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On waveguide modeling of sti� piano strings
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ABSTRACT

Bensa et al. [J. A
oust. So
. Am. 114(2) 1095�1107 (2003), Se
tion IV℄ re
ently proposed a waveguide

model for the transverse displa
ement of a sti� piano string. The study des
ribed here is an attempt to 
ast

a 
omplementary light on this topi
, based on a 
ommon wave approa
h instead of a modal approa
h. A pair

of weakly attenuated traveling waves and a pair of fast-de
aying waves both satisfy the one-dimensional wave

equation developed by Bensa et al.. These solutions have to be 
arefully 
onsidered, however, for portions of

string intera
ting with the hammer felt, the bridge, or the 
apo d'astro bar.

PACS number: 43.75.Mn

I. INTRODUCTION

The �rst attempt for synthesizing musi
al sounds using physi
al models was made more than 30 years ago

by Hiller and Ruiz

1
. Starting from the one-dimensional wave equation

2
of the transverse displa
ement of a

string, three main approa
hes are generally used for building a 
omputational model: either the use of a �nite

di�eren
e s
heme (e.g. Refs. 3, 4), or a modal synthesis (e.g. Ref. 5), or the building of a Digital Waveguide

model (e.g. Refs. 6, 7, 3). A waveguide is 
onsidered here as a ��lterlike stru
ture modeling one-dimensional wave

propagation as purely lossless throughout the length of the string, with loss and dispersion lumped in terminating

�lters

3
.� The hammer a
tion and the re�e
tion 
onditions at both ends of the string are also modeled as lumped

�lters. Portions of string are distributed elements

6
represented by two-port networks. In this paper we fo
us on

this latter approa
h.

Bensa et al. propose an improved one-dimensional wave equation [Ref. 3, Eq. (6)℄ 
orresponding to a well

posed model of sti� piano strings. In Se
. IV.B they use a modal approa
h to extra
t the waveguide parameters

from the partial di�erential equation (PDE). This approa
h requires the knowledge of both the length of the

string and the boundary 
onditions [Ref. 3, Eq. (10)℄ for the 
al
ulation of the vibration modes asso
iated

with standing waves. The waveguide parameters are then dedu
ed from the 
hara
teristi
s of the �rst mode

in
luding the fundamental frequen
y of the ideal string. The present paper is an attempt to show that a wave

approa
h using 
omplex wave-numbers appears as more 
onvenient be
ause ea
h dispersive attenuated traveling

wave is dire
tly obtained from the one-dimensional wave equation, apart from the re�e
tions at the ends of the

string. Assuming that the one-dimensional wave equation is linear, time- and spa
e-invariant, a two-dimensional

Fourier-Lapla
e transformation gives an algebrai
 equation relating the transverse displa
ement of the string

(output) to the spa
e distribution of external for
es (input) in the wave-number/frequen
y domain. The solution

of this equation 
an be seen as the superposition of traveling waves whi
h o

ur in a waveguide model.

Some general points about waveguides, traveling waves, and 
omplex wave-numbers are outlined in Se
tion II

to help the reader to understand the following se
tions. In Se
tion III, after the one-dimensional wave equation

advan
ed by Bensa et al.

3
is re
alled, this equation is solved to obtain the response of an in�nite string to a point

impulse in the wave-number/frequen
y domain, showing that two fast-de
aying traveling waves are omitted by

the modal approa
h in Bensa et al.

3
. These fast-de
aying waves 
an be negle
ted only for portions of string

without sour
es whi
h are long enough. They should, however, be taken into a

ount at the neighborhood of

the ex
itation point, as detailed in Se
tion IV.
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II. WAVEGUIDE MODELING AND COMPLEX WAVE-NUMBERS

The question is this: how to pass from the wave equation of a one-dimensional system to a waveguide model?

A. From the one-dimensional wave equation to the transfer fun
tion

1. A general one-dimensional wave equation

The vibration state of a one-dimensional system (e.g. the sti� piano string) is assumed to be de�ned by a

fun
tion y (e.g. the transverse displa
ement of the string) of time t and position x along the system.

A general one-dimensional wave equation, assuming that it is linear, time- and spa
e-invariant, 
an be written

as:

dx∑

m=0

dt∑

n=0

αm,n
∂m+n y

∂ xm ∂ tn
(x, t) = f(x, t) , (1)

where f is the spa
e distribution of external for
es (e.g. exerted by the hammer felt, the bridge and the 
apo

d'astro bar).

