (0, T ], any x, y ∈ D and any multiindex k

= (k i , i = 1, • • • , d) with |k| = d i=1 k i ∈ {1, 2}, the next inequalities are satisfied: |G(x, y, t)| ≤ c 1 t -d 4 exp -c 2 |x -y| 4 3 t -1 3 , (2.3) |∂ k x G(x, y, t -s)| ≤ c 1 t -d+|k| 4 exp -c 2 |x -y| 4 3 t -1 3 , (2.4) |∂ t G(x, y, t -s)| ≤ c 1 t -d+4 4 exp -c 2 |x -y| 4 3 t -1 3 . (2.5)
Furthermore, given any c > 0 there exists a positive constant C(c) such that (2.6)

R d exp -c|x| 4 3 t -1 3 dx = C(c)t d 4 . For x ∈ D, t > s ≥ 0, set (2.7) h(x, t, s) = -c 2 |x| 4 3 (t -s) -1 3 .
The following lemma gathers several estimates for integrals of space (respectively time) increments of G. Note once more that the results are the same as those of Lemma 1.8 in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] and are deduced from the explicit formulation (2.2) of G by using similar arguments. Lemma 2.2. Let G be the Green's function defined by (2.2). Given positive constants γ, γ ′ with γ < (4 -d), γ ≤ 2 and γ ′ < 1 -d 4 , there exists a constant C > 0 such that for any t > s ≥ 0 and any x, y ∈ D the next estimates hold true:

t 0 D |G(x, z, t -r) -G(y, z, t -r)| 2 dzdr ≤ C|x -y| γ , (2.8) s 0 D |G(x, z, t -r) -G(x, z, s -r)| 2 dzdr ≤ C|t -s| γ ′ , (2.9) t s D |G(x, z, t -r)| 2 dzdr ≤ C|t -s| γ ′ . (2.10) 2.3. Integral representation.
Using the Green's function, we can present the solution of equation (2.1) in an integral form for any x ∈ D and t ∈ [0, T ], that is the following mild solution:

u(x, t) = D u 0 (y)G(x, y, t) dy + t 0 D ∆G(x, y, t -s) -G(x, y, t -s) f (u(y, s)) dyds + t 0 D G(x, y, t -s)σ(u(y, s)) W (dy, ds). (2.11)
Application of the inequality (2.6) and Hölder's inequality lead to the following bound for the term involving the initial condition.

Lemma 2.3. Let G(x, y, t) be the Green's function defined by (2.2). For every 1 ≤ q < ∞ and T > 0 there exists a constant C := C(T, q) such that (2.12) sup

t∈[0,T ] G t u 0 q ≤ C u 0 q ,
where G 0 = Id and G t u 0 is defined for t > 0 by

(2.13) G t u 0 (x) := D u 0 (y)G(x, y, t) dy.
2.4. Truncated equation. In order to prove the existence of the solution u to (2.11), as a first step we consider an appropriated cut-off SPDE, cf. [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]. Let

χ n ∈ C 1 (R, R + ) be a cut-off function satisfying |χ n | ≤ 1, |χ ′ n | ≤ 2 for any n > 0 and χ n (x) = 1 if |x| ≤ n, 0 if |x| ≥ n + 1.
For fixed n > 0, x ∈ D, t ∈ [0, T ] and q ∈ [3, +∞), we consider the following cut-off SPDE:

u n (x, t) = D u 0 (y)G(x, y, t) dy + t 0 D ∆G(x, y, t -s) -G(x, y, t -s) χ n ( u n (•, s) q ) f (u n (y, s)) dyds + t 0 D G(x, y, t -s) χ n ( u n (•, s) q ) σ(u n (y, s)) W (dy, ds). (2.14)
In this section we suppose that σ satisfies (1.2) with α ∈ (0, 1], and that the following condition (C α ) holds: Condition (C α ) One of the following properties (i) or (ii) is satisfied:

(i) d = 1, 2 and q ∈ [3, +∞), or d = 3 and q ∈ [6, +∞), (ii) d = 3 and q ∈ 3 ∨ [6(1 -α)], 6 .
We show the existence and uniqueness of the solution to the SPDE (2.14) in the set H T defined by

H T := u(•, t) ∈ L q (D) for t ∈ [0, T ] : u is (F t )-adapted and u H T < ∞ , where (2.15) u H T := sup t∈[0,T ] E u(•, t) β q 1 β , for β ∈ ( q α , ∞) if Condition (C α )(i) holds, or for β ∈ ( q α , 6q (6-q) ) if Condition (C α )(ii) holds.
Remark 2.4. (i) In order to present our results in a more general framework we consider the growth condition (1.2) with α ∈ (0, 1]; the upper bound of α will be restricted in the sequel.

(ii) Note that if d = 3, the inequality 6(1 -α) < q < 6 implies that the interval ( q α , 6q (6-q) ) is not empty.

Theorem 2.5. Let σ be globally Lipschitz and satisfy the assumption

(1.2) with α ∈ (0, 1], let u 0 ∈ L q (D) and let Condition (C α ) hold. Furthermore, let β ∈ ( q α , +∞) if Condition (C α )(i) is satisfied (resp. β ∈ ( q α , 6q 6-q ) if Condition (C α )(ii) is satisfied).
Then the SPDE (2.14) admits a unique solution u n in every time interval [0, T ] and u n ∈ H T .

Proof. We define the operators M and L on H T by

M(u)(x, t) := t 0 D [∆G(x, y, t -s) -G(x, y, t -s)]χ n ( u(•, s) q )f (u(y, s)) dyds, (2.16) L(u)(x, t) := t 0 D G(x, y, t -s) χ n ( u(•, s) q ) σ(u(y, s)) W (dy, ds), (2.17)
with u ∈ H T . Then obviously (2.14) is written as

(2.18) u n (x, t) = D u 0 (y)G(x, y, t) dy + M(u n )(x, t) + L(u n )(x, t).
We claim that if T > 0 is sufficiently small, then the operator M + L is a contraction mapping from H T to H T . First we consider the mapping M. For an arbitrary function u ∈ H T , by Minkowski's inequality, (2.3) and (2.4) we have

M(u)(•, t) q ≤ c 1 t 0 (t -s) -d+2 4 × D D exp -c 2 |x -y| 4 3 (t -s) 1 3 χ n ( u(•, s) q )f (u(y, s)) dy q dx 1 q ds.
By using Young's inequality with exponents ρ and

r in [1, ∞) such that 1 ρ + 1 r = 1 q + 1, we obtain for h(x, t, s) := -c 2 |x| 4 3 (t-s) 1 3
defined by (2.7)

M(u)(•, t) q ≤ c 1 t 0 (t -s) -d+2 4 exp(h(•, t, s)) r χ n ( u(•, s) q )f (u(., s)) ρ ds ≤ C t 0 (t -s) -d+2 4 + d 4r χ n ( u(•, s) q )f (u(., s)) ρ ds, (2.19)
where the last inequality follows from (2.6). We choose

