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On waveguide modeling of sti� piano strings

Éri Duasse

Éole Nationale Supérieure d'Arts et Métiers, C.E.R. de Bordeaux-Talene, 33405 Talene edex, Frane

eri.duasse�ensam.eu

ABSTRACT

Bensa et al. [J. Aoust. So. Am. 114(2) 1095�1107 (2003), Setion IV℄ reently proposed a waveguide

model for the transverse displaement of a sti� piano string. The study desribed here is an attempt to ast

a omplementary light on this topi, based on a ommon wave approah instead of a modal approah. A pair

of weakly attenuated traveling waves and a pair of fast-deaying waves both satisfy the one-dimensional wave

equation developed by Bensa et al.. These solutions have to be arefully onsidered, however, for portions of

string interating with the hammer felt, the bridge, or the apo d'astro bar.

PACS number: 43.75.Mn

I. INTRODUCTION

The �rst attempt for synthesizing musial sounds using physial models was made more than 30 years ago

by Hiller and Ruiz

1
. Starting from the one-dimensional wave equation

2
of the transverse displaement of a

string, three main approahes are generally used for building a omputational model: either the use of a �nite

di�erene sheme (e.g. Refs. 3, 4), or a modal synthesis (e.g. Ref. 5), or the building of a Digital Waveguide

model (e.g. Refs. 6, 7, 3). A waveguide is onsidered here as a ��lterlike struture modeling one-dimensional wave

propagation as purely lossless throughout the length of the string, with loss and dispersion lumped in terminating

�lters

3
.� The hammer ation and the re�etion onditions at both ends of the string are also modeled as lumped

�lters. Portions of string are distributed elements

6
represented by two-port networks. In this paper we fous on

this latter approah.

Bensa et al. propose an improved one-dimensional wave equation [Ref. 3, Eq. (6)℄ orresponding to a well

posed model of sti� piano strings. In Se. IV.B they use a modal approah to extrat the waveguide parameters

from the partial di�erential equation (PDE). This approah requires the knowledge of both the length of the

string and the boundary onditions [Ref. 3, Eq. (10)℄ for the alulation of the vibration modes assoiated

with standing waves. The waveguide parameters are then dedued from the harateristis of the �rst mode

inluding the fundamental frequeny of the ideal string. The present paper is an attempt to show that a wave

approah using omplex wave-numbers appears as more onvenient beause eah dispersive attenuated traveling

wave is diretly obtained from the one-dimensional wave equation, apart from the re�etions at the ends of the

string. Assuming that the one-dimensional wave equation is linear, time- and spae-invariant, a two-dimensional

Fourier-Laplae transformation gives an algebrai equation relating the transverse displaement of the string

(output) to the spae distribution of external fores (input) in the wave-number/frequeny domain. The solution

of this equation an be seen as the superposition of traveling waves whih our in a waveguide model.

Some general points about waveguides, traveling waves, and omplex wave-numbers are outlined in Setion II

to help the reader to understand the following setions. In Setion III, after the one-dimensional wave equation

advaned by Bensa et al.

3
is realled, this equation is solved to obtain the response of an in�nite string to a point

impulse in the wave-number/frequeny domain, showing that two fast-deaying traveling waves are omitted by

the modal approah in Bensa et al.

3
. These fast-deaying waves an be negleted only for portions of string

without soures whih are long enough. They should, however, be taken into aount at the neighborhood of

the exitation point, as detailed in Setion IV.
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II. WAVEGUIDE MODELING AND COMPLEX WAVE-NUMBERS

The question is this: how to pass from the wave equation of a one-dimensional system to a waveguide model?

A. From the one-dimensional wave equation to the transfer funtion

1. A general one-dimensional wave equation

The vibration state of a one-dimensional system (e.g. the sti� piano string) is assumed to be de�ned by a

funtion y (e.g. the transverse displaement of the string) of time t and position x along the system.

A general one-dimensional wave equation, assuming that it is linear, time- and spae-invariant, an be written

as:

dx∑

m=0

dt∑

n=0

αm,n
∂m+n y

∂ xm ∂ tn
(x, t) = f(x, t) , (1)

where f is the spae distribution of external fores (e.g. exerted by the hammer felt, the bridge and the apo

d'astro bar).

