
HAL Id: hal-00869858
https://hal.science/hal-00869858v1

Preprint submitted on 4 Oct 2013 (v1), last revised 12 Sep 2015 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Online Bin Stretching with Bunch Techniques
Michaël Gabay, Vladimir Kotov, Nadia Brauner

To cite this version:
Michaël Gabay, Vladimir Kotov, Nadia Brauner. Semi-Online Bin Stretching with Bunch Techniques.
2013. �hal-00869858v1�

https://hal.science/hal-00869858v1
https://hal.archives-ouvertes.fr

Semi-Online Bin Stretching with Bunch Techniques

Michaël Gabaya,∗, Vladimir Kotovb, Nadia Braunera

aGrenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France
bBelarusian State University, FPMI DMA department, 4 Nezavisimosti avenue 220030 Minsk Belarus

Abstract

We are given a sequence of items that can be packed into m unit size bins and the goal is to assign these
items online tom bins while minimizing the stretching factor. Bins have in�nite capacities and the stretching
factor is the size of the largest bin. We present an algorithm with stretching factor 26/17 improving the
best known algorithm by Kellerer and Kotov [1] with a stretching factor 11/7. Our algorithms has 2 stages
and uses bunch techniques: we aggregate bins into batches sharing a common purpose.

Keywords: Bin stretching, Multiprocessor scheduling, Online algorithms, Bin packing

1. Introduction

In bin packing problems, a set of items is to be packed into identical bins of size one, minimizing the
number of bins. We are interested in the case were the items arrive online: on arrival, each item must
be assigned immediately and irrevocably to a bin, without any knowledge of the future. Recent research
has focused on studying scenarios where some information is known in advance. We consider a semi-online
version of this problem where we know in advance that the items can be packed into m of bins of size 1.
The objective is then to propose an algorithm which packs the items on arrival into m stretched bins, i.e.
bins of size at most α, a stretching factor. Formally speaking, a bin-stretching algorithm is de�ned to have
a stretching factor α if, for every sequence of items that can be assigned to m unit size bins, the algorithm
successfully packs the items into m bins of size α. This problem was introduced by Azar and Regev [2].
They described a practical application of transferring �les on a remote system.

This problem can be seen as a semi-online version of makespan minimization on parallel machines where
we know that there is a feasible schedule with makespan Cmax (especially, we can have Cmax = C∗

max, the
optimal makespan). The set of jobs has to be scheduled online on the machines with maximum completion
time at most the stretched makespan αCmax. The objective is to minimize the stretching factor α.

For the online parallel machine scheduling problem, Graham [3, 4] gave the �rst deterministic online
algorithm. He showed that the famous List scheduling algorithm is (2 − 1/m)-competitive. A long list of
improved algorithms has since been published, the best one is due to Fleishner and Wahl [5].

For the semi-online case, the algorithm is provided with some information on the job sequence or has
some extra ability to process it such as decreasing order [4, 6, 7], known total processing time [8, 9, 10, 11],
or known number of necessary bins [2] as in our case.

Recently Kellerer and Kotov [1] developed an algorithm with stretching factor 11

7
. This value is smaller

than the lower bound of 1.585 by Albers and Hellwig [11] for semi-online scheduling with known total
processing time. It shows the di�erence between known total processing time version and bin-stretching
problems. To our knowledge, 4/3 is the best known lower bound for the bin stretching problem. This bound
is obtained with 2 bins, on input (1/3, 1/3, 1) or (1/3, 1/3, 2/3, 2/3).

In this paper we present an algorithm that uses bunch techniques and provides a stretching factor 26

17
.

∗Corresponding author
Email addresses: michael.gabay@g-scop.grenoble-inp.fr (Michaël Gabay), kotovvm@bsu.by (Vladimir Kotov),

Nadia.Brauner@g-scop.grenoble-inp.fr (Nadia Brauner)

Preprint submitted to Elsevier October 4, 2013

1.1. Problem de�nition and notation

We are given a set of m identical unit size bins and a sequence of n items. Item j has a weight wj > 0
and each item has to be assigned online to a bin. We de�ne the weight of a bin B, denoted by w(B), as
the sum of the weights of all items assigned to B. In the course of the algorithm, we de�ne some structures
made up of one or several bins. For a given structure S, we denote by w(S) the sum of the weights of all
items packed into the bins composing S and |S| is the number of bins in S.

