Michaël Gabay
email: michael.gabay@g-scop.grenoble-inp.fr@wihëlqyadkotovvm@bsu.by@ldimiruotovad

Vladimir Kotov

Nadia Brauner
email: nadia.brauner@g-scop.grenoble-inp.fr@xdifrunera

Online Bin Stretching with Bunch Techniques

Keywords: Bin stretching, Multiprocessor scheduling, Online algorithms, Bin packing

We are given a sequence of items that can be packed into m unit size bins and the goal is to assign these items online to m bins while minimizing the stretching factor. Bins have innite capacities and the stretching factor is the size of the largest bin. We present an algorithm with stretching factor 26/17 ≈ 1.5294 improving the best known algorithm by Kellerer and Kotov [1] with a stretching factor 11/7 ≈ 1.5714. Our algorithm has 2 stages and uses bunch techniques: we aggregate bins into batches sharing a common purpose.

Introduction

In bin packing problems, a set of items is to be packed into identical bins of size one; the goal is to minimize the number of bins. We are interested in the online variant of this problem: the items arrive consecutively and each of them must be packed irrevocably into a bin, without any knowledge on future items. Recent research has focused on studying scenarios where some information is known in advance.

We consider the online problem where we know in advance that the items can be packed into m bins of size 1. The objective is to pack the items on arrival into m stretched bins, i.e. bins of size at most β = 1 + α where β is called the stretching factor. Formally speaking, a bin-stretching algorithm is dened to have a stretching factor β if, for every sequence of items that can be assigned to m bins of unit size, the algorithm successfully packs the items into m bins of size at most β. The goal is to nd an algorithm with the smallest possible stretching factor. This problem was introduced by Azar and Regev [2]. They described a practical application of transferring les on a remote system and remarked that this problem is equivalent to the online makespan minimization problem on identical parallel machines with known value of the optimal makespan. Graham [3,4] gave the rst deterministic online algorithm for this online scheduling problem. He showed that the famous List scheduling algorithm is (2 -1/m)-competitive. A long list of improved algorithms has since been published, the best one is due to Fleisher and Wahl [5].

For the semi-online case, the algorithm is provided with some information on the job sequence or has some extra ability to process it such as decreasing order [4,6,7], known total processing time [8,9,10,11],

or known number of necessary bins [2] as in our case.

Notice that the bin stretching problem is dierent from the semi-online scheduling problem with known total processing time. A simple proof of this statement is that Albers and Hellwig [11] proved that 1.585 is a lower bound for the semi-online scheduling problem with known total processing time while Kellerer and Kotov [1] developed an algorithm with stretching factor 11/7 ≈ 1.5714 < 1.585 for the online bin stretching problem. Until recently, 4/3 was the best known lower bound for the bin stretching problem. This bound is obtained with 2 bins, on input (1/3, 1/3, 1) or (1/3, 1/3, 2/3, 2/3) and can be generalized to any number of bins [2]. A better lower bound of 19/14 ≈ 1.3571 for 3 and 4 bins is presented in [12].

Generalizations of the bin stretching problem includes bin stretching with dierent machine speeds. The case with 2 uniform machines was studied in [13,14].

In this paper we present an algorithm that uses bunch techniques and provides a stretching factor 26/17 ≈ 1.5294. Recently,Böhm et al. [15] improved the upper bound to 1.5 for any number of bins and to 1.375 for 3 bins, building on the techniques presented in this paper.

Problem denition and notation

We are given a set of m identical unit size bins and a sequence of n items. Item j has a weight w j > 0 and each item has to be assigned online to a bin. We dene the weight of a bin B, denoted by w(B), as the sum of the weights of all items assigned to B. In the course of the algorithm, we dene some structures made up of one or several bins. For a given structure S, we denote by w(S) the sum of the weights of all items packed into the bins composing S and |S| is the number of bins in S.

The number m of bins is given as part of the initial input and it is certied that all items can t into m unit-sized bins. However, we have no more information in the initial input (e.g. the total number of items n is unknown until the end of the input). We divide the items into 4 disjoint classes as in Table 1 and Figure 1. Items with weight in (0;

Algorithm overview

We design a two-stage algorithm. In the rst stage, we open the bins and create bunches which we use to t the items. In the second stage, we t the items into the remaining non-reduced bins and bunches.