2. Time/frequeny and spae/wave-number onversions

In the spae/frequeny domain, eah signal s(x, t) is onverted into ŝ(x, ω) by Fourier transformation:

ŝ(x, ω) =

∫ +∞

−∞

s(x, t) e−i ω t dt , (2)

where ω is the angular frequeny and i2 = −1.
In the wave-number/frequeny domain, eah signal s(x, t) beomes S(k, ω) by Fourier�Laplae transforma-

tion:

S(k, ω) =

∫ +∞

−∞

ŝ(x, ω) e−i k x dx =

∫ +∞

−∞

∫ +∞

−∞

s(x, t) e−i (ω t+k x) dt dx , (3)

where k is the omplex wave-number.

3. An ordinary di�erential equation in the spae/frequeny domain

The Fourier transformation of the wave equation (1) leads to an ordinary linear onstant-oe�ient di�erential

equation with respet to x:
dx∑

m=0

[
dt∑

n=0

αm,n (i ω)n

]
∂m ŷ

∂ xm
(x, ω) = f̂(x, ω) . (4)

4. The transfer funtion

In the wave-number/frequeny domain, we obtain:

[
dx∑

m=0

dt∑

n=0

αm,n im+n ωn km

]
Y (k, ω) = F (k, ω) ⇐⇒ Y (k, ω) = H(k, ω) F (k, ω) , (5)

where H(k, ω) is the transfer funtion of the system. The denominator of H(k, ω) is a polynomial of order dx
in k and order dt in ω. The poles of H(k, ω) (where H(k, ω) is onsidered as a funtion of k) are the roots of a
polynomial equation ommonly alled the dispersion equation.
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B. From the transfer funtion to the blok-diagram model

1. The impulse response as the sum of pairs of symmetrial traveling waves

Assuming both that the propagation model orresponds to a well-posed physial problem (f. e.g. Ref. 3 for

more details) and that the problem is symmetrial (i.e., unhanged by substituting −x for x), the oe�ients

α2k+1,n are zero, whih implies that dx = 2 J is an even number, and the transfer funtion H(k, ω) is rewritten
as follows:

H(k, ω) =
a(ω)

J∏

j=1

[ k2 − kj(ω)
2 ]

=
J∑

j=1

aj(ω)

k2 − kj(ω)2
=

J∑

j=1

gj(ω)

[
1

k − kj(ω)
− 1

k + kj(ω)

]
, (6)

where aj(ω) = a(ω)/
∏J

m=1, m6=j [ km(ω)
2 − kj(ω)

2 ] and gj(ω) = aj(ω)/[2 kj(ω)], assuming kj(ω) 6=0 and

kj(ω) 6=km(ω) if j 6=m.

For an in�nite system, the assumed boundary (no soures at in�nity) and initial onditions (rest initial

ondition) are:

y|x→+∞ = y|x→−∞ = 0 ; y|t<0 = 0 ; ∀n , 1 6 n 6 dt − 1 ,
∂n y

∂ tn

∣∣∣∣
t<0

= 0 . (7)

Coming bak to the spae/frequeny domain, Eqs. (6) and (7) lead to the onvolution produt with respet

to the spatial variable:

ŷ(x, ω) =

∫ +∞

−∞

f̂(x0, ω) ĥ(x− x0, ω) d x0 , (8)

ĥ(x, ω) satisfying

ĥ(x, ω) =
J∑

j=1

gj(ω)
[
e−i kj(ω) x u(x) + e+i kj(ω) x u(−x)

]
, (9)

where u is the Heaviside unit step funtion:

∀ x < 0 , u(x) = 0 and ∀ x > 0 , u(x) = 1 .