The number m of bins is given as part of the initial input and it is certi�ed that all items can �t into m
bins. However, we have no more information in the initial input (the total number of items n is unknown
until the end of the input).

We divide the items into 4 disjoint classes as in Table 1. Items with weight in (0; 9

34
] are called tiny,

items in (9

34
; 9

17
] are called small, items in (9

17
; 13

17
] are called medium and items in (13

17
; 1] are called large.

Table 1: Item classes

Item class tiny small medium large

Item weight (0; 9/34] (9/34; 9/17] (9/17; 13/17] (13/17; 1]

In the sequel, we design an algorithm with stretching factor 26

17
. Hence, each bin has a capacity 26

17
and

we say that an item j �ts into a bin B if w(B) + wj ≤
26

17
.

1.2. Algorithm overview

We design a multi-stage algorithm. In the �rst stage, we open the bins and create bunches which we use
to �t the items. In the second stage, we �t the items into the remaining non-reduced bins and bunches.

In the algorithm, we use di�erent kinds of bin structures and qualify them as open, closed or reduced. A
structure is a group of one or several bins associated with a quali�er. We say that it is open if it can be
used as such during current stage of the algorithm. It is closed if it cannot be used anymore as such during
current stage (but can be reopened and converted to a new structure) and reduced if it will not be used
anymore. Any reduced structure S has the property that the sum of the weights of its items is greater than
its number of bins: w(S) ≥ |S| and for any bin B ∈ S, w(B) ≤ 26

17
. Notice that if all bins have been reduced

then there is no item remaining and current solution stretching factor is at most 26

17
.

We denote respectively by tB, sB,mB and lB single bins intended to contain mainly (but not only) tiny,
small, medium and large items. SB and LB denote bunches intended to contain respectively small and
large items. A bunch is made up of 4 bins. The aim of these structures is to help �tting items with more
�exibility and then reduce them when structure's total weight is greater than or equal to 4. When a new
bunch is created, we �rst assign a single bin to the bunch, then a second one, a third one and eventually
the fourth bin. Once 4 bins have been assigned to a bunch, we say that the bunch is complete. Otherwise,
the bunch is incomplete and is denoted by SBi where i ≤ 3 is the number of bins currently assigned to the
bunch.

In the following sections, we describe the di�erent stages of the algorithm and show that any incoming
item is packed into a non-reduced bin where it �ts. This proves Theorem 1.

Theorem 1. The algorithm further described in this paper has a stretching factor of 26/17.

This means that the algorithm never fails and all of the weights of the bins are smaller than 26

17
. In the

following sections, we describe the algorithm as a set of priority rules and prove its correctness.

2. Stage 1

At the beginning of the �rst stage, all bins are empty. Along the �rst stage, we open bins and organize
them into di�erent structures.

2

Given an item, check its class, then assign it according priority rules given Table 2: check if the required
structure for rule 1 exists and is feasible ; if so, pack the item according to rule 1, otherwise, continue with
rule 2 and so on. Once an item is packed into some structure, the structure turns into a new one (possibly
the same) detailed Table 2. If no rule is feasible, then stage 1 ends and the algorithm goes into stage 2.

For instance, if the current item is small and an open sB exists, then the item is packed into an open sB.
If the weight of the bin becomes greater than 1, then reduce it. Otherwise the bin remains an open sB and
further small item can still be packed in it. If no open sB exists but there is an empty bin, then pack the
current item into an empty bin which becomes an open sB. If there is no empty bin, then the algorithm goes
into stage 2.

If there is no item remaining, the current solution is feasible and has a stretching factor smaller than or
equal to 26

17
. Remark that the empty bin is in every set of rules. Hence, by the end of stage 1, there is no

empty bin remaining.