ρ = q 3 ≥ 1 since q ∈ [3, ∞) and r ∈ [1, ∞) satisfying 1 ρ + 1 r = 1 q + 1 . The function f is a polynomial of degree 3, so, for n ≥ 1 we have (2.20) χ n ( u(•, s) q )f (u(., s)) q 3 ≤ Cn 3 .
Since q > d we deduce that -d+2 4 + d 4r > -1; hence the above inequalities yield

(2.21) M(u) H T = sup t∈[0,T ] E M(u(•, t)) β q 1 β ≤ C n 3 T -d 4 + d 4r + 1 2 .
Therefore, M is a mapping from H T to H T . Moreover, for arbitrary u and v in H T such that u(•, s) q ≤ v(•, s) q , we shall prove that for q ∈ [3, ∞) and ρ = q 3 the next inequality holds true:

(2.22) χ n ( u(•, s) q )f (u(•, s)) -χ n ( v(•, s) q )f (v(•, s)) ρ ≤ C n 3 u(•, s) -v(•, s) q .
Indeed, we have

χ n ( u(•, s) q )f (u(•, s)) -χ n ( v(•, s) q )f (v(•, s)) ρ ≤ χ n ( u(•, s) q ) -χ n ( v(•, s) q ) f (u(•, s)) ρ + χ n ( v(•, s) q ) f (u(•, s)) -f (v(•, s)) ρ . Note that v(•, s) q ≥ u(•, s) q and χ n ( u(•, s) q ) -χ n ( v(•, s) q ) = 0 if u(•, s) q ≥ n + 1.
Hence, for n ≥ 1 and ρ = q 3 we obtain the existence of C > 0 such that for all n ≥ 1

χ n ( u(•, s) q ) -χ n ( v(•, s) q ) f (u(•, s)) ρ ≤ C 1 + (n + 1) 3 u(•, s) q -v(•, s) q ≤ C n 3 u(•, s) -v(•, s) q .
Using again the inequality v(•, s) q ≥ u(•, s) q , then for any n ≥ 1 we deduce the existence of C > 0 such that

χ n ( v(•, s) q ) f (u(•, s)) -f (v(•, s)) ρ ≤ Cχ n ( v(•, s) q ) 1 + v(•, s) 2 q + u(•, s) 2 q u(•, s) -v(•, s) q ≤ Cn 2 u(•, s) -v(•, s) q .
holds for any n ≥ 1. Thus, (2.22) holds true. Inequality (2.22) and an argument similar to that used for proving (2.19) yield

M(u)(•, t) -M(v)(•, t) q ≤ t 0 |t -s| -d+2 4 + d 4r χ n ( u(•, s) q )f (u(•, s)) -χ n ( v(•, s) q )f (v(•, s)) ρ ds ≤ C n 3 t 0 |t -s| -d+2 4 + d 4r u(•, s) -v(•, s) q ds. (2.23)
Therefore, by inequality (2.23) and Hölder's inequality, since β ∈ [q, ∞), we deduce

M(u) -M(v) H T ≤ C n 3 sup t∈[0,T ] E t 0 |t -s| -d+2 4 + d 4r u(•, s) -v(•, s) q ds β 1/β ≤ C n 3 T (-d+2 4 + d 4r +1) sup t∈[0,T ] E u(•, t) -v(•, t) q ≤ C n 3 T -d+2 4 + d 4r +1 u -v H T . (2.24)
Obviously, by (2.21) and (2.24) it follows that for fixed n ≥ 1 and T > 0, the map M is Lipschitz from H T to H T .

For the mapping L defined in terms of a stochastic integral, at first notice that since α ∈ (0, 1], the inequality β > q α yields β ∈ (q, ∞). Thus the Hölder, Burkholder and Minkowski inequalities, and the growth condition (1.2) on σ yield

E L(u(•, t)) β q ≤ C D E|L(u(x, t)| β dx ≤ C D E t 0 D G(x, y, t -s) χ n ( u(•, s) q ) σ(u(y, s))| 2 dyds β/2 dx ≤ C E t 0 D G 2 (•, y, t -s) χ n ( u(•, s) q ) 1 + |u(y, s)| 2α dy β/2 ds β/2
.

Since β ∈ ( q α , ∞), we have 2α q > 2 β and we may choose r ∈ (1, ∞) such that 2α q + 1 r = 2 β + 1. Let once more h(x, t, s) be defined by (2.7); Young's inequality and (2.3) imply

E L(u(•, t) β q ≤C E t 0 (t -s) -d 2 exp(h(•, t, s)) rχ n ( u(•, s) q ) [1 + |u(•, s)| 2α q 2α ds β/2 ≤C E t 0 (t -s) -d 2 + d 4r (1 + n 2α )ds β/2
.

Note that the inequalities d < 4, q ≥ 3, α ∈ (0, 1] and β > q α yield -d 2 + d 4r > -1. Hence, for any u ∈ H T we obtain the existence of C > 0 such that

(2.25) L(u) H T ≤ C(1 + n α )T 1 2 [-d 2 + d 4r +1]
holds for every n ≥ 1, and therefore, L is also a mapping from H T to H T . Recall that σ is Lipschitz. Therefore, an argument similar to that used to prove (2.22) with q instead of ρ shows that for u, v ∈ H T , we have

(2.26) δ(u, v, •, s) q ≤ C(1 + n α ) u(., s) -v(•, s) q , for δ(u, v, y, s) := χ n ( u(•, s) q )σ(u(y, s)) -χ n ( v(•, s) q )σ(v(y, s)).
Recall that α ∈ (0, 1] and β > q α , so that β > q; thus the Hölder, Burkholder-Davies-Gundy and Minkowski inequalities together with (2.3) 

yield for u, v in H T E L(u)(•, s)-L(v)(•, s) β q ≤ C D E|L(u)(•, s) -L(v)(•, s)| β dx ≤ C D t 0 D G 2 (x, y, t -s) δ(u, v, y, s) 2 dyds β/2 dx ≤ CE t 0 (t -s) -d 2 exp(h(•, t, s)) * δ 2 (u, v, •, s) β/2 ds β/2
.

The inequality β > q implies the existence of

r 2 ∈ (1, ∞) such that 2 β + 1 = 2 q + 1 r 2 .
Using once more the assumptions on q, α and β in Condition (C α ), in particular the assumption β(6-q) < 6q for d = 3 and q ∈ [3, 6), we deduce -d 2 + d 4r 2 > -1. Thus Young's inequality and (2.26) imply

E L(u)(•, s) -L(v)(•, s) β q ≤ CE t 0 (t -s) -d 2 + d 4r 2 δ(u, v, •, s) q/2 ds β/2 ≤ C(1 + n αβ )T (-d 2 + d 4r 2 +1) β 2 sup E u(•, s) -v(•, s) β q : t ∈ [0, T ] ,
and therefore,

(2.27) L(u) -L(v) H T ≤ C (1 + n α ) T -d 4 + d 8r 2 + 1 2 u -v H T .
So, for fixed n and T > 0, the map L is also a Lipschitz mapping from H T to H T . The upper estimates (2.24) and (2.27) imply that the mapping M + L is Lipschitz from H T to H T with the Lipschitz constant bounded by

C(n, T ) := C n 3 T -d+2 4 + d 4r +1 + Cn α T -d 4 + d 8r 2 + 1 2 .
For fixed n ≥ 1, there exists T 0 (n) sufficiently small (which does not depend on u 0 ) such that C(n, T ) < 1 for T ≤ T 0 (n), so that M+L is a contraction mapping from the space H T into itself. Thus for T ≤ T 0 (n), the map M+L has a unique fixed point in the set u ∈ H T : u(•, 0) = u 0 . This implies that in [0, T ], for T ≤ T 0 (n), there exists a unique solution u n for the SPDE (2.14).