The funtion ĥ(x, ω) orresponds to the Fourier transform of the impulse response h(x, t) (also named Green's

funtion) to f(x, t) = δ(x) δ(t) where δ is the Dira impulse. This response h(x, t) is the e�et of a time impulse

(at t = 0) exerted on a single point (at x = 0) of the system. The unit of h is the unit of y per Newton and per

seond. An inverse Fourier transformation gives:

h(x, t) =
1

2 π

J∑

j=1

∫ +∞

−∞

gj(ω)
{
ei [ω t−kj(ω) x ] u(x) + ei [ω t+kj(ω) x ] u(−x)

}
d ω . (10)

Note that h(x, t) = h(−x, t) : the symmetry of the problem is satis�ed.

Eah kj(ω) is a omplex wave-number suh that:

kj(ω) = ω τj(ω)− i αj(ω) =
ω

cj(ω)
− i αj(ω) , (11)

where τj(ω) > 0 is the propagation delay per unit length (or slowness), cj(ω) the phase veloity, and αj(ω) > 0
the attenuation per unit length.

The impulse response an be rewritten as:

h(x, t) =
1

2 π

J∑

j=1

∫ +∞

−∞

gj(ω)
{
e−αj(ω) x ei ω [ t−x/cj(ω)] u(x) + e+αj(ω) x ei ω [ t+x/cj(ω)] u(−x)

}
d ω . (12)

This impulse response is onsequently the superposition of J pairs of symmetrial deaying traveling waves

starting from the exitation point and propagating in opposite diretions.
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Thus, the general solution y is given by the two-dimensional onvolution:

y(x, t) =

∫ +∞

−∞

∫ +∞

−∞

f(x0, t0) h(x− x0, t− t0) d x0 d t0 . (13)

2. Waveguide modeling of a region without soures

Under the assumption that no soures exist in a region between x = xmin and x = xmax, one an demonstrate

that the vibration state is the sum of J deaying traveling waves y+j in the inreasing x diretion and of J
deaying traveling waves y−j in the dereasing x diretion:

∀ x , xmin 6 x 6 xmax , y(x, t) =
J∑

j=1

y+j (x, t) +
J∑

j=1

y−j (x, t) ,

where ŷ+j (x, ω) = e−i kj(ω) (x−xmin) ŷ+j (xmin, ω)

and ŷ−j (x, ω) = e+i kj(ω) (x−xmax) ŷ−j (xmax, ω) .

(14)

This region an be modeled as J waveguides in parallel whih beome J digital waveguides

e.g.6, 7
in disrete

time. Eah transfer funtion e−i kj(ω)∆x
is generally designed as a delay line in series with a digital ausal �lter.

After suitable digital �lters have been found, e�ient time-domain simulations an be made.

In the ase of piano strings, the soures are loated in the segment of hammer felt/string ontat and at both

ends. A blok-diagram model is drawn in Fig. 1, inluding an observation point. This �gure is a generalization

of the model involved in Bensa et al. (Ref. 3, Fig. 2). Note that the boundary onditions haraterizing the

string terminations an be hanged by only modifying one lumped �lter at eah end, apart from the waveguides

modeling the portions of string without soures.
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Figure 1: Blok-diagram of the waveguide model of a piano string. The string segment interating with the hammer felt

is assumed to be [x0−δx ; x0+δx ]. x1 is the position of observation. x = 0 is the apo d'astro bar position and x = L

is the bridge position. Eah Hn(ω) is equivalent to J delay line/�lter bloks in parallel: H1(ω) =

J∑

j=1

e−i kj(ω) (x0−δx)
,

H2(ω) =

J∑

j=1

e−i kj(ω) (x1−x0−δx)
and H3(ω) =

J∑

j=1

e−i kj(ω) (L−x1)
.
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III. THE FOUR WAVES IN A STIFF PIANO STRING

In this setion and the next one, we apply the priniples given in the previous setion to the one-dimensional

wave equation introdued by Bensa et al. [Ref. 3, Eq. (6)℄. The dispersion equation provides two pairs of

deaying traveling waves whih need a detailed analysis.