Table 2: Stage 1 priority rules

Item Pack in New structure

large

1. open LB reduced LB or open LB
2. closed SB open LB
3. open SB1 reduced bin or open lB

4. open SBi reduced bin and open SBi−1

5. empty open lB

medium
1. open mB reduced bin
2. empty open mB

small
1. open sB reduced bin or open sB
2. empty open sB

tiny

1. open lB reduced bin or open lB
2. open SB3 open SB3 or closed SB

3. open SBi open SBi or open SBi+1

4. empty open SB1

We now explain how items are packed into bunches. Complete bunches are made up of 4 bins added one
after another. Remark that, according to priority rules, only tiny items can be assigned to an incomplete
bunch. Let us consider an incomplete bunch SBk and denote its bins Bi, i ∈ {1, 2, 3} (Bi denotes the ith

bin assigned to the bunch). While this bunch is incomplete, it has been assigned at most 3 bins. A tiny
item j assigned to SBk is packed into Bi where i is the smallest feasible index such that w(Bi) + wj ≤

9

17
.

If none is feasible, a new bin is assigned to the bunch and j is assigned to this bin. As soon as B3 contains
two items (and any two tiny items �t into B3 with total weight smaller than 9

17
), an additional empty bin is

added to the bunch which is now complete. SB3 becomes a closed SB. If there is no empty bin remaining,
stage 2 is triggered.

Remark that for any SB bunch, each bin (except B4) contains at least two items. Denote j and k, the
two items in B3, we have:

w(SB) = (w(B1) + wj) + (w(B2) + wk) >
18

17

Once a bunch is complete, sort its bins by decreasing order of the weights: w(B1) ≥ w(B2) ≥ w(B3) ≥
w(B4) = 0. Then, the following property holds:

Property 1. When a bunch is complete, we have:

w(B1) ≥ w(B2) ≥
6

17

3

Proof. w(B1)+w(B2)+w(B3) >
18

17
. Hence the largest weight of a bin is greater than the mean: w(B1) ≥

6

17
.

Both of the two remaining bins are containing at least 2 items. One precedes the other in the original
ordering. W.l.o.g suppose that B2 was before B3. Both bins are containing at least two items. Let i and j
be two items from B3. If wi ≥

3

17
and wj ≥

3

17
then w(B3) ≥

6

17
. Otherwise, min(wi, wj) <

3

17
and did not

�t into B2, hence w(B2) >
9

17
− 3

17
= 6

17
.

If a complete bunch is reopened (as an LB) during stage 1, items are packed into the �rst feasible bin by
increasing order of bins indices. Remark that in a closed SB, the remaining capacity in each bin is larger
than 1. Hence, we can �t one large item into each bin. Then w(LB) > 18

17
+ 4× 13

17
> 4 and the bunch can

be reduced.
Now it remains to state the reduction rules. For any structure composed of a single bin, reduce it once

its weight exceeds 1. LB structures are reduced once they contain 4 large items.
Using the priority rules, one can now easily verify the following properties:

Lemma 1. Anytime during stage 1, the following properties hold:

(i) all of the weights of the bins are smaller than or equal to 26

17

(ii) there is at most one open mB

(iii) there is at most one open sB

(iv) there is at most one open LB

(v) there is at most one incomplete bunch

(vi) there is either no open lB or no bunch (even incomplete)

(vii) (Except rules 2 and 3 for a tiny item) packing an item into the �rst existing structure is always feasible
and results in one of the corresponding structures stated Table 2

Note that the exception on property (vii) from Lemma 1 is related to the fact that rules 2 and 3 for a
tiny item may require an additional empty bin. In such case, if there is no empty bin, the algorithme goes
into stage 2.

Remark that Property (i) from Lemma 1 proves Theorem 1 if the input ends before the algorithm goes
into stage 2.

3. Stage 2

In the second stage, there is no empty bin remaining (except B4 bins from bunches). We use the
remaining space in the open and closed bins and bunches to pack the items. Moreover, there is either no
open lB or no bunch.We deal with both of these cases separately.

In the following, we rely on the following property:

Property 2. Let Sr be the set of reduced bins, |Sr| = r. The total weight of the items which are not packed
into Sr is at most m− r.