In the algorithm, we use dierent types of bin structures and qualify them as open, closed or reduced. A structure is a group of one or several bins associated with a qualier. We say that a bin is open if it can be used during current stage of the algorithm. A bin is closed once it contains enough items. The closed status simply means that the function of the bin changes. Closed bins can be reopened and converted into a new structure anytime. Finally, a bin is reduced if it will not be used anymore. Any reduced structure S has the property that the sum of the weights of its items is greater than its number of bins: w(S) ≥ |S| and for any bin B ∈ S, w(B) ≤ 26 17 . Notice that if all bins have been reduced then there is no item remaining and the stretching factor of the current solution is at most 26 17 .

We denote respectively by sB, mB and lB single bins whose rst goal is to contain small, medium and large items. T B and LB denote bunches intended to contain respectively tiny and large items. These bins and bunches can also contain dierent items as we will see later.

A bunch is a group of 4 bins. The aim of these structures is to help tting items with more exibility and then reduce them when structure's total weight is greater than or equal to 4. When a new bunch is created, we rst assign a single bin to the bunch, then a second one, a third one and eventually the fourth bin. Once 4 bins have been assigned to a bunch, the bunch is complete and its status changes to closed. Otherwise, the bunch is incomplete and is denoted by T B i where i ≤ 3 is the number of bins currently assigned to the bunch.

In the following sections, we describe the dierent stages of the algorithm and show that any incoming item is packed into a non-reduced bin where it ts. This proves Theorem 1.

Theorem 1. The two-stage algorithm described Sections 2 and 3 has a stretching factor of 26/17. This means that the algorithm never fails and all the weights of the bins are at most 26 17 . In the following sections, we describe the algorithm as a set of priority rules and prove its correctness.

Stage 1

At the beginning of the rst stage, all bins are empty. Along the rst stage, we open bins and organize them into dierent structures. When an item arrives, Algorithm 1 indicates in which structure it should be packed.

Algorithm 1: Packing item j Let k = 1 and c = class(j) while j is not packed and all rules in When the new structure is reduced X or Y , it simply means that if w(B) > 1 then we reduce B and otherwise, we obtain Y . For instance, if the current item is small and an open sB exists, then the item is packed into an open sB. If the weight of the bin becomes greater than 1, then reduce it. Otherwise the bin remains an open sB and further small items can still be packed in it. If no open sB exists but there is an empty bin, then pack the current item into an empty bin which becomes an open sB. If there is no empty bin, then the algorithm goes into Stage 2.

If there is no item remaining, the current solution is feasible and has a stretching factor smaller than or equal to 26 17 . Observe that the empty bin belongs to every set of rules. Hence, Stage 2 cannot be triggered while there is at least one empty bin remaining. We apply these building rules and obtain the corresponding structures. We give the details of some rules in which there are two structures in the New structure eld:

• Rule 4 for a large item: we pack the item into B 1 , the rst bin of the bunch. We reduce B 1 and the other bins are renamed: B 2 becomes B 1 and B 3 (if exists) becomes B 2 . Rule 3 was not applied, hence i ≥ 2. Since there is more than one bin in the bunch, w(B 1) > 9/34. So any large item ts into B 1 and the weight of B 1 is then greater than 1.

• Rule 2 for a tiny item: we apply the bunch building rules described in Algorithm 2. If the item is packed into B 1 or B 2 , we obtain T B 3 . Otherwise, we obtain a closed T B.

• Rule 3 for a tiny item: we apply the bunch building rules described in Algorithm 2. If the item is packed into B l with l ≤ i, we obtain T B i . Otherwise, we obtain T B i+1 . Notice that, since rule 2 for a tiny item was not applied, we have: i + 1 ≤ 3.