A. The transfer funtion of a sti� piano string

The transverse displaement y is assumed to satisfy [Ref. 3, Eq. (6)℄:

∂2 y

∂ t2
+ 2 b1

∂ y

∂ t
− 2 b2

∂3 y

∂ x2 ∂ t
− c2

∂2 y

∂ x2
+ κ2 ∂

4 y

∂ x4
=

1

µ
f , (15)

where b1 is the �rst oe�ient of damping (due to visosity of the air), b2 the seond damping oe�ient (inner

losses), c =
√
T/µ the transverse wave veloity of string

4
, T the string tension, µ the linear mass density of

string, κ = c
√
E I/T a sti�ness oe�ient, E the Young modulus, I = S r2 the moment of inertia of the

ross-setion, S the ross-setion, and r the radius of gyration.

In the wave-number/frequeny domain, Eqs. (5) and (15) lead to the transfer funtion:

H(k, ω) =
Y (k, ω)

F (k, ω)
=

1

µ [(−ω2 + 2 i ω b1) + (c2 + 2 i ω b2) k2 + κ2 k4]
. (16)

B. Complex wave-numbers

The two (J = 2) wave-numbers ks and kd satisfy:

k2
s(ω) =

c2

2 κ2

[
−1− i

2ω

c2
b2 +

√
1 +

4 (κ2 − b22)ω
2

c4
+ 4 i ω

(
1

c2
b2 − 2

κ2

c4
b1

)]
, (17)

k2
d(ω) =

c2

2 κ2

[
−1− i

2ω

c2
b2 −

√
1 +

4 (κ2 − b22)ω
2

c4
+ 4 i ω

(
1

c2
b2 − 2

κ2

c4
b1

)]
. (18)

These equations are similar to Eq. (11) in Ref. 3. The approahes, however, are di�erent. In the modal approah

3

β+ and β− are real-valued funtions of the omplex frequeny s. In the present wave approah ks and kd are

the roots of the dispersion equation and are omplex-valued funtions of the ommon angular frequeny ω (real

number).

The assumptions [Ref. 3 Eqs. (24) and (25)℄

b1 b2 ≪ c2 ; b22 ≪ κ2 and b21 ≪ ω2
(19)

lead to

ks(ω) ≃ c

κ

√
ξ

2
− i

κ ω

c3 (1 + ξ)

√
2

ξ

(
b1 +

c2 ξ

2 κ2
b2

)
(20)

and

kd(ω) ≃ 1

c3
√
2 ξ (1 + ξ)

(2ω2 b2 − c2 ξ b1)− i

√
2

ξ

ω

c
, (21)

with

ξ = −1 +

√
1 +

4 κ2

c4
ω2 . (22)

Éri Duasse Waveguide modeling of sti� piano strings



6 / 10

C. Waveguide modeling of portions of string without soures

The �rst wave-number ks haraterizes a weakly attenuated dispersive traveling wave similar to the one desribed

by Bensa et al. [Ref. 3, Eq. (34)℄. At low frequenies [ b21 ≪ ω2 ≪ c4/(4 κ2) ℄ the phase veloity is lose to

c. Its numerial values are between 160 and 420m · s−1
for piano tones C2, C4, and C7 (Ref. 3, Table I). The

attenuation per unit length αs ≃ b1/c is small : its numerial values [10αs/ log(10)℄ are less than 0.1 dB ·m−1
.

The seond wave-number kd represents a fast-deaying wave with a very high phase veloity. At low frequen-

ies the phase veloity is approximately c κ/(b2 − κ2 b1/c
2). Its numerial values are in the range 2.6 × 105 to

1.62× 106m · s−1
. The attenuation per unit length is αd ≃ c/κ. The numerial values [10αd/ log(10)℄ of αd are

greater than 1.1× 103dB ·m−1
. For any length ∆x greater than 1.8 cm, e−αd ∆x

(the modulus of e−i kd ∆x
) is less

than 10−2
. This seond wave is quasi-evanesent i.e., its phase veloity is almost in�nite and its attenuation

per unit length is high. It ould represent the fat that a part of the energy of a hammer strike would instantly

propagate along the sti� string around the ontat region suh as to avoid the formation of a sharp orner, as

shown below and in aordane with Cremer

8
.

Consequently, the waveguide model of a portion of string without soures will ontain only a single delay

line/�lter (wave-number ks) for eah diretion of propagation, provided that the portion of string is longer than

a few entimeters. But the other wave haraterized by kd annot be negleted at the neighborhood of the

exitation region, as shown in the following setion.