If T > T 0 (n), let ū0 (x) = u n (x, T 0 (n)) and W (t, x) = W (T 0 (n) + t, x); then Ẇ is a space-time white noise related to the filtration (F T 0 (n)+t , t ≥ 0) independent of F T 0 (n) . A similar argument proves the existence and uniqueness of the solution ūn to an equation similar to (2.14) with u 0 and W replaced by ū0 and W respectively. Hence, (2.14) has a unique solution u n on the interval [0, 2T 0 (n)], defined by u n (x, t) := ūn (x, t -T 0 (n)) for t ∈ [T 0 (n), 2T 0 (n)]. Since there exists N ≥ 1 such that N T 0 (n) ≥ T an easy induction argument concludes the proof.

2.5. Some bound for the stochastic integral. We shall prove moment estimates for the (space-time) uniform norm for L(u n ) which will be needed later.

We set

L(u n ) L ∞ := sup t∈[0,T ] sup x∈D |L(u n )(x, t)|.
Lemma 2.6. Let σ satisfy Condition (1.2) with α ∈ (0, 1], let Condition (C α ) hold, and let u n be the solution to the SPDE (2.14). Furthermore, suppose that q > 2αd 4-d . Then for any p ∈ [1, ∞) there exists a positive constant C p (T ) such that for every n ≥ 1, we have:

(2.28) E L(u n ) 2p L ∞ ≤ C p (T )n 2αp .
Proof. Since d < 4, α ∈ (0, 1] and q ∈ [3, ∞), we have q > 2α and may choose q ≤ q with q > (2α) ∨ 2αd 4-d . For t ∈ [0, T ], using the Burkholder-Davis-Gundy inequality, (2.3), the growth condition (1.2) on σ and Hölder's inequality with conjugate exponents q 2α and q q-2α , we obtain for any t ∈ [0, T ] and x ∈ D

E|L(u)(x, t)| 2p ≤ C p E t 0 D (t -s) -d 2 exp(h(•, t, s))χ n ( u n (•, s) q )[1 + |u n (y, s)| 2α ]dyds p ≤ C p E t 0 D (t -s) -d 2 exp(h(•, t, s)) q q-2α χ n ( u n (•, s) q )[1 + u n (y, s) q ] 2α ds p ≤ C p t 0 (t -s) -d 2 + d( q-2α) 4q n 2α ds p ≤ C p n 2αp ,
where as above we let h(x, t, s) be defined by (1.2). The last inequality holds provided that d 4 1 + 2α q > -1 which holds true since q ≥ q > 2αd 4-d ∨ (2α). Similar computations using (2.3), (2.4) and the Taylor formula imply that for x, ξ ∈ D and t ∈ [0, T ], we have for λ ∈ (0, 1), q ≤ q, p ∈ [1, ∞) and n ≥ 1:

E|L(u)(x, t) -L(u)(ξ, t)| 2p ≤ C p E t 0 D |G(x, y, t -s) -G(ξ, y, t -s)| 2 χ n ( u n (•, s) q ) × 1 + |u n (y, s)| 2α dy ds p (2.29) ≤C p |x -ξ| 2λp E t 0 (t -s) -(d+1)λ 2 (t -s) -d 2 (1-λ) χ n ( u n (•, s) q ) × exp(h(•, t, s)) q q-2α [1 + u n (•, s) q ] 2α ds p ≤C p |x -ξ| 2λp n 2αp t 0 (t -s) -d+λ 2 + d( q-2α) 4q ds p ≤C p (T )n 2αp |x -ξ| 2λp , (2.30) provided that -d+λ 2 + d(q-2α) 4q > -1, which holds true if 0 ≤ λ < 2 -d 2 ∧
1 and q > 2αd 4-d-2λ . Hence, for q > 2αd 4-d one can find λ ∈ (0, 1) small enough and q as above. Using again the Taylor formula, (2.3) and (2.5), we obtain, for 0 ≤ t ′ ≤ t ≤ T and µ ∈ [0, 1]

E|L(u)(x, t) -L(u)(x, t ′ )| 2p ≤ C p E t 0 D |G(x, y, t -s)| 2(1-µ) + |G(x, y, t ′ -s)| 2(1-µ) × |G(x, y, t -s) -G(x, y, t ′ )| 2µ χ n ( u n (•, s) q )[1 + |u n (y, s)| 2α ]dyds p ≤|t -t ′ | 2µp E t 0 (t -s) -2µ( d 4 +1)-(1-µ) d 2 exp(h(•, t, s)) q q-2α × 1 + u n (•, s) 2α q χ n ( u n (•, s) q )ds p ≤C p (T )|t -t ′ | 2µp n 2αp , (2.31)
where the last inequality holds true if -d 2 -2µ + d 4 1 -2α q > -1; this is similar to the previous requirement used to prove (2.30) replacing λ 2 by 2µ. Thus, since q > 2αd 4-d , we may find q ∈ ( 2αd 4-d , q] and µ ∈ (0, 1) which satisfy this constraint, and such that (2.31) holds for any p ∈ [1, +∞).

The upper estimates (2.30), (2.31) imply the existence of some positive constants λ and µ, and given p ∈ [1, ∞) of some positive constant C p (T ) (independent of n) such that for x, x ′ ∈ D and t, t ′ ∈ [0, T ], we have for every n ≥ 1

E|L(u)(x, t) -L(u)(x ′ , t ′ )| 2p ≤ C p (T ) |x -ξ| 2λp + |t -t ′ | 2µp n 2αp .
Therefore, the Garsia-Rodemich-Rumsey Lemma yields the upper estimate (2.28).

2.6. Galerkin approximation. In this section we need some stronger integrability condition on the initial condition u 0 , which is required to be in L 4 (D). More precisely, we suppose that the following condition ( Cα ) is satisfied.

Condition ( Cα ) One of the following properties is satisfied:

(i) Either d = 1, 2 and q ∈ [4, ∞), or d = 3 and q ∈ [6, ∞);

(ii) d = 3 and q ≥ 4 is such that q ∈ 6(1 -α) ∨ (6α), 6 .