Proof. If a structure S is reduced then w(S) ≥ |S|. We sum this up on all reduced structures and ob-
tain: w(Sr) ≥ r. Let I be the set of all items and Ir the set of items packed into the reduced bins.
w(Sr) =

∑

i∈Ir

wi = w(Ir). Since all items can be packed into m bins with capacity 1, w(I) ≤ m. Hence
w(I)− w(Ir) ≤ m− r.

3.1. There is no non-reduced bunch

If there is no non-reduced bunch remaining, then there are no open SBi or closed SB or open LB
remaining. At the end of stage 1, we have some of the following structures:

Reduced bins Reduced LB
Open lB Open mB (0 or 1) Open sB (0 or 1)

4

Stage 2 algorithm is straightforward: pack any coming item into the largest feasible open lB. If none is
feasible, pack the item into the largest feasible bin. Reduce any bin whose weight exceeds 1.

Remark that any small or tiny item can be packed into any non-reduced bin. Hence, while some lB are
remaining, open mB or open sB are only used to pack medium or large items.

Lemma 2. The algorithm does not fail and no bin is �lled to more than 26

17
.

Proof. Suppose that a remaining item j cannot be packed in the remaining open bins. For all i ∈ {1, . . . ,m},
the following inequalities hold:

w(Bi) >
9

17
(1)

wj + w(Bi) >
26

17
(2)

Inequality (2), together with the fact that the weight of a non reduced bin is smaller than 1, give wj >
9

17
.

Therefore j is medium or large.
If there is 0 or 1 open bin remaining, then (2) contradicts Property 2. Hence, there are at least two open

bins remaining.
Suppose there is no open lB remaining. Then, there are exactly two bins remaining (open mB and

open sB). We sum up inequalities (1) and (2) and get: w(B1) + w(B2) + wj > 35/17 > 2 which contradicts
Property 2. Therefore, there are some open lB's remaining.

Remark 1. During stage 1, tiny items can only be packed within lB bins or SB bunches. Since there
were no bunches remaining at the beginning of stage 2, all bunches have been reduced to reduced LB.
Moreover, there are some open lB's remaining. Hence, during stage 2, all tiny items were packed into lB
bins. Therefore, tiny items have been packed only into bins containing large items.

In any feasible solution to the bin packing problem, any bin containing a large item can only hold a few
additional tiny items. Let p be the total number of large items and l the number of large items already
packed. Since the problem is feasible, we can pack all medium and small items and any p − l large items
into m− l bins (one bin for each large item and the medium and small items �t into the other bins).

Denote B1, . . . , Bl, the bins containing large items in the current solution. Because of remark 1, we know
that Bl+1, . . . , Bm contain no tiny item. Hence we can pack j and all items from Bl+1, . . . , Bm into m− l
bins. All bins which are not containing large items have been reduced (and hence their weight is greater
than 1), except maybe an open mB and an open sB. From the fact that at least m− l− 2 bins are reduced,
together with inequalities (1) and (2), we obtain:

wj +

m
∑

i=l+1

w(Bi) ≥ m− l − 2 +
9

17
+

26

17
> m− l

Which contradictss Property 2. Therefore, there is no such item j.

We have proved in this case that the algorithm never fails and always returns a solution using at most
m bins, �lled to at most 26

17
. It remains to show that Lemma 2 still holds.

Remark that if we de�ne the classes: (0; α
2
] (tiny), (α

2
;α] (small), (α; 1+α

2
] (medium) and (1+α

2
; 1] (large),

then all of the previous results hold for any α > 0.5.

3.2. There are some non-reduced bunches

If there are some non-reduced bunches remaining, then there is no open lB remaining by the end of
stage 1. Stage 2 starts with some of the following structures:

Reduced bins Reduced LB
Open mB (0 or 1) Open sB (0 or 1)

Open SBi (0 or 1) Open LB (0 or 1) Closed SB

5

During stage 2, closed bunches are reopened and used to pack some of the remaining items. In the
meantime, some bu�er bins are used to pack the other items. Using these bu�ers, help us ensure that only
the largest items are packed into bunches.