IV. The impulse response of the string

A. Spae/frequeny domain

In the spae/frequeny domain Eqs. (16�18), (6), and (9) imply that the Fourier transform of the impulse

response is:

ĥ(x, ω) =

∣∣∣∣∣∣∣∣∣

ĥ+
s (0, ω) e

−i ks(ω) x + ĥ+
d (0, ω) e

−i kd(ω) x x > 0

ĥ+
s (0, ω) + ĥ−

s (0, ω) + ĥ+
d (0, ω) + ĥ−

d (0, ω) x = 0

ĥ−
s (0, ω) e

+i ks(ω) x + ĥ−
d (0, ω) e

+i kd(ω) x x < 0

, (23)

where

ĥ+
s (0, ω) = ĥ−

s (0, ω) = gs(ω) =
−i

2µ κ2 [ks(ω)2 − kd(ω)2] ks(ω)

ĥ+
d (0, ω) = ĥ−

d (0, ω) = gd(ω) =
i

2µ κ2 [ks(ω)2 − kd(ω)2] kd(ω)

. (24)

The omplex omplianes gs(ω) and gd(ω) (unit: m ·N−1
) haraterize the onversion of fore to motion.

B. Example of a C2 piano string

The response y of a C2 piano string (Ref. 3, Table I) to a downward Gaussian time impulse at a single point

x = 0 is given by Fig. 2. This response is very lose to the negative of the impulse response h in the bandwidth

0�20 kHz. The transverse displaement y is the sum of two weakly attenuated traveling waves y±s (wave-numbers

±ks) and of two fast-deaying waves y
±
d (wave-numbers ±kd) going away symmetrially from the exitation point.

In agreement with Refs. 8 and 2 (Setion 2.18), �the bend is rounded appreiably by the sti�ness of the string�.

The fast-deaying waves inhibit the sharp orner whih ould be generated by the weakly attenuated traveling

waves, if the former were not onsidered. As shown in the previous setion, only the weakly attenuated traveling

waves exist far from the exitation point (more than 2 cm), as well as in the neighborhood of the exitation

point after 0.1ms.
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Figure 2: Response of a C2 piano string to a downward Gaussian impulse f . f(x, t) = f0 δ(x)ϕ(t) where ϕ(t) =

−λ e−π λ2 (t−τ)2
. f0 = 1N , λ = 2 × 105s−1

, and τ = 0.02ms. The parameters of the C2 piano string are (Ref. 3,

Table I): c = 160.9m · s−1
, κ = 0.58m2 · s−1

, b1 = 0.25 s−1
, and b2 = 7.5× 10−5m2 · s−1

. The response y (plain line)

is the sum of a weakly attenuated wave ys (dashed line) and of a quasi-evanesent wave yd (dotted line).

C. Non-ausal omponents of the ausal impulse response

An important additional point is that y±s and y±d are not ausal responses whereas their sum is ausal. A

mathematial explanation an be found for this by fousing on the impulse response at the exitation point

[Eq. (24)℄. The signals h±
s (0, t) and h±

d (0, t) and the modulus of their Fourier transforms gs(ω) = ĥ±
s (0, ω) and

gd(ω) = ĥ±
d (0, ω) are plotted in Fig. 3 (in the ase of a C2 piano string). The latter signal h±

d (0, t) is nearly an

even funtion (with respet to t). The former signal h±
s (0, t) is nearly the sum of a onstant [ 1/(4µ c) ℄ and of

an odd funtion.
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Figure 3: (a) Impulse responses of a C2 piano string and (b) the modulus of their Fourier transforms times the

angular frequeny. The ompliane gs(ω) = ĥ±
s (0, ω) is the Fourier transform of the signal h±

s (0, t) (weakly attenuated

waves, dashed line). gd(ω) = ĥ±

d (0, ω) is the Fourier transform of h±

d (0, t) (quasi-evanesent waves, dotted line).

The impulse response h(0, t) (plain line) is two times the sum of h±
s (0, t) and h±

d (0, t). Its Fourier transform is

ĥ(0, ω) = 2 [gs(ω) + gd(ω)].