Observe that for any T B bunch, each bin (except B 4) contains at least two items. Denote j and k, the two items in B 3 , we have:

w(T B) = (w(B 1) + w j) + (w(B 2) + w k) > 18 17
Once a bunch is closed, sort its bins by decreasing order of the weights:

w(B 1) ≥ w(B 2) ≥ w(B 3) ≥ w(B 4) = 0.
Then, the following property holds:

Property 1. When a bunch is closed, we have:

w(B 1) ≥ w(B 2) ≥ 6 17
Proof. (vii) (Except rules 2 and 3 for a tiny item) packing an item into the rst existing structure is always feasible and results in one of the corresponding structures stated Table 2.

Note that the exception on property (vii) from Lemma 1 is related to the fact that rules 2 and 3 for a tiny item may require an additional empty bin. In such case, if there is no empty bin, the algorithm goes into Stage 2.

Observe that Property (i) from Lemma 1 proves Theorem 1 if the input ends before the algorithm goes into Stage 2.

Stage 2

In the second stage, there is no empty bin remaining (except B 4 bins in bunches). We use the remaining

space in the open and closed bins and bunches to pack the items. Moreover, there is either no open lB or no bunch. We deal with both of these cases separately. In the following, we rely on the following property:

Property 2. At any step, let S r be the set of reduced bins, |S r | = r. The total weight of the items which are not packed into S r is at most m -r.

Proof. If a structure S is reduced then w(S) ≥ |S|. We sum this up on all reduced structures and obtain: w(S r) ≥ r. Let I be the set of all items and I r the set of items packed into the reduced bins. w(S r) = i∈Ir w i = w(I r). Since all items can be packed into m bins with capacity 1, w(I) ≤ m. Hence w(I) -w(I r) ≤ m -r.

All bunches have been reduced

If there is no non-reduced bunch remaining, then there are no open w(B i) > 9 17

(1)

w j + w(B i) > 26 17
(2) Inequality (2), together with the fact that the weight of a non reduced bin is smaller than 1, give w j > 9 17 .

Therefore j is medium or large. During Stage 1, tiny items can only be packed within lB bins or T B bunches. Since there were no bunches remaining at the beginning of Stage 2, all bunches have been reduced to reduced LB. Moreover, there are some open lB's remaining. Hence, during Stage 2, all tiny items were packed into lB bins. Therefore, tiny items have been packed only into bins containing large items.

In any feasible solution to the bin packing problem, any bin containing a large item can only hold a few additional tiny items. Let p be the total number of large items and l the number of large items already packed.

Denote B 1 , . . . , B l , the bins containing large items in the current solution. Because of the preceding remark, we know that B l+1 , . . . , B m contain no tiny item. Hence we can pack j and all items from B l+1 , . . . , B m into m -l bins. All bins which are not containing large items have been reduced (and hence their weight is greater than 1), except maybe an open mB and an open sB. From the fact that at least m -l -2 bins with no large item are reduced, together with inequalities (1) and (2), we obtain:

w j + m i=l+1 w(B i) ≥ m -l -2 + 9 17 + 26 17 > m -l
This contradicts the feasibility of the packing problem. Indeed, we can pack all medium, small and any p -l large items into m -l bins (one bin for each large item and the medium and small items t in the other bins). Therefore, there is no such item j.

We have proved in this case that the algorithm never fails and always returns a solution using at most m bins, lled to at most 26 17 .

Note that if we dene the classes as in Figure 1: (0; α 2] (tiny), (α 2 ; α] (small), (α; 1+α 2] (medium) and (1+α 2 ; 1] (large), then all the previous results hold for any α > 0.5.

There are some non-reduced bunches

We now show that Lemma 2 still holds if there are some non-reduced bunches remaining at the end of Stage 1. In this case, there is no open lB remaining. Stage 2 starts with some of the following structures: Reduced bins Reduced LB Open mB (0 or 1) Open sB (0 or 1) Open T B i (0 or 1) Open LB (0 or 1) Closed T B During Stage 2, closed bunches are reopened and used to pack some of the remaining items. In the meantime, some buer bins are used to pack the other items. These buers will receive the smaller items while the larger ones will be packed in the bunches.