Note that if Condition ( Cα ) is satisfied, we have • 4 ≤ C • q for some positive constant C. For any n ≥ 1, we define v n := u n -L(u n ). Then, formally, v n satisfies the following equation:

∂ t v n + [∆ 2 -∆]v n -(∆ -Id) χ n ( v n + L(u n ) q )f (v n + L(u n ) = 0 in D × [0, T ), (2.32) v n (x, 0) = u 0 (x) in D, ∂v n ∂ν = ∂∆v n ∂ν = 0 on ∂D × [0, T ).
For a strict definition of solution, we say that v n is a weak solution of the above equation (2.32) if for all φ ∈ C 4 (D) with ∂φ ∂ν = ∂∆φ ∂ν = 0 on ∂D, we have:

D v n (x, t) -u 0 (x) φ(x) dx = t 0 D -∆ 2 + ∆ φ(x) v n (x, s) + ∆φ(x) -φ(x) χ n ( v n + L(u n ) q )f (v n + L(u n )) dxds.
Using the Green's function G defined by (2.2), we deduce the integral form of this equation:

v n (x, t) = D u 0 (y)G(x, y, t) dy + t 0 D ∆G(x, y, t -s) -G(x, y, t -s) × χ n ( v n + L(u n ) q )f v n (y, s) + L(u n )(y, s) dyds. (2.33)
We will use the Galerkin method to prove the existence of the solution v n for the equation (2.32). Let us denote by 0 = λ

0 < λ 1 ≤ λ 2 ≤ • • • the eigenvalues of Neumann Laplacian operator inducing {w i } ∞ i=0 as an orthonormal basis of L 2 (D) of eigenfunctions, i.e., (w i , w j ) L 2 (D) = δ ij and (2.34) -λ i w i = ∆w i in D, ∂w i ∂ν = 0 on ∂D for i = 0, 1, 2, • • • . Let P m denote the orthogonal projection from L 2 (D) onto span{w 0 , w 1 , • • • , w m }. For every m = 0, 1, 2, • • • we consider the function v m n v m n (x, t) = m i=0 ρ m i (t)w i (x),
defined by the Galerkin ansatz, where

(2.35) ∂ ∂t v m n + ∆ 2 -∆ v m n -∆ -Id χ n ( v m n + L(u n ) q ) P m f (v m n + L(u n )) = 0, v n m (x, 0) = P m (u 0 ) in D, ∂v m n ∂ν = ∂∆v m n ∂ν = 0 on ∂D.
This yields an initial value problem of ODE satisfied by ρ m i (t) for i = 0, 1, • • • , m. By standard arguments of ODE, this initial value problem has a local solution. We will show that a global solution exists.

Multiplying by v m n both sides of (2.35), we obtain 1 2

d dt v m n (•, t) 2 2 + ∆v m n (., t) 2 2 + ∇v m n (•, t) 2 2 = χ n ( v m n (•, t) + L(u n )(•, t) q ) D f v m n (x, t) + L(u n )(x, t) ∆v m n (x, t) -v m n (x, t) dx = 3 i=1 T i (t), (2.36)
where

T 1 (t) = χ n ( v m n (•, t) + L(u n )(•, t) q ) D f v m n (x, t) + L(u n )(x, t) -f v n (x, t) × ∆v m n (x, t) -v m n (x, t) dx, T 2 (t) = χ n ( v m n (•, t) + L(u n )(•, t) q ) D f v m n (x, t) ∆v m n (x, t)dx, T 3 (t) = -χ n ( v m n (•, t) + L(u n )(•, t) q ) D f v m n (x, t) v m n (x, t)dx.
Since f is a polynomial of degree 3, then we have for x, y ∈ R:

|f (x + y) -f (x)| ≤ c|y|(1 + x 2 + y 2 ).
Thus by Cauchy-Schwarz and Young inequality we obtain for any ε > 0

T 1 (t) ≤ Cχ n ( v m n (•) + L(u n )(•, t) q ) D |L(u n )(x, t)| 1 + |v m n (x, t)| 2 + |L(u n )(x, t)| 2 × |∆v m n (x, t)| + |v m n (x, t)| dx ≤ C χ n ( v m n (•, t) + L(u n )(•, t) q ) L(u n )(•, t) ∞ 1 + v m n (•, t) 2 2 + L(u n )(•, t) 2 2 × ∆v m n (•, t) 2 + v m n (•, t) 2 ≤ ε ∆v m n (•, t) 2 2 + v m n (•, t) 2 2 + C ε χ n ( v m n (•, t) + L(u n )(•, t) q ) L(u n )(•, t) 2 ∞ 1 + v m n (•, t) 4 4 + L(u n )(•, t) 4 4 .
Observe that f (x) = ax 3 + g(x), where a > 0 and g is a polynomial of degree 2. Hence, f ′ (x) = 3ax 2 + 2bx + c for some real constants b, c, and f ′ (x) ≥ 2ax 2 -c for some non-negative constant c. So, an integration by parts yields for any ε > 0

T 2 (t) = -χ n ( v m n (•, t) + L(u n )(•, t) q ) D f ′ (v m n (x, t))|∇v m n (x, t)| 2 dx ≤ Cχ n ( v m n (•, t) + L(u n )(•, t) q ) D -2a|v m n (x, t)| 2 |∇v m n (x, t)| 2 + c|∇v m n (x, t)| 2 dx ≤ -Cχ n ( v m n (•, t) + L(u n )(•, t) q ) D v m n (x, t)∆v m n (x, t)dx ≤ ε ∆v m n (•, t) 2 2 + C ε χ n ( v m n (•, t) + L(u n )(•, t) q ) v m n (•, t) 2 2 .
Finally, since xf (x) ≥ 7 8 ax 4 -C with a, C > 0, we obtain

T 3 (t) ≤ χ n ( v m n (•, t) + L(u n )(•, t) q ) D - 7 8 a|v m n (x, t)| 4 dx + C|D| .
The above upper estimates of T i (t), i = 1, 2, 3, imply that for ε > 0 small enough, 1 2

d dt v m n (•, t) 2 2 + 1 2 ∆v m n (•, t) 2 2 + ∇v m n (•, t) 2 2 ≤ Cχ n ( v m n (•, t) + L(u n )(., t) q ) × L(u n (•, t)) 2 ∞ 1 + v m n (•, t) 4 4 + L(u n (•, t)) 4 4 + v m n (•, t) 2 2 + 1 . (2.37) Since v m n (•, 0) 2 = P m u 0 2 ≤ u 0 2
, integrating (2.37) from 0 to t ∈ (0, T ], and using Hölder's and Young's inequality, we obtain

v m n (•, t) 2 2 + t 0 ∆v m n (•, s) 2 2 ds ≤ u 0 2 2 + CT 1 + L(u n ) 6 L ∞ + C 1 + L(u n ) 2 L ∞ t 0 χ n ( v m n (•, s) + L(u n )(•, s) q ) v m n (•, s) 4 4 + 1 ds. (2.38)
Since we have imposed q ∈ [4, ∞), if the cut-off function χ n applied to the . q norm of some function U is not zero, we deduce that U 4 ≤ C(n + 1) ≤ Cn. Recall that |χ n | ≤ 1; thus the triangular inequality yields