This is natural beause, on assuming that b1 and b2 are zero, and ω is greater than zero [see Eqs. (17), (18),

(22), and (24)℄, the omplianes beome:

gs(ω) ≃
i κ

µ c3
√
2 ξ (1 + ξ)

and gd(ω) ≃
−
√
ξ

2µ
√
2 c (1 + ξ)ω

. (25)

Consequently, the ompliane gs is an imaginary-valued funtion and gd is a real-valued funtion. Beause

the signals h±
s (0, t) and h±

d (0, t) are real-valued, the former should be an odd funtion and the latter an even

funtion. But the Fourier transform of h±
s (0, t) has a singularity at ω = 0 and the limit of h±

s (0, t), when t tends
to −∞, has to be zero. This implies that a onstant has to be added to h±

s (0, t), giving an additional term

π δ(ω)/(2µ c) in its Fourier transform.

Applying the �nal value theorem to the signal h±
s (0, t), the limit of h±

s (0, t) with t tending to in�nity is

1/(2µ c) (see Fig. 3). The �nal value of the impulse response h(0, t) is similarly 1/(µ c) . This last property is

false if b1 > 0: all the signals tend slowly to zero when t tends to in�nity. Indeed, h±
d (0, t) is lose to zero for

great values of t and h(0, t) ≃ h+
s (0, t) + h−

s (0, t).
In summary, the two waves h±

s and h±
d have to be onsidered together at the position x = 0 to avoid non-

physial e�ets with respet to time. The onversion of fore to motion is haraterized by a single ompliane

ĥ(0, ω) = 2 [ gs(ω) + gd(ω) ] , whih is plotted in Fig. 3.

Éri Duasse Waveguide modeling of sti� piano strings
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Y

PSfrag replaements

x = x0

x

ŷ(x0, ω)

e−i ks(ω)L

e−i ks(ω)L

e−i ks(ω)L′

e−i ks(ω)L′

ĥ(0, ω)

gs(ω)

ϕ̂(ω)

Figure 4: Blok-diagram of a portion of string exited by a point fore. This fore ϕ(t) is exerted by the hammer felt

at the position x = x0. The fore distribution is assumed to be f(x, t) = ϕ(t) δ(x − x0) for x in the range x0 − L to

x0 + L′
(L and L′

are both greater than a few entimeters).

This implies that if the fore distribution f(x, t) = δ(x − x0)ϕ(t) is assumed to represent a point-fore

exerted by the hammer felt at the position x = x0, then the response y(x0, t) at the exitation point satis�es

ŷ(x0, ω) = 2 [ gs(ω)+ gd(ω) ] ϕ̂(ω). This ase is represented in Fig. 4 as a blok-diagram. Similar blok-diagrams

are used for bowed strings (f. e.g. the review artile by Smith

9
, Fig. 14).

V. CONCLUSION AND PROSPECTS

The onlusion of this paper is that a omplete mathematial treatment of the one-dimensional wave equation

(15) arefully takes into aount all the waves provided by the dispersion equation. Fast-deaying waves an

be negleted in the waveguide modeling of portions of string without soures if they are long enough. However,

they annot aurately be negleted at the neighborhood of the exitation region (hammer) and of the �xation

points (bridge, apo d'astro bar).

In partiular if a point-fore is exerted by the hammer felt on the string, the waveguide model proposed

by Bensa et al. (Ref. 3, Fig. 2) needs to be omplemented at the exitation point, as shown in Fig. 4 whih

summarizes the results of the last setion. Note that a realisti exitation by the hammer is distributed over a

ertain width

4
. This extension ould be made by a spatial onvolution. A future study may determine whether

or not this orretion would notieably improve the quality of synthesized sti�-string sounds.

This paper is an attempt to extrat as muh information as possible from the physial model de�ned by a

one-dimensional wave equation, in a waveguide modeling ontext and from a mathematial point of view. It is

hoped that this study will help to improve future waveguide models of strings and to enhane the auray of

e�ient omputational models using Digital Waveguides

6,7, 3
, after a substantial e�ort to design suitable digital

�lters.

Éri Duasse Waveguide modeling of sti� piano strings
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