Current buer is called X . Along with this buer, we use up to 3 other single bins: Z 1 , Z 2 and Z 3 . If there is an Open T B i at the beginning of Stage 2 we assign its bins to Z 1 and possibly Z 2 and Z 3 , by decreasing order of their weights. Whenever we have no X (Stage 2 is beginning or X is reduced), the rst existing structure among the following becomes X :

open sB, open mB, Z 3 , Z 2 , Z 1 , closed T B
In all but the last case, we get X by renaming a bin. In the last case, we denote by B 1 , B 2 , B 3 , B 4 the bins from the bunch, w(B 1) ≥ w(B 2) ≥ w(B 3) ≥ w(B 4). We assign:

X ← B 4 , Z 1 ← B 1 , Z 2 ← B 2 and Z 3 ← B 3
and the bunch is disbanded.

If we cannot get a new X , then only a few bins are remaining. Stage 2 is terminated and the algorithm goes into a last stage, detailed in Section 3.2.2.

During Stage 2, an additional type of bunch, denoted by MB is used. The main purpose of these bunches is to receive medium items.

The process is then very similar to Stage 1: items are packed into bins according to priority rules and bins are reduced. Priority rules are given Table 3. There is however a slight dierence with Table 2: it should be read as Pack item j into structure S if S exists and packing item j into S is feasible and results in the new structure indicated in Table 3. This dierence only concerns rule (1) for large items. Indeed:

Z 1 was part of a (possibly open) bunch. Therefore, at the end of Stage 1, its weight was smaller than 9/17 and any item can be packed into Z 1 . However, we only pack an item into Z 1 if we can reduce it afterwards.

If Z 1 is reduced, then Z 1 ← Z 2 and Z 2 ← Z 3 (if exists).
When an item is assigned to a single bin structure, if the weight of the bin becomes greater than 1, then the bin is reduced.

When an item is assigned to an open LB, we try to pack it into B 3 , then B 2 , B 1 and eventually B 4 . Once B 4 contains an item, we reduce the bunch. As seen in Stage 1, the weight of the structure is greater than 4.

When a medium item is assigned to a closed T B, it is packed into B 3 . When an item is assigned to an X ← B 1 . The following property shows that these bins can indeed be reduced:

Property 3. Once B 4 from an open MB contains two items, w(X) + w(B 2) + w(B 3) + w(B 4) > 4.
Proof. During Stage 2, at least one item j which did not t into B 3 has been packed into B 2 . Hence, by Property 1:

w(B 3) + w(B 2) = (w(B 3) + w j) + (w(B 2) -w j)
> 26/17 + 6/17 = 32/17 Therefore, max(w(B 3), w(B 2)) > 16/17. Moreover, B 4 contains two items k and l (with l the last item packed). Neither k, nor l t into B 3 or B 2 and l does not t into X . Hence:

w(X) + min(w(B 3), w(B 2)) + w(B 4) ≥ (w(X) + w l) + (min(w(B 3), w(B 2)) + w k) > 26/17 + 26/17 = 52/17
Eventually, summing this up with max(w(B 3), w(B 2)) gives:

w(X) + w(B 2) + w(B 3) + w(B 4) > 4
Observe that there is no assumption on the classes of the items packed into X , B 2 and B 3 in Property 3.

Termination stage

Stage 2 is completed, either when the input is over or no packing rule is feasible (or we cannot get a new X in such case, refer to Subsection 3.2.2). In the following, we consider the dierent cases and show that we can always t remaining items into non-reduced bins with a 26/17 stretching factor.

If the algorithm nishes before an item cannot be packed according to priority rules, then all items have been packed and none of the bins capacities exceeds 26/17. If all bins have been reduced, then the sum of all the weights of the bins is greater than m and hence all items have been packed.

Otherwise, no rule can be applied to pack the current item. Table 4 sums up the possibly remaining structures depending on the current item. Note that for a large item, if Z 2 exists, then w(Z 1) > 9 34 > 4 17 and since w(Z 1) ≤ 9 17 , we can apply rule 1 for a large item. Hence if current item is large and no rule can be was greater than 18/17. Therefore: w(B 1) + w(B 2) + w(B 3) ≥ 18/17 + 3 × 13/17 = 57/17 > 3 Then, we have at most 4 bins remaining: B 4 , X , Z 1 and Z 2 .