2. Time/frequen
y and spa
e/wave-number 
onversions

In the spa
e/frequen
y domain, ea
h signal s(x, t) is 
onverted into ŝ(x, ω) by Fourier transformation:

ŝ(x, ω) =

∫ +∞

−∞

s(x, t) e−i ω t dt , (2)

where ω is the angular frequen
y and i2 = −1.
In the wave-number/frequen
y domain, ea
h signal s(x, t) be
omes S(k, ω) by Fourier�Lapla
e transforma-

tion:

S(k, ω) =

∫ +∞

−∞

ŝ(x, ω) e−i k x dx =

∫ +∞

−∞

∫ +∞

−∞

s(x, t) e−i (ω t+k x) dt dx , (3)

where k is the 
omplex wave-number.

3. An ordinary di�erential equation in the spa
e/frequen
y domain

The Fourier transformation of the wave equation (1) leads to an ordinary linear 
onstant-
oe�
ient di�erential

equation with respe
t to x:
dx∑

m=0

[
dt∑

n=0

αm,n (i ω)n

]
∂m ŷ

∂ xm
(x, ω) = f̂(x, ω) . (4)

4. The transfer fun
tion

In the wave-number/frequen
y domain, we obtain:

[
dx∑

m=0

dt∑

n=0

αm,n im+n ωn km

]
Y (k, ω) = F (k, ω) ⇐⇒ Y (k, ω) = H(k, ω) F (k, ω) , (5)

where H(k, ω) is the transfer fun
tion of the system. The denominator of H(k, ω) is a polynomial of order dx
in k and order dt in ω. The poles of H(k, ω) (where H(k, ω) is 
onsidered as a fun
tion of k) are the roots of a
polynomial equation 
ommonly 
alled the dispersion equation.
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B. From the transfer fun
tion to the blo
k-diagram model

1. The impulse response as the sum of pairs of symmetri
al traveling waves

Assuming both that the propagation model 
orresponds to a well-posed physi
al problem (
f. e.g. Ref. 3 for

more details) and that the problem is symmetri
al (i.e., un
hanged by substituting −x for x), the 
oe�
ients

α2k+1,n are zero, whi
h implies that dx = 2 J is an even number, and the transfer fun
tion H(k, ω) is rewritten
as follows:

H(k, ω) =
a(ω)

J∏

j=1

[ k2 − kj(ω)
2 ]

=
J∑

j=1

aj(ω)

k2 − kj(ω)2
=

J∑

j=1

gj(ω)

[
1

k − kj(ω)
− 1

k + kj(ω)

]
, (6)

where aj(ω) = a(ω)/
∏J

m=1, m6=j [ km(ω)
2 − kj(ω)

2 ] and gj(ω) = aj(ω)/[2 kj(ω)], assuming kj(ω) 6=0 and

kj(ω) 6=km(ω) if j 6=m.

For an in�nite system, the assumed boundary (no sour
es at in�nity) and initial 
onditions (rest initial


ondition) are:

y|x→+∞ = y|x→−∞ = 0 ; y|t<0 = 0 ; ∀n , 1 6 n 6 dt − 1 ,
∂n y

∂ tn

∣∣∣∣
t<0

= 0 . (7)

Coming ba
k to the spa
e/frequen
y domain, Eqs. (6) and (7) lead to the 
onvolution produ
t with respe
t

to the spatial variable:

ŷ(x, ω) =

∫ +∞

−∞

f̂(x0, ω) ĥ(x− x0, ω) d x0 , (8)

ĥ(x, ω) satisfying

ĥ(x, ω) =
J∑

j=1

gj(ω)
[
e−i kj(ω) x u(x) + e+i kj(ω) x u(−x)

]
, (9)

where u is the Heaviside unit step fun
tion:

∀ x < 0 , u(x) = 0 and ∀ x > 0 , u(x) = 1 .