Current bu�er is called X . Along with this bu�er, we use up to 3 other single bins: Z1, Z2 and Z3.
If there is an Open SBi at the beginning of stage 2 we assign its bins to Z1 and possibly Z2 and Z3, by
decreasing order of their weights. Whenever we have no X (stage 2 is beginning or X is reduced), the �rst
existing structure among the following becomes X :

open sB, open mB, Z3, Z2, Z1, closed SB

In all but the last case, we get X by renaming a bin. In the last case, we denote by B1, B2, B3, B4 the bins
from the bunch, w(B1) ≥ w(B2) ≥ w(B3) ≥ w(B4). We assign: X ← B4, Z1 ← B1, Z2 ← B2 and Z3 ← B3.

If we cannot get a new X , then only a few bins are remaining. Stage 2 is terminated and the algorithm
goes into a last stage, detailed in Section 3.2.2.

During stage 2, an additional kind of bunch, denoted byMB is used. These bunches are mostly intended
to pack medium items.

The process is then very similar to stage 1: items are packed into bins according to priority rules and
bins are reduced. Priority rules are given Table 3. There is however a slight di�erence with Table 2: it
should be read as �Pack item j into structure S if S exists and packing item j into S is feasible and results
in the new structure indicated Table 3�. This di�erence only concerns rule (1) for large items. Indeed: Z1

was part of a (possibly incomplete) bunch. Therefore, at the end of stage 1, its weight was smaller than 9/17
and any item can be packed into Z1. However, we only pack an item into Z1 if we can reduce it afterwards.
If Z1 is reduced, then Z1 ← Z2 and Z2 ← Z3 (if exists).

Table 3: Stage 2 priority rules

Item Pack in New structure

large

1. Z1 reduced bin
2. open LB reduced LB or open LB
3. closed SB open LB
4. X reduced bin or X

medium

1. open mB reduced bin
2. X reduced bin or X
3. open MB reduced MB or open MB
4. closed SB open MB

{

small
tiny

1. X
2. open MB

reduced bin or X
reduced MB or open MB

When an item is assigned to a single bin structure, if the weight of the bin becomes greater than 1, then
the bin is reduced.
When an item is assigned to an open LB, we try to pack it into B3, then B2, B1 and eventually B4. Once
B4 contains an item, we reduce the bunch. As seen in stage 1, structure's weight is indeed greater than 4.
When a medium item is assigned to a closed SB, it is packed into B3. When an item is assigned to an
open MB we try to pack it into B3, then B2 and eventually B4. Since B4 was empty at the end of stage 1,
we can pack any two medium items into B4. When B4 contains 2 items, we reduce B2, B3, B4 and X and
X ← B1. The following property shows that these bins can indeed be reduced:

Property 3. Once B4 from an openMB contains two items, w(X) + w(B2) + w(B3) + w(B4) > 4.

Proof. During stage 2, at least one item j which did not �t into B3 has been packed into B2. Hence, by

6

Property 1:

w(B3) + w(B2) = (w(B3) + wj) + (w(B2)− wj)

> 26/17 + 6/17 = 32/17

Therefore, max(w(B3), w(B2)) > 16/17. Moreover, B4 is containing two items k and l (with l the last item
packed). Neither k, nor l �t into B3 or B2 and l does not �t into X . Hence:

w(X) + min(w(B3), w(B2)) + w(B4)

≥ (w(X) + wl) + (min(w(B3), w(B2)) + wk)

> 26/17 + 26/17 = 52/17

Eventually, summing this up with max(w(B3), w(B2)) gives:

w(X) + w(B2) + w(B3) + w(B4) > 4

Remark that Property 3 does not assume anything on the classes of the items packed into X , B2 and B3.

3.2.1. Termination stage

Stage 2 is completed, either when the input is over or no packing rule is feasible (or we cannot get a new
X � in such case, refer to subsection 3.2.2). In the following, we consider the di�erent cases and show that
we can always �t remaining items into non-reduced bins with a 26/17 stretching factor.

