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On waveguide modeling of stiff piano strings

Eric Ducasse
Ecole Nationale Supérieure d’Arts et Métiers, C.E.R. de Bordeaux-Talence, 33405 Talence cedex, France
eric.ducasse@ensam.eu

ABSTRACT

Bensa et al. [J. Acoust. Soc. Am. 114(2) 1095-1107 (2003), Section IV] recently proposed a waveguide
model for the transverse displacement of a stiff piano string. The study described here is an attempt to cast
a complementary light on this topic, based on a common wave approach instead of a modal approach. A pair
of weakly attenuated traveling waves and a pair of fast-decaying waves both satisfy the one-dimensional wave
equation developed by Bensa et al.. These solutions have to be carefully considered, however, for portions of
string interacting with the hammer felt, the bridge, or the capo d’astro bar.

PACS number: 43.75.Mn

I. INTRODUCTION

The first attempt for synthesizing musical sounds using physical models was made more than 30 years ago
by Hiller and Ruiz'. Starting from the one-dimensional wave equation® of the transverse displacement of a
string, three main approaches are generally used for building a computational model: either the use of a finite
difference scheme (e.g. Refs. 3, 4), or a modal synthesis (e.g. Ref. 5), or the building of a Digital Waveguide
model (e.g. Refs. 6, 7, 3). A waveguide is considered here as a “filterlike structure modeling one-dimensional wave
propagation as purely lossless throughout the length of the string, with loss and dispersion lumped in terminating
filters®.” The hammer action and the reflection conditions at both ends of the string are also modeled as lumped
filters. Portions of string are distributed elements® represented by two-port networks. In this paper we focus on
this latter approach.

Bensa et al. propose an improved one-dimensional wave equation |[Ref. 3, Eq. (6)| corresponding to a well
posed model of stiff piano strings. In Sec. IV.B they use a modal approach to extract the waveguide parameters
from the partial differential equation (PDE). This approach requires the knowledge of both the length of the
string and the boundary conditions [Ref. 3, Eq. (10)] for the calculation of the vibration modes associated
with standing waves. The waveguide parameters are then deduced from the characteristics of the first mode
including the fundamental frequency of the ideal string. The present paper is an attempt to show that a wave
approach using complex wave-numbers appears as more convenient because each dispersive attenuated traveling
wave is directly obtained from the one-dimensional wave equation, apart from the reflections at the ends of the
string. Assuming that the one-dimensional wave equation is linear, time- and space-invariant, a two-dimensional
Fourier-Laplace transformation gives an algebraic equation relating the transverse displacement of the string
(output) to the space distribution of external forces (input) in the wave-number/frequency domain. The solution
of this equation can be seen as the superposition of traveling waves which occur in a waveguide model.

Some general points about waveguides, traveling waves, and complex wave-numbers are outlined in Section 11
to help the reader to understand the following sections. In Section ITI, after the one-dimensional wave equation
advanced by Bensa et al.? is recalled, this equation is solved to obtain the response of an infinite string to a point
impulse in the wave-number/frequency domain, showing that two fast-decaying traveling waves are omitted by
the modal approach in Bensa et al.®>. These fast-decaying waves can be neglected only for portions of string
without sources which are long enough. They should, however, be taken into account at the neighborhood of
the excitation point, as detailed in Section IV.
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II. WAVEGUIDE MODELING AND COMPLEX WAVE-NUMBERS

The question is this: how to pass from the wave equation of a one-dimensional system to a waveguide model?

A. From the one-dimensional wave equation to the transfer function
1. A general one-dimensional wave equation

The vibration state of a one-dimensional system (e.g. the stiff piano string) is assumed to be defined by a
function y (e.g. the transverse displacement of the string) of time ¢ and position = along the system.
A general one-dimensional wave equation, assuming that it is linear, time- and space-invariant, can be written

as:
dg dt

aerny
Z Z Omon W(w7t) = f(l‘,t) ) (1)

m=0 n=0

where f is the space distribution of external forces (e.g. exerted by the hammer felt, the bridge and the capo
d’astro bar).