t 0 χ n ( v m n (•, s) + L(u n )(•, s) q ) v m n (•, s) 4 4 + 1 ds ≤ CT 1 + L(u n ) 4 L ∞ + C t 0 χ n ( v m n (•, s) + L(u n )(•, s) q ) v m n (•, s) + L(u n )(•, s) 4 4 ds ≤CT 1 + L(u n ) 4 L ∞ + n 4 . (2.39)
The upper estimates (2.38) and (2.39) imply that sup

t∈[0,T ] v m n (•, t) 2 2 ≤ u 0 2 2 + C 1 + L(u n ) 6 L ∞ + Cn 4 T 1 + L(u n ) 4 L ∞ , T 0 [ v m n (•, t) 2 2 + ∆v m n (•, t) 2 2 ]dt ≤ (T + 1) u 0 2 + C(T 2 + 1)(1 + L(u n ) 6 L ∞ ) + Cn 4 (T 2 + 1)(1 + L(u n ) 2 L ∞ ). (2.40) Since the H 2 (D)-norm is equivalent to D |∆u(x)| 2 + |u(x)| 2 dx 1 2
under the boundary condition ∂u ∂ν = ∂∆u ∂ν = 0 on ∂D, the right-hand side of (2.40) depends on n but is independent of the index m. Thus, a standard weak compactness argument proves that for fixed n, as m → ∞, a subsequence of (v m n , m ≥ 1) converges weakly in L 2 (0, T ; H 2 (D)) to a solution v n of (2.32) with homogeneous Neumann boundary conditions.

Let (ǫ k ) denote the orthonormal basis defined in Section 2.2 and set (2.41)

B(u 0 ) := 1 2 k∈N d [λ k + 1] -1 2 (u 0 , ǫ k ) L 2 (D) ǫ k 2 2 = 1 2 k∈N d [λ k + 1] -1 (u 0 , ǫ k ) 2 L 2 (D) .
Note that if D is the unitary cube, we have

B(u 0 ) ≤ 1 2 u 0 2 2 .
The following lemma provides estimates of the L 4 (D)-norm of u n . Lemma 2.7. Let σ be Lipschitz and satisfy the sub linearity condition (1.2) with α ∈ (0, 1], and let u 0 ∈ L q (D) where q satisfies Condition ( Cα ). Let u n be the solution to the SPDE (2.14) and B(u 0 ) be defined by (2.41). Then there exists a constant C := C(t, D) independent of the index n satisfying

(2.42) t 0 χ n ( u n (•, s) q ) u n (•, s) 4 4 ds ≤ C 1 + B(u 0 ) + t 0 χ n ( u n (•, s) q ) L(u n )(•, s) 4 4 ds .
Proof. Using the orthonormal basis (ǫ k ) defined at the beginning of Section 2.2, we write v n ∈ L 2 (D) as

v n (x, t) = k∈N d ρ k (t)ǫ k (x).
To ease notation, for x ∈ D and s ∈ [0, T ] we set

Q(x, s) := χ n ( v n (•, s) + L(u n )(•, s) q )f (u n (x, s)).
Then the equation (2.32) is written as follows (2.43)

∂ t v n + (-∆ + Id)(-∆)v n + (-∆ + Id)Q = 0,
with the boundary conditions v n (x, 0) = u 0 (x) in D, and ∂vn ∂ν = ∂∆vn ∂ν = 0 on ∂D × [0, T ). We set A = -∆ + Id, apply A -1 to (2.43) and take the L 2 inner product with v n (•, t). The L 2 -orthogonality of the eigenfunctions ǫ k of ∆ gives

k∈N d [λ k + 1] -1 ρ k (t)∂ t ρ k (t) + k∈N d λ k ρ k (t) 2 + Q(•, t), v n (•, t) = 0.
Integrating this identity from 0 to t yields

t 0 Q(•, s), v n (•, s) ds = k∈N d 1 2 [λ k + 1] -1 ρ k (0) 2 - k∈N d [λ k + 1] -1 ρ k (t) 2 + t 0 λ k ρ k (s) 2 ds .
Since λ k ≥ 0 for all k, we obtain (2.44)

t 0 Q(•, s), v n (•, s)) L 2 ds ≤ 1 2 k∈N d [λ k + 1] -1 ρ 2 k (0) = B(u 0 ).
Furthermore, f is a polynomial of degree 3; therefore, f (u n ) ≥ 4 5 u 4 n -c for some non negative constant c. This yields (2.44) in the previous identity we obtain

t 0 χ n ( u n (•, s) q ) u n (•, s) 4 4 ds ≤ C 1 + t 0 D χ n ( u n (•, s) q )f (u n (•, s))u n (•, s)dxds . Since Q = χ n ( v n + L(u n ) q )f (u n ) and u n = L(u n ) + v n , using
t 0 χ n ( u n (•, s) q ) u n (•, s) 4 4 ds ≤ C 1 + t 0 D χ n ( u n (•, s) q )f (u n (•, s))L(u n (•, s)) dxds + B(u 0 ) . (2.45)
Using once more the fact that f (u n ) is a third degree polynomial, Young's inequality implies that for any ǫ > 0 and s ∈ [0, T ],

D χ n ( u n (•, s) q )f (u n (x, s))L(u n (x, s)) dx ≤ ǫ D χ n ( u n (•, s) q )|f (u n (., s))| 4/3 dx + C ǫ D χ n ( u n (•, s) q )|L(u n (x, s))| 4 dx ≤ Cǫχ n ( u n (•, s) q ) u n (•, s) 4 4 + C + C ǫ χ n ( u n (•, s) q ) L(u n (•, s)) 4 4 .
Consequently, plugging this upper estimate in (2.45) and choosing ǫ small enough, we complete the proof of (2.42).

2.7.

Existence of a global solution. The Sobolev embedding theorem implies that for d = 1, 2, 3, H 2 (D) ⊂ L 4 (D). Hence, computations similar to that used to prove (2.38) with the weak H 2 (D)-limit v n of v m n taken instead of v m n , show that for any ǫ > 0 we have

v n (•, t) 2 2 + t 0 ∆v n (•, s) 2 2 ds ≤ u 0 2 2 + C t 0 T1 (s)ds + ǫ t 0 ∆v n (•, s) 2 2 ds + C(1 + ǫ -1 ) T + t 0 χ n ( v n (•, s) + L(u n )(•, s)) q ) v n (•, s) 4 4 ds ,
where the Cauchy-Schwarz and Young inequalities yield for any ǫ > 0