The fun
tion ĥ(x, ω) 
orresponds to the Fourier transform of the impulse response h(x, t) (also named Green's

fun
tion) to f(x, t) = δ(x) δ(t) where δ is the Dira
 impulse. This response h(x, t) is the e�e
t of a time impulse

(at t = 0) exerted on a single point (at x = 0) of the system. The unit of h is the unit of y per Newton and per

se
ond. An inverse Fourier transformation gives:

h(x, t) =
1

2 π

J∑

j=1

∫ +∞

−∞

gj(ω)
{
ei [ω t−kj(ω) x ] u(x) + ei [ω t+kj(ω) x ] u(−x)

}
d ω . (10)

Note that h(x, t) = h(−x, t) : the symmetry of the problem is satis�ed.

Ea
h kj(ω) is a 
omplex wave-number su
h that:

kj(ω) = ω τj(ω)− i αj(ω) =
ω

cj(ω)
− i αj(ω) , (11)

where τj(ω) > 0 is the propagation delay per unit length (or slowness), cj(ω) the phase velo
ity, and αj(ω) > 0
the attenuation per unit length.

The impulse response 
an be rewritten as:

h(x, t) =
1

2 π

J∑

j=1

∫ +∞

−∞

gj(ω)
{
e−αj(ω) x ei ω [ t−x/cj(ω)] u(x) + e+αj(ω) x ei ω [ t+x/cj(ω)] u(−x)

}
d ω . (12)

This impulse response is 
onsequently the superposition of J pairs of symmetri
al de
aying traveling waves

starting from the ex
itation point and propagating in opposite dire
tions.
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Thus, the general solution y is given by the two-dimensional 
onvolution:

y(x, t) =

∫ +∞

−∞

∫ +∞

−∞

f(x0, t0) h(x− x0, t− t0) d x0 d t0 . (13)

2. Waveguide modeling of a region without sour
es

Under the assumption that no sour
es exist in a region between x = xmin and x = xmax, one 
an demonstrate

that the vibration state is the sum of J de
aying traveling waves y+j in the in
reasing x dire
tion and of J
de
aying traveling waves y−j in the de
reasing x dire
tion:

∀ x , xmin 6 x 6 xmax , y(x, t) =
J∑

j=1

y+j (x, t) +
J∑

j=1

y−j (x, t) ,

where ŷ+j (x, ω) = e−i kj(ω) (x−xmin) ŷ+j (xmin, ω)

and ŷ−j (x, ω) = e+i kj(ω) (x−xmax) ŷ−j (xmax, ω) .

(14)

This region 
an be modeled as J waveguides in parallel whi
h be
ome J digital waveguides

e.g.6, 7
in dis
rete

time. Ea
h transfer fun
tion e−i kj(ω)∆x
is generally designed as a delay line in series with a digital 
ausal �lter.

After suitable digital �lters have been found, e�
ient time-domain simulations 
an be made.

In the 
ase of piano strings, the sour
es are lo
ated in the segment of hammer felt/string 
onta
t and at both

ends. A blo
k-diagram model is drawn in Fig. 1, in
luding an observation point. This �gure is a generalization

of the model involved in Bensa et al. (Ref. 3, Fig. 2). Note that the boundary 
onditions 
hara
terizing the

string terminations 
an be 
hanged by only modifying one lumped �lter at ea
h end, apart from the waveguides

modeling the portions of string without sour
es.
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Figure 1: Blo
k-diagram of the waveguide model of a piano string. The string segment intera
ting with the hammer felt

is assumed to be [x0−δx ; x0+δx ]. x1 is the position of observation. x = 0 is the 
apo d'astro bar position and x = L

is the bridge position. Ea
h Hn(ω) is equivalent to J delay line/�lter blo
ks in parallel: H1(ω) =

J∑

j=1

e−i kj(ω) (x0−δx)
,

H2(ω) =

J∑

j=1

e−i kj(ω) (x1−x0−δx)
and H3(ω) =

J∑

j=1

e−i kj(ω) (L−x1)
.
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III. THE FOUR WAVES IN A STIFF PIANO STRING

In this se
tion and the next one, we apply the prin
iples given in the previous se
tion to the one-dimensional

wave equation introdu
ed by Bensa et al. [Ref. 3, Eq. (6)℄. The dispersion equation provides two pairs of

de
aying traveling waves whi
h need a detailed analysis.