2. Time/frequency and space/wave-number conversions

In the space/frequency domain, each signal s(z,t) is converted into §(z,w) by Fourier transformation:

+o0
S(z,w) = / s(z,t)e @t dt, (2)

o0

where w is the angular frequency and 2 = —1.
In the wave-number/frequency domain, each signal s(x,t) becomes S(k,w) by Fourier-Laplace transforma-
tion:

+00 A too  ptoo .
S(k,w) = / S(z,w) e T doy = / / s(x,t) e WHRD gt da (3)

o0

where k is the complex wave-number.

3. An ordinary differential equation in the space/frequency domain

The Fourier transformation of the wave equation (II) leads to an ordinary linear constant-coefficient differential

equation with respect to x:
da dy o R
3 13" | 522 () = Fle). o

m=0 | n=0

4. The transfer function
In the wave-number/frequency domain, we obtain:

dz di

E E am,n im+n wn km

m=0 n=0

Y(k,w)=F(k,w) < Y(k,w) = H(k,w) F(k,w), (5)

where H(k,w) is the transfer function of the system. The denominator of H(k,w) is a polynomial of order d,
in k£ and order d; in w. The poles of H(k,w) (where H(k,w) is considered as a function of k) are the roots of a
polynomial equation commonly called the dispersion equation.
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B. From the transfer function to the block-diagram model
1. The impulse response as the sum of pairs of symmetrical traveling waves

Assuming both that the propagation model corresponds to a well-posed physical problem (c¢f. e.g. Ref. 3 for
more details) and that the problem is symmetrical (i.e., unchanged by substituting —x for x), the coefficients
Qi9+1,, are zero, which implies that d, = 2 J is an even number, and the transfer function H(k,w) is rewritten
as follows:

1 1

J
H(k’,W) = ( ) = Z # gj(W) {k:—k:](w) - k’+k’j(W) ) (6)

J 2 Bk
(K= y?] 7

1

J

7=1

J

where a;(w) = a(w)/]_L‘iL:Lm;ﬁj[km(w)2 — kj(w)?] and gj(w) = aj(w)/[2k;(w)], assuming k;(w)7#0 and
For an infinite system, the assumed boundary (no sources at infinity) and initial conditions (rest initial

condition) are:

oMy

=05 Yley=0:¥n, 1<n<dy =1, o7
t<0

~0. (7)

y|x~>+oo = y|z%foo

Coming back to the space/frequency domain, Egs. (6) and () lead to the convolution product with respect
to the spatial variable:

+oo -
’Z/\({L',CU) = f($0,W) h(l’ - l’o,&)) d$0 ) (8)
/ﬁ(x,w) satisfying
hz,w) =" gi(w) [e7 B u(z) + e R y(—g)] | (9)

j=1

where u is the Heaviside unit step function:
Voe<0,u(z)=0and Vz >0, u(z)=1.

The function ﬁ(:c, w) corresponds to the Fourier transform of the impulse response h(x,t) (also named Green’s
function) to f(x,t) = §(x) §(t) where § is the Dirac impulse. This response h(z,t) is the effect of a time impulse
(at t = 0) exerted on a single point (at x = 0) of the system. The unit of & is the unit of y per Newton and per
second. An inverse Fourier transformation gives:

J
1 Heo 4 4
h(x,t) = e E / gj(w) {elth@ely(g) 4 elorrhi@ely(—a)} dw . (10)
j=1 J—oo

Note that h(z,t) = h(—x,t): the symmetry of the problem is satisfied.
Each k;j(w) is a complex wave-number such that:

w

kj(w) =w(w) —ia;(w) = o)

i), (11)

where 7;(w) > 0 is the propagation delay per unit length (or slowness), ¢;(w) the phase velocity, and a;(w) > 0
the attenuation per unit length.
The impulse response can be rewritten as:

J
1 too , ,
h(flf,t) — ﬁ E / gj(w) {efaj(w):v elw[tfx/cjv(w)] U<SL’) + €+aj(w):v ezw[t+x/0j(w)} u(—x)} dw . (12)
j=1 V7=

This impulse response is consequently the superposition of J pairs of symmetrical decaying traveling waves
starting from the excitation point and propagating in opposite directions.
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Thus, the general solution y is given by the two-dimensional convolution:
“+oo “+oo
y(ﬂf,t) = / / f(.f]](),to) h(l’—ﬂfo,t—to) d.’lﬂ'o dto . (13)