T1 (s) ≤ǫ ∆v n (•, s) 2 2 + v n (•, s) 2 2 + C ǫ χ n ( v n (•, s) + L(u n )(•, s)) q ) T1 (s), for T1 (s) defined by T1 (s) := 
D |L(u n (x, s))| 2 1 + |v n (x, s)| 4 + |L(u n (x, s))| 4 dx ≤C 1 + L(u n (•, s)) 6 ∞ + L(u n (•, s)) 2 ∞ v n (•, s) 4 4 . Recall that u n = v n + L(u n ).
Choosing ǫ small enough, using the Gronwall Lemma and Lemma 2.7, we deduce that for t ∈ [0, T ] there exists a positive constant C(T ) such that

v n (•, t) 2 2 + 1 2 t 0 ∆v n (•, s) 2 2 ds ≤ C(T ) u 0 2 2 + 1 + t 0 χ n ( u n (•, s) q ) 1 + L(u n (•, s)) 6 6 + L(u n ) 2 L ∞ v n (•, s) 4 4 ds ≤ C(T ) u 0 2 2 + 1 + L(u n ) 6 L ∞ + 1 + L(u n ) 2 L ∞ t 0 χ n ( u n (•, s) q ) u n (•, s) 4 4 ds ≤ C(T ) 1 + u 0 2 2 + L(u n ) 6 L ∞ + (1 + L(u n ) 2 L ∞ B(u 0 ) . (2.46) holds for every n ≥ 1.
The following result is similar to (2.33) in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], but the proof is different. Note that a gap in this reference has been fixed and that the proof is simpler using the Sobolev embedding Theorem and (2.28); it does not rely any more on an interpolation argument. As pointed out in [START_REF] Antonopoulou | Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains[END_REF], where stochastic existence for the Cahn-Hilliard equation has been proven for bounded domains of general geometry, the important property of the domain's boundary is being Lipschitz in dimensions 1, 2, 3. This fact together with the above H 2 -norm estimate (2.46) allows us to use easier L ∞ -norm arguments.

Lemma 2.8. Let σ be Lipschitz and satisfy the sub linear growth condition (1.2) with α ∈ (0, 1]. Let u 0 ∈ L q (D) where q satisfies Condition ( Cα ), and let u n be the solution to the SPDE (2.14). Then for any β ∈ (1, ∞) and a > 0 such that aβ ∈ [2, ∞), there exists a positive constant C(T ) such that for every n ≥ 1 we have

E T 0 u n (•, t) a q dt β ≤ C(T ) 1 + u 0 aβ 2 + n 3aαβ + B(u 0 ) aβ/2 (1 + n aαβ ) ≤ C(T ) 1 + u 0 aβ 2 + B(u 0 ) 3aβ/2 + n 3aαβ . (2.47) Proof. For any integer k ≥ 1, set u H k (D) := |a|≤k D a x u 2 L 2 (D) 1/2
. Using the Sobolev inequality (see e.g. [START_REF] Brenner | The Mathematical Theory of Finite Element Methods[END_REF], Theorem 1.4.6), we deduce the existence of a positive constant C such that for every u ∈ H k (D), u ∞ ≤ C u H k (D) , provided that D is a bounded domain with Lipschitz boundary and k is an integer with

k > d/2. Therefore, if D is a unit cube of R d , d = 1, 2, 3, we have u ∞ ≤ C u H 2 (D) .
Hence, given any a ∈ (0, +∞) and β ∈ [1, +∞) with aβ ≥ 2, since u n = v n + L(u n ), and D is bounded and of Lipschitz boundary, then there exists a positive constant C depending on T , |D|, a and β, such that for every integer n ≥ 1:

T 0 u n (•, t) a q dt β ≤ C sup t∈[0,T ] v n (•, t) aβ q + sup t∈[0,T ] L(u n )(•, t) aβ q ≤ C sup t∈[0,T ] v n (•, t) aβ ∞ + L(u n ) aβ L ∞ .
Thus, the inequalities (2.28) and (2.46) yield the existence of C as above such that

E T 0 u n (., t) a q dt β ≤C 1 + u(0) aβ 2 + B(u 0 ) aβ/2 1 + E L(u n ) aβ L ∞ + E L(u n ) 3aβ L ∞ + C(T )E L(u n ) aβ L ∞
≤C 1 + u(0) aβ 2 + B(u 0 ) aβ/2 + B(u 0 ) aβ/2 n αaβ + n 3αaβ . This proves the first upper estimate in (2.47). The second one is a straightforward consequence of the Young inequality applied with the conjugate exponents 3 and 3/2; this completes the proof.

The above lemma provides an upper estimate of moments of the q-norm of M(u n ). Lemma 2.9. Let σ be Lipschitz and satisfy the sub linearity condition (1.2) with α ∈ (0, 1], u 0 ∈ L q (D) where q satisfies Condition ( Cα ). Let u n be the solution of the SPDE (2.14) and let β ∈ [ 2q q-d , ∞). Then for M(u n ) defined by (2.16) there exists a positive constant C := C(T ) such that for and every n ≥ 1 the following estimate holds:

(2.48) E sup 0≤t≤T M(u n )(•, t) β q ≤ C 1 + u 0 3β 2 + B(u 0 ) 9β/4 + n 9αβ .
Proof. Computations similar to that proving (2.19) yield for

1 ρ + 1 r = 1 q + 1 M(u n )(•, t) q ≤ C t 0 (t -s) -d+2 4 + d 4r χ n ( u n (•, s) q )f (u n (y, s)) ρ ds.
Since f is a third degree polynomial, choosing ρ = q 3 as before, we deduce

χ n ( u n (•, s) q )f (u n (y, s)) q 3 ≤ C 1 + u n (•, s) 3 q .
Thus for ρ = q 3 and r such that 2 q + 1 r = 1, we obtain for any t ∈ [0, T ]:

M(u n )(•, t) q ≤ C t 0 (t -s) -d+2 4 + d 4r 1 + u n (•, s) 3 q ds.
Let γ ∈ (1, ∞) be such that (-d+2 4 + d 4r )γ > -1, and γ ′ be the conjugate exponent. Then γ ′ > 2q q-d and Hölder's inequality yields the existence of a positive constant C such that

M(u n )(•, t) q ≤ C(T ) 1 + t 0 u n (•, s) 3γ ′ q ds 1 γ ′ .
The upper estimate (2.47) completes the proof. Indeed, for β > 2q q-d we can choose γ and γ ′ as above with β γ ′ > 1; this clearly yields 3β ≥ 2. Then Hölder's inequality yields (2.48) for

γ ′ β ∈ [1, ∞).
In the above arguments; we only assumed that the exponent α appearing in the growth condition (1.2) was in the interval (0, 1], including the case of a usual linear growth condition. However, to prove that equation (2.11) has a unique global solution, we must suppose that σ has a sub linear growth/ More precisely, we have to assume that α ∈ (0, 1/9).

For every integer n ≥ 1 let us define the stopping time T n as follows (2.49)

T n := inf t ≥ 0 : u n (•, t) q ≥ n .
Then for every integer n ≥ 1, the process u(•, t) = u n (•, t) is a solution of (2.11) on the interval [0, T n ∧ T ]. Assuming that α ∈ (0, 1 9 ), we will show that lim n→∞ T n = ∞ a.s., which will enable us to solve (2.11) on [0, T ] a.s. for any fixed T .