A. The transfer fun
tion of a sti� piano string

The transverse displa
ement y is assumed to satisfy [Ref. 3, Eq. (6)℄:

∂2 y

∂ t2
+ 2 b1

∂ y

∂ t
− 2 b2

∂3 y

∂ x2 ∂ t
− c2

∂2 y

∂ x2
+ κ2 ∂

4 y

∂ x4
=

1

µ
f , (15)

where b1 is the �rst 
oe�
ient of damping (due to vis
osity of the air), b2 the se
ond damping 
oe�
ient (inner

losses), c =
√
T/µ the transverse wave velo
ity of string

4
, T the string tension, µ the linear mass density of

string, κ = c
√
E I/T a sti�ness 
oe�
ient, E the Young modulus, I = S r2 the moment of inertia of the


ross-se
tion, S the 
ross-se
tion, and r the radius of gyration.

In the wave-number/frequen
y domain, Eqs. (5) and (15) lead to the transfer fun
tion:

H(k, ω) =
Y (k, ω)

F (k, ω)
=

1

µ [(−ω2 + 2 i ω b1) + (c2 + 2 i ω b2) k2 + κ2 k4]
. (16)

B. Complex wave-numbers

The two (J = 2) wave-numbers ks and kd satisfy:

k2
s(ω) =

c2

2 κ2

[
−1− i

2ω

c2
b2 +

√
1 +

4 (κ2 − b22)ω
2

c4
+ 4 i ω

(
1

c2
b2 − 2

κ2

c4
b1

)]
, (17)

k2
d(ω) =

c2

2 κ2

[
−1− i

2ω

c2
b2 −

√
1 +

4 (κ2 − b22)ω
2

c4
+ 4 i ω

(
1

c2
b2 − 2

κ2

c4
b1

)]
. (18)

These equations are similar to Eq. (11) in Ref. 3. The approa
hes, however, are di�erent. In the modal approa
h

3

β+ and β− are real-valued fun
tions of the 
omplex frequen
y s. In the present wave approa
h ks and kd are

the roots of the dispersion equation and are 
omplex-valued fun
tions of the 
ommon angular frequen
y ω (real

number).

The assumptions [Ref. 3 Eqs. (24) and (25)℄

b1 b2 ≪ c2 ; b22 ≪ κ2 and b21 ≪ ω2
(19)

lead to

ks(ω) ≃ c

κ

√
ξ

2
− i

κ ω

c3 (1 + ξ)

√
2

ξ

(
b1 +

c2 ξ

2 κ2
b2

)
(20)

and

kd(ω) ≃ 1

c3
√
2 ξ (1 + ξ)

(2ω2 b2 − c2 ξ b1)− i

√
2

ξ

ω

c
, (21)

with

ξ = −1 +

√
1 +

4 κ2

c4
ω2 . (22)

Éri
 Du
asse Waveguide modeling of sti� piano strings



6 / 10

C. Waveguide modeling of portions of string without sour
es

The �rst wave-number ks 
hara
terizes a weakly attenuated dispersive traveling wave similar to the one des
ribed

by Bensa et al. [Ref. 3, Eq. (34)℄. At low frequen
ies [ b21 ≪ ω2 ≪ c4/(4 κ2) ℄ the phase velo
ity is 
lose to

c. Its numeri
al values are between 160 and 420m · s−1
for piano tones C2, C4, and C7 (Ref. 3, Table I). The

attenuation per unit length αs ≃ b1/c is small : its numeri
al values [10αs/ log(10)℄ are less than 0.1 dB ·m−1
.

The se
ond wave-number kd represents a fast-de
aying wave with a very high phase velo
ity. At low frequen-


ies the phase velo
ity is approximately c κ/(b2 − κ2 b1/c
2). Its numeri
al values are in the range 2.6 × 105 to

1.62× 106m · s−1
. The attenuation per unit length is αd ≃ c/κ. The numeri
al values [10αd/ log(10)℄ of αd are

greater than 1.1× 103dB ·m−1
. For any length ∆x greater than 1.8 cm, e−αd ∆x

(the modulus of e−i kd ∆x
) is less

than 10−2
. This se
ond wave is quasi-evanes
ent i.e., its phase velo
ity is almost in�nite and its attenuation

per unit length is high. It 
ould represent the fa
t that a part of the energy of a hammer strike would instantly

propagate along the sti� string around the 
onta
t region su
h as to avoid the formation of a sharp 
orner, as

shown below and in a

ordan
e with Cremer

8
.