2. Waveguide modeling of a region without sources

Under the assumption that no sources exist in a region between x = z,;, and * = Tp.,, one can demonstrate
that the vibration state is the sum of J decaying traveling waves y;.r in the increasing x direction and of J
decaying traveling waves y;~ in the decreasing x direction:

J J
VI, Tmin <O < Toax s (@) = Yyl (z,6) + > i (at)

=1 =1
where ¢ (z,w) = e~k (@) (@=Zmin) Y; (Tmin, W)

and yj (z,w) = et k) @mmmad) 4 (g0 w)

This region can be modeled as J waveguides in parallel which become J digital wavegquides®9-%7 in discrete
time. Each transfer function e=*%(“) A% ig generally designed as a delay line in series with a digital causal filter.
After suitable digital filters have been found, efficient time-domain simulations can be made.

In the case of piano strings, the sources are located in the segment, of hammer felt /string contact and at both
ends. A block-diagram model is drawn in Fig. [Il including an observation point. This figure is a generalization
of the model involved in Bensa et al. (Ref. 3, Fig. 2). Note that the boundary conditions characterizing the
string terminations can be changed by only modifying one lumped filter at each end, apart from the waveguides

modeling the portions of string without sources.

g —0x | T+ 0T

I
i
— ! -
y*(az,w) g i Hl(w) > o0 P HZ(W) I » Hg(w) > ©
5 g o E
i £ .9 £
— = g b ——m - g —————{ 4 ) - é —+-—-p
5) c = D X
+ = 13 :j
—~ & == 2=t
y(x,w) A H(w) & & H(v) [© i H3(w) | 2
J A : T
! AT ! !
! o i Y\, w |
0 " Zo ! T L

Figure 1: Block-diagram of the waveguide model of a piano string. The string segment interacting with the hammer felt
is assumed to be [zg—dx ; xo+dx]. x1 is the position of observation. x = 0 is the capo d’astro bar position andz =1L

is the bridge position. Each H,(w) is equivalent to J delay line/filter blocks in parallel: H;( Z etk (W) (wo—dz)
Jj=1

J
Z efzk ) (z1—z0—0x) and Hg Z efzk ) (L— xl)
j=1 j=1
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III. THE FOUR WAVES IN A STIFF PIANO STRING

In this section and the next one, we apply the principles given in the previous section to the one-dimensional
wave equation introduced by Bensa et al. [Ref. 3, Eq. (6)]. The dispersion equation provides two pairs of
decaying traveling waves which need a detailed analysis.

A. The transfer function of a stiff piano string

The transverse displacement y is assumed to satisfy [Ref. 3, Eq. (6)]:

0y Dy Py 0y Ny 1
— 2 4 2h — —2 — 2 =— 1
IR TRl oy PR PR pri (15)

where by is the first coefficient of damping (due to viscosity of the air), by the second damping coefficient (inner
losses), ¢ = +/T/u the transverse wave velocity of string, T the string tension, y the linear mass density of
string, Kk = c¢/FE I/T a stiffness coefficient, £ the Young modulus, I = S7? the moment of inertia of the
cross-section, S the cross-section, and r the radius of gyration.

In the wave-number/frequency domain, Eqgs. (B) and (I5) lead to the transfer function:

Y(kw) 1

H(k = = . 16
() F(k,w) p[(—w?4+2iwby) + (2 +2iwby) k? 4+ k2 k4 (16)
B. Complex wave-numbers
The two (J = 2) wave-numbers k, and k, satisfy:
2 [ 2 12,2 2\ |
9 c 2w 4 (k2 =b3)w , 1 K
2 [ 2 12),,2 2\ |
5 c 2w 4 (K% —b3)w , 1 K

These equations are similar to Eq. (11) in Ref. 3. The approaches, however, are different. In the modal approach?
B+ and [_ are real-valued functions of the complex frequency s. In the present wave approach ks and k,; are
the roots of the dispersion equation and are complex-valued functions of the common angular frequency w (real
number).