Theorem 2.10. Suppose that σ is globally Lipschitz and satisfies the sub-linearity condition (1.2) with α ∈ (0, 1 9 ). Let u 0 ∈ L q (D) where q satisfies Condition ( Cα ). Then for any T > 0 there exists a unique solution u to the SPDE (2.11) in the time interval [0, T ] (or equivalently if T n is defined by (2.49), T n → ∞ a.s. as n → ∞); this solution belongs to L ∞ [0, T ]; L q (D) a.s. Furthermore, given any β ∈ 2q q-d , ∞ , we have

E 1 {T ≤Tn} sup t≤T u(., t) β q ≤ C(1 + n 9αβ ).
Proof. The sequence T n is clearly non decreasing. Fix T > 0; by the definition of T n , on the set {T n < T } we have for any

β ∈ [1, ∞) sup t∈[0,T ] u n (•, t) 2β q ≥ n 2β .
Thus, the Chebyshev inequality, (2.12), (2.18), (2.28) and (2.48) yield the existence of a constant C depending on T , u 0 q and B(u 0 ) such that for every n ≥ 1 the next inequality holds true (2.50)

P (T n < T ) ≤ n -2β E sup t∈[0,T ] u n (•, t) 2β q ≤ Cn -2β(1-9α) .
Since β can be chosen large enough to ensure that 2β(1 -9α) > 1, the Borel-Cantelli Lemma implies that P (lim sup n {T n < T }) = 0, that is lim n T n ≥ T a.s. Since T is arbitrary, this yields T n → ∞ a.s. as n → ∞. The uniqueness of the solution to (2.14) implies that a process u can be uniquely defined setting u(•, t) = u n (•, t) on [0, T n ]. Since T n → ∞ a.s., we conclude that for any fixed T > 0, equation (2.11) has a unique solution and the upper estimate of moments of the q-norm of the solution follows from (2.12), (2.18), (2.28) and (2.48).

In this section we suppose that the assumptions of Theorem 2.10 are satisfied. Let us recall that the integral form of the solution u given by (2.11) can be decomposed as follows:

(4.1) u(t, x) = G t u 0 (x) + I(x, t) + L(x, t),
where G t u 0 is defined by (2.13), and

I(x, t) = t 0 D [∆G(x, y, t -s) -G(x, y, t -s)]f (u(y, s)) dyds, L(x, t) = t 0 D G(x, y, t -s)σ(u(y, s)) W (dy, ds). (4.2)
Let us study the regularity of each term in the decomposition (4.1) of u.

The series decomposition of G given in (2.2) is similar to that in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]; hence an argument similar to the proof of Lemma 2.1 of [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] if u 0 is continuous, and to the first part of Lemma 2.2 of [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] if u 0 is δ-Hölder continuous, yields the following regularity result for G • u 0 (•). Lemma 4.1. If u 0 is continuous, then the function G t u 0 is continuous. If u 0 belongs to C δ (D) for 0 < δ < 1, then the function (x, t) → G t u 0 (x) is δ-Hölder continuous in the space variable x and δ 4 -Hölder continuous in the time variable t. Let us now consider the drift term I(x, t) and use the factorization method (see e.g. [START_REF] Da Prato | Stochastic Equations in Infinite dimension[END_REF] or [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]).

We remark that, as proved in Theorem 2.10, if u 0 is bounded, then u belongs a.s. to L ∞ (0, T ; L q (D)) for any q < ∞ large enough.

The definition of the Green's function yields For some a ∈ (0, 1) define the operators F and H on L ∞ (0, T ; L q (D)) as follows:

F(v)(t, x) : = t 0 D G(x, z, t -s)(t -s) -a v(z, s) dzds, H(v)(z, s) : = s 0 D ∆G(z, y, s -s ′ ) -G(z, y, s -s ′ ) (s -s ′ ) a-1 f (v(y, s ′ )) dyds ′ .
Therefore, using relations (4.3) and (4.4) we deduce that

I(x, t) = c a F(H(u))(x, t),
where c a := π -1 sin(πa) obviously depends only on a. First we claim that, for q satisfying condition ( Cα ), the operator H maps L ∞ (0, T ; L q (D)) into itself. Indeed, the estimates on the Green's function in Lemma 2.1 and arguments similar to those used in Section 2.4 to prove (2.19) with ρ = q 3 (based on the Minkowski and Young inequalities) prove that if v ∈ L ∞ (0, T ; L q (D)) then

H(v)(•, t) q ≤ t 0 (t -s) -1+a-1 2 -d 2q 1 + v(•, s) 3 q ds.
For the boundedness of the above integral we need that -1 + a -1 2 -d 2q > -1. Since q > d, this inequality holds for some a ∈ 1 2 + d 2q , 1 . Then, an argument similar to that used in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] proves that if v ∈ L ∞ ([0, T ]; L q (D)) then J (v) belongs to C λ,µ (D × [0, T ]) for any λ < 1 and µ < 1 2 . Indeed, the upper estimates of the Green's function from Lemma 2.2 are the same as that for the Green's function of the Cahn-Hilliard equation which only involves the fourth order derivatives.

Considering the stochastic integral L defined in (4.2), we observe that the fact that σ is not bounded any more does not allow us to use the related argument from the proof of Lemma 2.2 in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF] stated on page 797. Instead, we also use the factorization method for the stochastic integral. Recall that given any n ≥ 1, for T n = inf{t ≥ 0 : u n (., t) q ≥ n} we have 1 {T ≤Tn} u(., t) = 1 {T ≤Tn} u n (., t), where u n is the solution to (2.14). The local property of stochastic integrals implies that for any n and t ∈ [0, T ]:

1 {T ≤Tn} L(x, t) = 1 {T ≤Tn} t 0 D
G(t -s, x, y)1 {s≤Tn} σ(u n (y, s))W (dy, ds).

The process u n is adapted and by (2.47) for q large enough, if Condition (C) holds true, γ > 0 and β ∈ (1, ∞) are such that βγ ∈ [2, ∞), we have E T 0 u n (., t) γ q dt| β ≤ C(n, T ). Fix a ∈ (0, 1), let K(u n ) be defined as follows:

K(u n )(x, t) = t 0 D
G(x, y, t -s)(t -s) a-1 1 {s≤Tn} σ(u n (y, s))W (dy, ds).

We at first check that this stochastic integral makes sense for fixed t ∈ [0, T ] and x ∈ D, and that a.s. K(u n ) ∈ L ∞ (0, T ; L q (D)), so that 1 {T ≤Tn} L(x, t) = 1 {T ≤Tn} c a F(K(u n ))(x, t). Indeed, for fixed t ∈ [0, T ], x ∈ D and p ∈ [1, ∞), the Burkholder inequality yields

E|K(u n )(x, t)| 2p ≤E t 0 D
G 2 (x, y, t -s)(t -s) 2(a-1) 1 {s≤Tn} σ 2 (u n (s, y))dyds Let us now prove moment upper estimates of increments of K(u n ); this together with (4.5) will imply by Garsia's Lemma that

E K(u n ) L ∞ (D×[0,T ] ) 2ρ < ∞.
Arguments similar to those used in the proof of (2.30) prove that for λ ∈ (0, 1), q ∈ (2α, q) and n ≥ 1, we have for t ∈ [0, T ], x, ξ ∈ D: for some finite constant C p (n, T ), provided that the time integrability constraint -d+ λ 2 + 2(a -1) + d(q-2α) 4q > -1 holds true. Since Condition ( Cα ) is satisfied with α ∈ (0, 1 9 ), we deduce that q > 2αd 4-d . Hence given λ ∈ 0, 2 -d 2 one can find q ∈ 2αd 4-d , q and a ∈ 1 2 + d 8 , 1 such that the time integrability is fulfilled.