Consequently, the waveguide model of a portion of string without sour
es will 
ontain only a single delay

line/�lter (wave-number ks) for ea
h dire
tion of propagation, provided that the portion of string is longer than

a few 
entimeters. But the other wave 
hara
terized by kd 
annot be negle
ted at the neighborhood of the

ex
itation region, as shown in the following se
tion.

IV. The impulse response of the string

A. Spa
e/frequen
y domain

In the spa
e/frequen
y domain Eqs. (16�18), (6), and (9) imply that the Fourier transform of the impulse

response is:

ĥ(x, ω) =

∣∣∣∣∣∣∣∣∣

ĥ+
s (0, ω) e

−i ks(ω) x + ĥ+
d (0, ω) e

−i kd(ω) x x > 0

ĥ+
s (0, ω) + ĥ−

s (0, ω) + ĥ+
d (0, ω) + ĥ−

d (0, ω) x = 0

ĥ−
s (0, ω) e

+i ks(ω) x + ĥ−
d (0, ω) e

+i kd(ω) x x < 0

, (23)

where

ĥ+
s (0, ω) = ĥ−

s (0, ω) = gs(ω) =
−i

2µ κ2 [ks(ω)2 − kd(ω)2] ks(ω)

ĥ+
d (0, ω) = ĥ−

d (0, ω) = gd(ω) =
i

2µ κ2 [ks(ω)2 − kd(ω)2] kd(ω)

. (24)

The 
omplex 
omplian
es gs(ω) and gd(ω) (unit: m ·N−1
) 
hara
terize the 
onversion of for
e to motion.

B. Example of a C2 piano string

The response y of a C2 piano string (Ref. 3, Table I) to a downward Gaussian time impulse at a single point

x = 0 is given by Fig. 2. This response is very 
lose to the negative of the impulse response h in the bandwidth

0�20 kHz. The transverse displa
ement y is the sum of two weakly attenuated traveling waves y±s (wave-numbers

±ks) and of two fast-de
aying waves y
±
d (wave-numbers ±kd) going away symmetri
ally from the ex
itation point.

In agreement with Refs. 8 and 2 (Se
tion 2.18), �the bend is rounded appre
iably by the sti�ness of the string�.

The fast-de
aying waves inhibit the sharp 
orner whi
h 
ould be generated by the weakly attenuated traveling

waves, if the former were not 
onsidered. As shown in the previous se
tion, only the weakly attenuated traveling

waves exist far from the ex
itation point (more than 2 cm), as well as in the neighborhood of the ex
itation

point after 0.1ms.
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Figure 2: Response of a C2 piano string to a downward Gaussian impulse f . f(x, t) = f0 δ(x)ϕ(t) where ϕ(t) =

−λ e−π λ2 (t−τ)2
. f0 = 1N , λ = 2 × 105s−1

, and τ = 0.02ms. The parameters of the C2 piano string are (Ref. 3,

Table I): c = 160.9m · s−1
, κ = 0.58m2 · s−1

, b1 = 0.25 s−1
, and b2 = 7.5× 10−5m2 · s−1

. The response y (plain line)

is the sum of a weakly attenuated wave ys (dashed line) and of a quasi-evanes
ent wave yd (dotted line).

C. Non-
ausal 
omponents of the 
ausal impulse response

An important additional point is that y±s and y±d are not 
ausal responses whereas their sum is 
ausal. A

mathemati
al explanation 
an be found for this by fo
using on the impulse response at the ex
itation point

[Eq. (24)℄. The signals h±
s (0, t) and h±

d (0, t) and the modulus of their Fourier transforms gs(ω) = ĥ±
s (0, ω) and

gd(ω) = ĥ±
d (0, ω) are plotted in Fig. 3 (in the 
ase of a C2 piano string). The latter signal h±

d (0, t) is nearly an

even fun
tion (with respe
t to t). The former signal h±
s (0, t) is nearly the sum of a 
onstant [ 1/(4µ c) ℄ and of

an odd fun
tion.
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Figure 3: (a) Impulse responses of a C2 piano string and (b) the modulus of their Fourier transforms times the

angular frequen
y. The 
omplian
e gs(ω) = ĥ±
s (0, ω) is the Fourier transform of the signal h±

s (0, t) (weakly attenuated

waves, dashed line). gd(ω) = ĥ±

d (0, ω) is the Fourier transform of h±

d (0, t) (quasi-evanes
ent waves, dotted line).