If the algorithm �nishes before an item cannnot be packed according to priority rules, then all items have
been packed and none of the bins capacities exceeds 26/17. If all bins have been reduced, then the sum of
all the weights of the bins is greater than m and hence all items have been packed.
Otherwise, no rule can be applied to pack the current item. Table 4 sums up the possibly remaining
structures depending on the current item. Remark that for a large item, if Z2 exists, then w(Z1) >

9

34
> 4

17

and since w(Z1) ≤
9

17
, we can apply rule 1 for a large item. Hence if current item is large and no rule can be

applied, then there is no Z2 remaining. The reader can easily verify remaining con�gurations for the other
classes of items.

Table 4 does not take open mB into account. We deal with this case as follows: if an open mB is
remaining, then no medium item came during stage 2. Hence, there is noMB bunch. Moreover, the current
item j is large since any tiny or small item would �t into X and any medium into open mB. Hence, there
is no Z2. The remaining bins are X , open mB and possibly Z1. The remaining items are packed according
to subsection 3.2.4.

Table 4: Remaining structures depending on the current item

Current item Remaining bins
large open MB, X , Z1

medium open LB, X , Z1, Z2, Z3

small open LB
tiny open LB

If a bunch is remaining, we denote its bins by B1, B2, B3 and B4. Depending on the current con�guration,
we reduce some of the remaining bins as follows:

1. If we have an open LB containing 3 large items and no Z3. We reduce B1, B2 and B3. It is indeed
feasible because the bunch contains 3 large items and was a closed SB bunch before being reopened,
hence its weight was greater than 18/17. Therefore:

w(B1) + w(B2) + w(B3) ≥ 18/17 + 3× 13/17 = 57/17 > 3

7

Then, we have at most 4 bins remaining: B4,X ,Z1 and Z2.

2. If we have an open LB containing 3 large items and Z3. Pack all coming items into X until it is
reduced and then reduce B1, B2 and B3 as previously. Otherwise, current item j does not �t into X .
Since Z3 exists, we can use Property 1 for Z1:

wj + w(X) + w(Z1) + (w(B1) + w(B2) + w(B3)) >

26/17 + 6/17 + 57/17 > 5

Pack j into Z1 and reduce X , Z1, B1, B2 and B3. Then, Z1 ← Z2, Z2 ← Z3 and we have exactly 3
bins remaining: Z1, Z2 and B4.

3. If we have an open MB remaining, then current item j, is large. If j �ts into B2 then pack j into B2

and resume with priority rules. Property 3 still holds. Otherwise, B2 contains an item which does not
�t into B3. Hence, w(B2) + w(B3) >

26

17
+ 6

17
= 32

17
. Pack j into B1, then w(B1) + w(B2) + w(B3) >

6

17
+ 13

17
+ 32

17
= 3. Reduce B1, B2 and B3. There are at most 3 remaining bins: B4, X and Z1.

4. If we have an open LB containing 1 or 2 large items remaining, we consider this bunch as an openMB
and keep on applying priority rules and eventually previous point (3).

5. Otherwise, we have no bunch. There are at most 4 bins remaining: X ,Z1,Z2 and Z3.

After these reductions, we have at most 4 bins remaining. Let b be the number of remaining bins. In
each cases, we explain how to use the remaining bins and then consider j, an item which does not �t into
any of the remaining bins. We show that wj plus the sum of the weights of the remaining bins is strictly
greater than b which contradicts Property 2.

The cases with 0 or 1 bin remaining are trivial so we only deal with the other cases.

3.2.2. We cannot get a new X

If we cannot get a new X , then remaining bins are possibly an open MB and an open LB. We keep on
applying prority rules. However, when an item is packed into open MB, we try to pack it into B3, then B2,
then B1 and eventually B4. Hence, if the open MB is reduced, its 4 bins are reduced.

Once there is a single structure remaining, if it is the open LB, then we reduce the bins and �nish as
presented subsection 3.2.1.

Otherwise there is an open MB remaining. Keep on applying priority rules and suppose some item j
cannot be packed.

The item j cannot be packed. Hence B1 and B4 both contain an item which �ts into neither B2, nor
B3. Denote those items k and l. By Property 1: w(B1)−wk ≥

6

17
. Moreover, Property 3 holds. Therefore,

B4 contains a single item. Therefore, either l or j (or both) is large. Without loss of generality, suppose j
is large, then:

w(B1) + w(B2) + w(B3) + w(B4) + wj

≥ (w(B1)− wk) + (w(B2) + wk) + (w(B3) + wl) + wj

> 6/17 + 26/17 + 26/17 + 13/17

> 4

Which is a contradiction.