2. If there is an open LB containing 3 large items and Z 3 , we pack all coming items into X until it is reduced and then we reduce B 1 , B 2 and B 3 as previously. Otherwise, current item j does not t into X . Since Z 3 exists, we can use Property 1 for Z 1 : 5. Otherwise, there is no bunch. There are at most 4 bins remaining: X , Z 1 , Z 2 and Z 3 .

w j + w(X) + w(Z 1) + (w(B 1) + w(B 2) + w(B 3)) > 26/
After these reductions, we have at most 4 bins remaining. Let b be the number of remaining bins. In each case, we explain how to use the remaining bins and then consider j, an item which does not t into any of the remaining bins. We show that w j plus the sum of the weights of the remaining bins is strictly greater than b, contradicting Property 2.

The cases with 0 or 1 bin remaining are trivial so we only deal with the other cases.

We cannot get a new X

If we cannot get a new X , then remaining bins are possibly an open MB and an open LB. We keep on applying priority rules. However, when an item is packed into open MB, we try to pack it into B 3 , then B 2 , then B 1 and eventually B 4 . Hence, if the open MB is reduced, its 4 bins are reduced.

Once there is a single structure remaining, if it is the open LB, then we reduce the bins and nish as presented Subsection 3.2.1.

Otherwise there is an open MB remaining. We keep on applying priority rules and suppose some item j cannot be packed. The item j cannot be packed. Hence B 1 and B 4 both contain an item which ts into neither B 2 , nor B 3 . Denote those items k and l. By Property 1: w(B 1) -w k ≥ 6 17 . Moreover, Property 3 holds. Therefore, B 4 contains a single item. Therefore, either l or j (or both) is large. Without loss of generality, suppose j is large, then:

w(B 1) + w(B 2) + w(B 3) + w(B 4) + w j ≥ (w(B 1) -w k) + (w(B 2) + w k) + (w(B 3) + w l) + w j > 6/
L 1 L 2 L 3 L 4 Old names X B 4 Z 2 Z 1 X Z 3 Z 2 Z 1 3.2.3. 4

bins remaining

If there are 4 remaining bins, the possibly remaining bins are detailed Table 5. We rename those bins L 1 , L 2 , L 3 and L 4 . Note that w(L 2), w(L 3), w(L 4) ≤ 9

17 at the beginning of this step. Hence we can t at least one item in any of those three bins.

Pack any tting item into L 1 , otherwise L 2 , then L 3 and eventually into L 4 . Suppose j is an item which does not t into any of the remaining bins. Denote k i the last item packed into L i and observe that, for i = 2, 3, 4, k i does not t into L f for all f < i.

If the weight of a bin is greater than 1, then:

w(L 1) + w(L 2) + w(L 3) + w(L 4) + w j > 1 + 26/17 + 26/17 > 4
Otherwise, all the weights of the bins are smaller than one. Hence w j > 9 17 . Moreover, at the beginning of this step, w(L 3) + w(L 4) > 9 17 .

w(L 1) + w(L 2) + w(L 3) + w(L 4) + w j ≥ (w(L 1) + w k3) + (w(L 2) + w k4)+ (w(L 3) + w(L 4) -w k3 -w k4) + w j > 26/17 + 26/17 + 9/17 + 9/17 > 4

Which is a contradiction.

3 bins remaining

If there are 3 bins remaining, then Z 1 is among them and w(Z 1) ≤ 9 17 . Rename it L 3 and the other bins are renamed L 1 and L 2 . Pack any tting item into L 1 , otherwise L 2 and eventually L 3 . Suppose that the item j does not t into any of them and let k be the last item packed into L 3 . There is at least one such item since w(Z 1) ≤ 9 17 in the beginning.

w(L

1) + w(L 2) + w(L 3) + w j ≥ (w(L 1) + w j) + (w(L 2) + w k) > 26/17 + 26/17 > 3
Which is a contradiction.