E K(u n )(x, t) -K(u n )(ξ, t) 2p ≤ C p |x -ξ| 2 λp
Similarly, for 0 ≤ t ′ ≤ t ≤ T , x ∈ D and μ ∈ 0, for some finite constant C p (n, T ), provided that 2a -2μ > 1 + d 4 + αd 2q . Once more, since α ∈ 0, 1 9 , we have q > 2αd 4-d and given μ ∈ 0, 1 2 -d 8 , we can find q ∈ 2αd 4-d , q such that this inequality holds true.

Hence, given λ ∈ 0, 2 -d 2 and μ ∈ 0, 1 2 -d 8 , for every n ≥ 1 and p ∈ [1, ∞), we can find some positive constant C p (n, T ) such that

E|K(u n )(x, t) -K(u n )(ξ, t ′ )| 2p ≤ C p (n, T ) |ξ -x| 2 λp + |t -t ′ | 2μp
for 0 ≤ t ′ ≤ t ≤ T and x, ξ ∈ D.

The Garsia-Rodemich-Rumsey lemma implies that

E K(u n ) 2p L ∞ (D×[0,T ]) < ∞, ∀p ≥ 1, and E K(u n ) 2p q ≤ E K(u n ) 2p
L ∞ (D×[0,T ]) < ∞, ∀p ≥ 1. This gives one one hand the stated time and space Hölder regularity, and on the other hand the previous space-time Hölder moments estimates of K(u n ) ∈ L ∞ (0, T, L q (D)) a.s.

Since F maps L ∞ (0, T ; L q (D)) into C λ,µ (D × [0, T ]) for λ < 1 2 -d 8 and µ < 2 -d 2 and since L(x, t) = c a F(K(u n ))(x, t) on the set {T ≤ T n }, we deduce that L(u) ∈ C λ,µ (D × [0, T ]) a.s. on the set {T ≤ T n }.

Finally, Theorem 2.10 implies that as n → ∞ the sets {T ≤ T n } increase to Ω; this proves that a.s. L(u) ∈ C λ,µ ([0, T ] × D) for λ < 1 2 -d 8 and µ < 2 -d 2 . As a consequence (cf. [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]), we obtain the following regularity of the trajectories. Theorem 4.2. Let σ be Lipschitz and satisfy the sub linearity condition (1.2) with α ∈ (0, 1 9 ), let q satisfy Condition ( Cα ), and let u 0 ∈ L q (D). Then 
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 111 The Stochastic equation. We consider the Cahn-Hilliard/Allen-Cahn equation with multiplicative space-time noise: t = -̺∆ ∆u -f (u) + ∆u -f (u) + σ(u) Ẇ in D × [0, T ), u(x, 0) = u 0 (x) in D, ∂u ∂ν = ∂∆u ∂ν = 0 on ∂D × [0, T ).

Remark 1 . 2 .

 12 Ginzburg-Landau type operators are usually supplemented by Neumann or periodic boundary conditions. In order to obtain an initial and boundary value problem we consider the SPDE (1.1) with the standard homogeneous Neumann boundary conditions on u and ∆u. These conditions are frequently used for the deterministic or stochastic Cahn-Hilliard equation; see e.g. [10, 7, 3].

2. 2 .

 2 Some results on the Green's function. Let ∆ denote the Laplace operator; we shall use the Green's function for the operator T := -∆ 2 + ∆ on D with the homogeneous Neumann conditions, that is the fundamental solution to ∂ t u -T u = 0 on D with the boundary conditions ∂u ∂ν = ∂∆u ∂ν = 0 on ∂D × [0, T ). Let k = (k i , i = 1, • • • , d) denote a multi-index with non-negative integer components k i and let k 2 := i k 2

(4. 3 )

 3 ∆G(x, y, t) = D G(x, y, t -s)∆G(z, y, s) dz, and (4.4) G(x, y, t) = D G(x, y, t -s)G(z, y, s) dz.
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 81 ; then we haved 2 + 2(a -1) + d 4 > -1, which yields (4.5) E|K(u n )(x, t)| 2p < ∞, ∀p ∈ [1, ∞).
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  (i) If u 0 is continuous, then the solution of (2.11) has almost surely continuous trajectories. (ii) If u 0 is β-Hölder continuous for 0 < β < 1, then the trajectories of the solution to (2.11) are almost surely β ∧ 2 -d 2 -continuous in space and β 4 ∧ 1 2 -d 8 -continuous in time.

  1 2 -d 8 , arguments similar to that proving (2.31) implyE K(u n )(x, t) -K(u n )(x, t ′ ) 2p ≤ C p |t -t ′ | 2μp
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Generalization

The stochastic existence proof for the Cahn-Hilliard/Allen-Cahn equation with noise could easily be modified to hold for domains with more general geometry, cf. in [START_REF] Antonopoulou | Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains[END_REF] the proposed eigenvalue-formulae-free approach for the stochastic Cahn-Hilliard equation.

Our global existence and uniqueness result proven in Theorem 2.10 is also valid for the more general model

), for some constants ̺ > 0 and q ≥ 0. The proof is very similar with the following simple modifications:

(1) We have to replace the Green's function G defined by (2.2) by the following ̺, qdependent one

All the estimates used on G also hold for G ̺,q , since the operator -̺∆ 2 + q∆ is parabolic in the sense of Petrovsksȋı. (2) The estimate (2.42) also holds for ̺ > 0 and q > 0 when B(u 0 ) is defined as

.

Since ̺ > 0 and λ k ≥ 0, one may also invert ̺λ k + q if q > 0 for any k ∈ N d . If q = 0 (for ̺ = 1 we get the Cahn-Hilliard equation) then

.

and ̺λ k , for any k ∈ N * d , is invertible. While the stochastic Cahn-Hilliard equation is a special case for our analysis (with ρ = 1 and q = 0), this is not true for the stochastic Allen-Cahn equation. In our model the assumption that ̺ > 0 is crucial; indeed, since the fourth order operator is still acting, the operator -ρ∆ 2 + q∆ is also parabolic in the sense of Petrovskȋı. Thus, the higher order differential operator is dominating and all the upper estimates of the Green's function and their derivatives stated in Section 2.2 remain valid.

Path regularity

In this section, we investigate the path regularity for the stochastic solution of (1.1) under certain regularity assumptions for the initial condition u 0 and when the domain D is a parallelepiped. Note that the path regularity results proved in this section remain valid on a rectangular domain for the equation (3.1). More precisely, we prove that when the coefficient σ has an appropriate sub-linear growth, the paths of the solution to equation (1.1) have a.s. a Hölder regularity depending on that of the initial condition. The path regularity proven here is the same as that obtained for the stochastic Cahn-Hilliard equation obtained in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF], where the coefficient σ was supposed to be bounded. We follow the main lines of the proof presented in [START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF]; nevertheless some modifications are needed. Indeed, the factorization method is used both for the deterministic and stochastic integrals.