The assumptions [Ref. 3 Eqs. (24) and (25)]

biby < b3 < k?and b < w? (19)
lead to
c 1§ . Kw 2 *E
k ~ /2= ——/= b1+ =—=0 2
s(w) K\/; 203(1—1—5) §(1+2/€2 2) (20)
and
1 2 2 - 2w
) = S mE g B gbl)_l\ﬁ?’ 2
with
4 K2
£=—1+1/1+— w? (22)
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C. Waveguide modeling of portions of string without sources

The first wave-number £, characterizes a weakly attenuated dispersive traveling wave similar to the one described
by Bensa et al. |[Ref. 3, Eq. (34)]. At low frequencies | 1? < w? < ¢*/(4x?) | the phase velocity is close to
c. Its numerical values are between 160 and 420 m - s~* for piano tones C2, C4, and C7 (Ref. 3, Table I). The
attenuation per unit length o, ~ b;/c is small : its numerical values [10 o,/ log(10)| are less than 0.1dB - m™!.

The second wave-number k; represents a fast-decaying wave with a very high phase velocity. At low frequen-
cies the phase velocity is approximately cr/(by — k?b1/c?). Tts numerical values are in the range 2.6 x 10° to
1.62 x 105m - s7!. The attenuation per unit length is ag ~ ¢/x. The numerical values [10 ag/ log(10)] of ag are
greater than 1.1 x 10°dB - m™!. For any length Az greater than 1.8 cm, %% (the modulus of e~*%44%) ig less
than 1072, This second wave is quasi-evanescent i.e., its phase velocity is almost infinite and its attenuation
per unit length is high. It could represent the fact that a part of the energy of a hammer strike would instantly
propagate along the stiff string around the contact region such as to avoid the formation of a sharp corner, as
shown below and in accordance with Cremer®.

Consequently, the waveguide model of a portion of string without sources will contain only a single delay
line/filter (wave-number k) for each direction of propagation, provided that the portion of string is longer than
a few centimeters. But the other wave characterized by k; cannot be neglected at the neighborhood of the
excitation region, as shown in the following section.

IV. The impulse response of the string

A. Space/frequency domain

In the space/frequency domain Eqs. (I6HIS), (6), and (@) imply that the Fourier transform of the impulse
response is:

B (0,w) B9 L F(0,w) e BT >0
(z,w) = | WF(0,w) + 7o (0,0) + hy (0,0) + 7y (0,0) 2=0 (23)
f/LS:(O,w) etiks@a 4 f;dz(O,w) etikalw)e r <0
where - . i
) = b 0 =0 ) = R O R TR ) o)

— )

7 (0,w) = hy (0,w) = ga(w)

" 200R2 [ky(w)? — ka(w)?] ka(w)

The complex compliances g,(w) and g4(w) (unit: m - N~1) characterize the conversion of force to motion.

B. Example of a C2 piano string

The response y of a C2 piano string (Ref. 3, Table I) to a downward Gaussian time impulse at a single point
x = 0 is given by Fig.[2l This response is very close to the negative of the impulse response h in the bandwidth
0-20 kH z. The transverse displacement y is the sum of two weakly attenuated traveling waves y= (wave-numbers
+k,) and of two fast-decaying waves yf (wave-numbers +k,) going away symmetrically from the excitation point.
In agreement with Refs. 8 and 2 (Section 2.18), “the bend is rounded appreciably by the stiffness of the string”.
The fast-decaying waves inhibit the sharp corner which could be generated by the weakly attenuated traveling
waves, if the former were not considered. As shown in the previous section, only the weakly attenuated traveling
waves exist far from the excitation point (more than 2cm), as well as in the neighborhood of the excitation
point after 0.1 ms.

Eric Ducasse Waveguide modeling of stiff piano strings
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and b2 =T7.5x%x10
(0,t) is nearly the sum of a constant |

[em]

+

s

x
and yf are not causal responses whereas

mathematical explanation can be found for this by focusing on the impulse response at the excitation point

+

s

(0,¢) and the modulus of their Fourier transforms g,(w) = h

+
d

IN, A =2x10%"1 and 7 = 0.02ms. The parameters of the C2 piano string are (Ref. 3,
(0,t) and h
h(0,w) are plotted in Fig. Bl (in the case of a C2 piano string). The latter signal i (

+

S

Jo

Table I): ¢ = 160.9m - s, k = 0.58 m? - s7%, by = 0.25571

Response of a C2 piano string to a downward Gaussian impulse f. f(z,t) = fod(z)p(t) where ¢(t)
is the sum of a weakly attenuated wave y, (dashed line) and of a quasi

Figure 2:
e ™ A2 (t—7)2 )

C. Non-causal components of the causal impulse response

even function (with respect to t). The former signal h

An important additional point is that y
an odd function.