2 bins remaining

In this case, denote one bin by L 1 and the other bin by L 2 . Pack any tting item into L 1 , otherwise into L 2 . If j does not t into L 2 , then w(L 2) > 9 17 .

w j + w(L 1) + w(L 2) > 26/17 + 9/17 > 2 Which is a contradiction. I rns uellerer nd ldimir uotovF en e0ient lgorithm for in strethingF Operations Research LettersD RI@RAXQRQ!QRTD PHIQF P ossi ezr nd yded egevF ynEline inEstrethingF Theoretical Computer ScienceD PTV@IAXIU!RID PHHIF Q onld vF qrhmF founds for ertin multiproessing nomliesF Bell System Technical JournalD RS@WAXISTQ!ISVID IWTTF R onld vF qrhmF founds on multiproessing timing nomliesF SIAM Journal on Applied MathematicsD IU@PAXRIT!RPWD IWTWF S udolf pleisher nd wihel hlF ynEline sheduling revisitedF Journal of SchedulingD Q@TAXQRQ!QSQD PHHHF T teve eidenD ti°í gllD nd qerhrd oegingerF emiEonline sheduling with deresing jo sizesF Operations Research LettersD PU@SAXPIS!PPID PHHHF U FgF idwin ghengD rns uellererD nd ldimir uotovF elgorithms etter thn v for semiEonline sheduling with deresing proessing timesF Operations Research LettersD RH@SAXQRW!QSPD PHIPF V rns uellererD ldimir uotovD wri qrzi pernzD nd solt uzF emi onEline lgorithms for the prtition prolemF Operations Research LettersD PI@SAXPQS!PRPD IWWUF W inrio engelelliD ÁFfF xgyD wri qrzi pernzD nd solt uzF he onEline multiproessor sheduling prolem with known sum of the tsksF Journal of SchedulingD U@TAXRPI!RPVD PHHRF IH FgF idwin ghengD rns uellererD nd ldimir uotovF emiEonEline multiproessor sheduling with given totl proessing timeF Theoretical computer scienceD QQU@IAXIQR!IRTD PHHSF II usnne elers nd wtthis rellwigF emiEonline sheduling revisitedF Theoretical Computer ScienceD RRQXI!WD PHIPF IP wihël qyD xdi frunerD nd ldimir uotovF gomputing vower founds for ynline yptimiztion rolemsX epplition to the fin trething rolemF HAL preprint hal-00921663D PHIQF IQ qyörgy hósD wri qrzi pernzD nd solt uzF wo uniform mhines with nerly equl speedsX uni(ed pproh to known sum nd known optimum in semi onEline shedulingF Journal of Combinatorial OptimizationD PI@RAXRSV!RVHD PHIIF IR gFF xgD hiyi nD ong reD nd FgF idwin ghengF wo semiEonline sheduling prolems on two uniform mhinesF Theoretical Computer ScienceD RIH@VAXUUT!UWPD PHHWF IS wrtin föhmD ti°í gllD o vn teeD nd vel esel yF fetter lgorithms for online in strethingF arXiv preprint arXiv:1404.5569D PHIRF IT rns uellerer nd ldimir uotovF en pproximtion lgorithm with solute worstEse performne rtio P for twoE dimensionl vetor pkingF Operations Research LettersD QI@IAXQS!RID PHHQF IU vuitpold felD fo ghenD rns uellererD nd ldimir uotovF elgorithms for onEline inEpking prolems with rdinlity onstrintsF Discrete Applied MathematicsD IRQ@IAXPQV!PSID PHHRF

 Table 2 for class c have not been tried do if the required structure for rule k of class c exists and is feasible then Pack item j according to rule k of class c

	Transform the structure into the new structure given Table 2	
	else	
	k ← k + 1	
	if j has not been packed then	
	return Fail ;	// Goto Stage 2

return Success Algorithm 1 is used while there is no failure. Once the algorithm fails to pack an item, Stage 1 is ended and the algorithm goes into Stage 2.