The impulse response h(0, t) (plain line) is two times the sum of h±
s (0, t) and h±

d (0, t). Its Fourier transform is

ĥ(0, ω) = 2 [gs(ω) + gd(ω)].

This is natural be
ause, on assuming that b1 and b2 are zero, and ω is greater than zero [see Eqs. (17), (18),

(22), and (24)℄, the 
omplian
es be
ome:

gs(ω) ≃
i κ

µ c3
√
2 ξ (1 + ξ)

and gd(ω) ≃
−
√
ξ

2µ
√
2 c (1 + ξ)ω

. (25)

Consequently, the 
omplian
e gs is an imaginary-valued fun
tion and gd is a real-valued fun
tion. Be
ause

the signals h±
s (0, t) and h±

d (0, t) are real-valued, the former should be an odd fun
tion and the latter an even

fun
tion. But the Fourier transform of h±
s (0, t) has a singularity at ω = 0 and the limit of h±

s (0, t), when t tends
to −∞, has to be zero. This implies that a 
onstant has to be added to h±

s (0, t), giving an additional term

π δ(ω)/(2µ c) in its Fourier transform.

Applying the �nal value theorem to the signal h±
s (0, t), the limit of h±

s (0, t) with t tending to in�nity is

1/(2µ c) (see Fig. 3). The �nal value of the impulse response h(0, t) is similarly 1/(µ c) . This last property is

false if b1 > 0: all the signals tend slowly to zero when t tends to in�nity. Indeed, h±
d (0, t) is 
lose to zero for

great values of t and h(0, t) ≃ h+
s (0, t) + h−

s (0, t).
In summary, the two waves h±

s and h±
d have to be 
onsidered together at the position x = 0 to avoid non-

physi
al e�e
ts with respe
t to time. The 
onversion of for
e to motion is 
hara
terized by a single 
omplian
e

ĥ(0, ω) = 2 [ gs(ω) + gd(ω) ] , whi
h is plotted in Fig. 3.
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Figure 4: Blo
k-diagram of a portion of string ex
ited by a point for
e. This for
e ϕ(t) is exerted by the hammer felt

at the position x = x0. The for
e distribution is assumed to be f(x, t) = ϕ(t) δ(x − x0) for x in the range x0 − L to

x0 + L′
(L and L′

are both greater than a few 
entimeters).

This implies that if the for
e distribution f(x, t) = δ(x − x0)ϕ(t) is assumed to represent a point-for
e

exerted by the hammer felt at the position x = x0, then the response y(x0, t) at the ex
itation point satis�es

ŷ(x0, ω) = 2 [ gs(ω)+ gd(ω) ] ϕ̂(ω). This 
ase is represented in Fig. 4 as a blo
k-diagram. Similar blo
k-diagrams

are used for bowed strings (
f. e.g. the review arti
le by Smith

9
, Fig. 14).

V. CONCLUSION AND PROSPECTS

The 
on
lusion of this paper is that a 
omplete mathemati
al treatment of the one-dimensional wave equation

(15) 
arefully takes into a

ount all the waves provided by the dispersion equation. Fast-de
aying waves 
an

be negle
ted in the waveguide modeling of portions of string without sour
es if they are long enough. However,

they 
annot a

urately be negle
ted at the neighborhood of the ex
itation region (hammer) and of the �xation

points (bridge, 
apo d'astro bar).

In parti
ular if a point-for
e is exerted by the hammer felt on the string, the waveguide model proposed

by Bensa et al. (Ref. 3, Fig. 2) needs to be 
omplemented at the ex
itation point, as shown in Fig. 4 whi
h

summarizes the results of the last se
tion. Note that a realisti
 ex
itation by the hammer is distributed over a


ertain width

4
. This extension 
ould be made by a spatial 
onvolution. A future study may determine whether

or not this 
orre
tion would noti
eably improve the quality of synthesized sti�-string sounds.

This paper is an attempt to extra
t as mu
h information as possible from the physi
al model de�ned by a

one-dimensional wave equation, in a waveguide modeling 
ontext and from a mathemati
al point of view. It is

hoped that this study will help to improve future waveguide models of strings and to enhan
e the a

ura
y of

e�
ient 
omputational models using Digital Waveguides

6,7, 3
, after a substantial e�ort to design suitable digital

�lters.
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