[Eq. (24))]. The signals h
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cph(0,t); cp hf/d(O, t)

20,25 [emmmeben T

Figure 3: (a) Impulse responses of a C2 piano string and (b) the modulus of their Fourier transforms times the
angular frequency. The compliance g,(w) = h+ (0,w) is the Fourier transform of the signal h(0,t) (weakly attenuated

waves, dashed line). g4(w) = hi(0,w) is the Fourier transform of hT(0,t) (quasi-evanescent waves, dotted line).
The impulse response h(0,t) (plain line) is two times the sum of hf(0,¢) and hF(0,t). Its Fourier transform is

h(0,w) = 2[gs(w) + ga(w)]-

This is natural because, on assuming that b; and by are zero, and w is greater than zero [see Eqs. (1), (I8),
([22), and (24)], the compliances become:

~ LK and  gg(w) ~ A :
peV28(1+¢§) 2uv2e¢(1+&w

Consequently, the compliance g5 is an imaginary-valued function and g, is a real-valued function. Because
the signals h¥(0,¢) and k3 (0,t) are real-valued, the former should be an odd function and the latter an even
function. But the Fourier transform of h=(0,¢) has a singularity at w = 0 and the limit of hX(0,t), when ¢ tends
to —oo, has to be zero. This implies that a constant has to be added to hE(0,t), giving an additional term
md(w)/(2 pe) in its Fourier transform.

Applying the final value theorem to the signal hE(0,t), the limit of h¥(0,¢) with ¢ tending to infinity is
1/(2uc) (see Fig. ). The final value of the impulse response h(0,¢) is similarly 1/(xc). This last property is
false if b; > 0: all the signals tend slowly to zero when ¢ tends to infinity. Indeed, hf((),t) is close to zero for
great values of ¢ and h(0,t) ~ ht(0,t) + h;(0,1).

In summary, the two waves h¥ and hf{ have to be considered together at the position x = 0 to avoid non-
physical effects with respect to time. The conversion of force to motion is characterized by a single compliance
h(0,w) = 2[gs(w) + ga(w) |, which is plotted in Fig. 3.

9s(w)

(25)
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Figure 4: Block-diagram of a portion of string excited by a point force. This force ¢(t) is exerted by the hammer felt
at the position = . The force distribution is assumed to be f(z,t) = ¢(t) d(z — xo) for x in the range xg — L to
2o+ L' (L and L' are both greater than a few centimeters).

This implies that if the force distribution f(x,t) = §(x — xo) ¢(t) is assumed to represent a point-force
exerted by the hammer felt at the position x = xg, then the response y(xo,t) at the excitation point satisfies
Y(xo,w) = 2] gs(w) + ga(w) ] P(w). This case is represented in Fig. @ as a block-diagram. Similar block-diagrams
are used for bowed strings (cf. e.g. the review article by Smith?, Fig. 14).

V. CONCLUSION AND PROSPECTS

The conclusion of this paper is that a complete mathematical treatment of the one-dimensional wave equation
(I5) carefully takes into account all the waves provided by the dispersion equation. Fast-decaying waves can
be neglected in the waveguide modeling of portions of string without sources if they are long enough. However,
they cannot accurately be neglected at the neighborhood of the excitation region (hammer) and of the fixation
points (bridge, capo d’astro bar).

In particular if a point-force is exerted by the hammer felt on the string, the waveguide model proposed
by Bensa et al. (Ref. 3, Fig. 2) needs to be complemented at the excitation point, as shown in Fig. @ which
summarizes the results of the last section. Note that a realistic excitation by the hammer is distributed over a
certain width*. This extension could be made by a spatial convolution. A future study may determine whether
or not this correction would noticeably improve the quality of synthesized stiff-string sounds.

This paper is an attempt to extract as much information as possible from the physical model defined by a
one-dimensional wave equation, in a waveguide modeling context and from a mathematical point of view. It is
hoped that this study will help to improve future waveguide models of strings and to enhance the accuracy of
efficient computational models using Digital Waveguides® ™3, after a substantial effort to design suitable digital
filters.

Eric Ducasse Waveguide modeling of stiff piano strings
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