 Algorithm 2 explains how items are packed into bunches. Closed bunches are made up of 4 bins added one after another. Notice that an open T B bunch contains only tiny items and has been assigned at most LB reduced LB or open LB 2. closed T B open LB 3. open T B 1 reduced bin or open lB 4. open T B i reduced bin and open T B i-1 lB reduced bin or open lB 2. open T B 3 open T B 3 or closed T B 3. open T B i open T B i or open T B i+1 4. empty open T B 1 Algorithm 2: Packing tiny item j into bunch T B

		le PX tge I priority rules
	Class	k. Pack in	New structure
	large	1. open 5. empty	open lB
	medium 1. open mB reduced bin 2. empty open mB
	small	1. open sB 2. empty	reduced bin or open sB open sB
		1. open	
	tiny		
	3 bins.		

i // We have an open bunch T B i composed of bins B 1 , . . . , B i with i ∈ {1, 2, 3} // B h is the h th bin assigned to the bunch. Let h = 1 while j is not packed and h ≤ i do if w(B h) + w j ≤ 9 17 then Pack item j into B h else h ← h + 1 if j has not been packed then // h = i + 1 if there is no empty bin remaining then return Fail ; // Goto Stage 2 Assign an empty bin to the bunch as B i+1 and assign j to this bin else if B 3 contains two items then // any two tiny items fit into B 3 with total weight smaller than 9 17 if there is no empty bin remaining then return Fail ; // Goto Stage 2 Assign an empty bin to the bunch as B 4 and close the bunch return Success

 If a closed bunch is reopened (as an LB) during Stage 1, items are packed into the rst bin in which they t, by increasing order of bin indices. Note that in a closed T B, the remaining capacity in each bin is larger than 1. Hence, we can t one large item into each bin and then w(LB) > 18 (i) all the weights of the bins are smaller than or equal to 26 17 , (ii) there is at most one open mB, (iii) there is at most one open sB, (iv) there is at most one open LB, (v) there is at most one open T B, (vi) there is either no open lB or no bunch (neither open nor closed),

	9 17 -3 17 = 6 17 .

w(B 1)+w(B 2)+w(B 3) > 18 17 . Hence the largest weight of a bin is greater than the mean: w(B 1) ≥ 6 17 . Both of the two remaining bins are containing at least two items. One precedes the other in the original ordering. W.l.o.g suppose that B 2 was before B 3 . Let j and k be two items from B 3 . If w j ≥ 3 17 and w k ≥ 3 17 then w(B 3) ≥ 6 17 . Otherwise, min(w j , w k) < 3 17 and it did not t into B 2 , hence w(B 2) > 17 + 4 × 13 17 > 4 and the bunch can be reduced. Now it remains to state the reduction rules. For any structure composed of a single bin, reduce it once its weight exceeds 1. LB structures are reduced once they contain 4 large items. Using the priority rules, one can now easily verify the following properties: Lemma 1. Anytime during Stage 1, the following properties hold:

 T B i or closed T B or open LB remaining. At the end of Stage 1, we have some of the following structures: Reduced bins Reduced LB Open lB Open mB (0 or 1) Open sB (0 or 1) Algorithm 3: Packing item j in Stage 2 (no non-reduced bunch remaining) if item j ts in an open lB then Pack item j into the largest bin open lB in which it ts else Pack item j into the largest bin in which it ts Let B be the bin in which j has been packed if w(B) ≥ 1 then Reduce B Algorithm 3 indicates how an item is packed during Stage 2. Note that any small or tiny item can be packed into any non-reduced bin. Hence, while some lB are remaining, open mB or open sB are only used to pack medium or large items. Lemma 2. If there is no open or closed bunch at the beginning of Stage 2, then Algorithm 3 does not fail and the weight of all bins is smaller than or equal to 26 17 . Proof. Suppose that a remaining item j cannot be packed into the remaining open bins. For any non reduced bin B i , the following inequalities hold:

 Suppose there is no open lB remaining. Then, there are exactly two bins remaining: B 1 , an open mB and B 2 , an open sB. We sum up inequalities (1) and (2) and get: w(B 1) + w(B 2) + w j > 35/17 > 2 which contradicts Property 2. Therefore, there are some open lB's remaining.

	If there is 0 or 1 open bin remaining, then (2) contradicts Property 2. Hence, there are at least two open
	bins remaining.

 reduced bin or X 3. open MB reduced MB or open MB 4. closed T B open MB small tiny 1. X 2. open MB reduced bin or X reduced MB or open MB open MB we try to pack it into B 3 , then B 2 and eventually B 4 . Since B 4 was empty at the end of Stage 1, we can pack any two medium items into B 4 . When B 4 contains 2 items, we reduce B 2 , B 3 , B 4 and X and

		le QX tge P priority rules
	Item	Pack in	New structure
	large	1. Z 1 2. open LB 3. closed T B open LB reduced bin reduced LB or open LB 4. X reduced bin or X
		1. open mB reduced bin
	medium	2. X	

 17 + 6/17 + 57/17 > 5 We pack j into Z 1 and reduce X , Z 1 , B 1 , B 2 and B 3 . Then, Z 1 ← Z 2 , Z 2 ← Z 3 and we have exactly 3 bins remaining: Z 1 , Z 2 and B 4 . 3. If there is an open MB remaining, then j (the current item) is large. If j ts into B 2 we pack it into B 2 and resume with priority rules. Property 3 still holds. Otherwise, B 2 contains an item which does not t into B 3 . Hence, w(B 2) + w(B 3) > 26 17 + 6 17 = 32 17 . Once j is packed into B 1 , w(B 1) + w(B 2) + w(B 3) > 6 17 + 13 17 + 32 17 = 3 and we can reduce B 1 , B 2 and B 3 . There are at most 3 remaining bins: B 4 , X and Z 1 . 4. If there is an open LB containing 1 or 2 large items remaining, we consider this bunch as an open MB and keep on applying priority rules and eventually previous point (3).

Acknowledgments

This research has been partially supported by project ICS No 5379 and Belorussian BRFFI grant (Project F13K-078). The research of the rst and the third author have been partially supported by the LabEx PERSYVAL-Lab (ANR11-LABX-0025).

applied, then there is no Z 2 remaining. The reader can easily verify remaining congurations for the other classes of items. Table 4 does not take open mB into account. We deal with this case as follows: if an open mB is remaining, then no medium item came during Stage 2. Hence, there is no MB bunch. Moreover, the current item j is large since any tiny or small item would t into X and any medium into open mB. In the following, we explain why Algorithm 4 works and show that the remaining bins are in one of the congurations treated in the next subsections.

1. If there is an open LB containing 3 large items and no Z 3 . Reducing B 1 , B 2 and B 3 is feasible because the bunch contains 3 large items and was a closed T B bunch before being reopened; hence its weight

Complexity

We represent a bin and its content using a stack plus its current weight and use a dedicated data structure (a stack) for each kind of structure used in the algorithm. The overall space used is O(m).

In order to pack any given item during Stage 1, we need to check its class and try to pack it in at most 5 dierent structures with at most 3 bins tested for each one. Hence, any item is packed in O(1) time.

Therefore the overall complexity of the rst stage is bounded by O(n).

During Stage 2, we need to sort the structures. Each structure has at most 4 bins. Hence, a structure is sorted in O(1) time and we have at most m 4 structures to sort. Therefore, we sort all of them in O(m)

time. In order to pack any item, we need to check its class and try at most 4 dierent structures. Hence, any item is packed in O(1) time and the overall complexity of this stage is bounded by O(n).

Same goes for the termination stage. Moreover, additional operations, like renumbering the bins, are performed but there is a xed number of dierent additional operations and all of them are performed in constant time.

Furthermore, when m ≥ n, at most n bins are used. Hence, the overall time and space complexity of the algorithm is O(n).

Summary and future work

The presented algorithm has a stretching factor of 26 17 and runs in linear time. Notice that this bound is tight with the input m = 2 and the items: { 13 17 , 13 17 }.

The techniques of combining bins into bunches with certain properties and analyzing the bunches has been successfully applied to other online and oine packing problems, see e.g. [16,17].

It seems reasonable to hope that better worst-case behavior can be achieved by rening this approach.

Based on this scheme, it might be possible to reduce the gap between lower and upper bound for both known total sum and bin-stretching problems. Improving lower bounds is also a challenging task.