3.2.3. 4 bins remaining

If there are 4 remaining bins, the possibly remaining bins are detailed Table 5. We rename those bins
L1, L2, L3 and L4. Remark that w(L2), w(L3), w(L4) ≤

9

17
at the beginning of this step. Hence we can �t

at least one item in any of those three bins.
Pack any �tting item into L1, otherwise L2, then L3 and eventually into L4. Suppose j is an item which

does not �t into any of the remaining bins. Denote ki the last item packed into Li and remark that, for
i = 2, 3, 4, ki does not �t into Lf for all f < i.

8

Table 5: Renaming scheme

New names L1 L2 L3 L4

Old names
X B4 Z2 Z1

X Z3 Z2 Z1

If the weight of a bin is greater than 1, then:

w(L1)+w(L2) + w(L3) + w(L4) + wj

>1 + 26/17 + 26/17

>4

Otherwise, all of the weights of the bins are smaller than one. Hence wj >
9

17
. Moreover, at the beginning

of this step, w(L3) + w(L4) >
9

17
.

w(L1)+w(L2) + w(L3) + w(L4) + wj

≥(w(L1) + wk3
) + (w(L2) + wk4

)+

(w(L3) + w(L4)− wk3
− wk4

) + wj

>26/17 + 26/17 + 9/17 + 9/17

>4

Which is a contradiction.

3.2.4. 3 bins remaining

Remark that if there are 3 bins remaining, Z1 is among them and w(Z1) ≤
9

17
. Rename it L3 and the

other bins are renamed L1 and L2. Pack any �tting item into L1, otherwise L2 and eventually L3. Suppose
that the item j does not �t into any of them and let k be the last item packed into L3. There is at least one
such item since w(Z1) ≤

9

17
in the beginning.

w(L1)+w(L2) + w(L3) + wj

≥(w(L1) + wj) + (w(L2) + wk)

>26/17 + 26/17

>3

Which is a contradiction.

3.2.5. 2 bins remaining

In this case, denote one bin by L1 and the other bin by L2. Pack any �tting item into L1, otherwise
into L2. If j does not �t into L2, then w(L2) >

9

17
.

wj + w(L1) + w(L2) > 26/17 + 9/17 > 2

Which is a contradiction.

4. Complexity

We represent a bin and its content using a stack plus its current weight and use a dedicated data structure
(a stack) for each kind of structure used in the algorithm. The overall space used is O(m).

9

In order to pack any given item during stage 1, we need to check its class and try to pack it in at most
5 di�erent structures with at most 3 bins tested for each one. Hence, any item is packed in O(1) time.
Therefore the overall complexity of the �rst stage is bounded by O(n).

During stage 2, we need to sort the structures. Each structure has at most 4 bins. Hence, a structure
is sorted in O(1) time and we have at most m

4
structures to sort. Therefore, we sort all of them in O(m)

time. In order to pack any item, we need to check its class and try at most 4 di�erent structures. Hence,
any item is packed in O(1) time and the overall complexity of this stage is bounded by O(n).

Same goes for the termination stage. Moreover, additionnal operation, like renumbering the bins, are
performed but there is a �xed number of di�erent additionnal operations and all of them are performed in
constant time.

Eventually, when m ≥ n, at most n bins are used. Hence, the overall time and space complexity of the
algorithm is O(n).

5. Summary and future work

The presented algorithm has a stretching factor of 26

17
and runs in linear time. Remark that this bound

is tight with the input m = 2 and the items: { 13
17
, 13

17
}.

The techniques of combining bins into bunches with certain properties and analyzing the bunches has
been successfully applied to other online and o�ine packing problems, see e.g. [12, 13].

It seems reasonable to hope that better worst-case behavior can be achieved by re�ning this approach.
Based on this scheme, it might be possible to reduce the gap between lower and upper bound for both known
total sum and bin-stretching problems. Improving lower bounds is also a challenging task.

Acknowledgments

The research of the third author has been partially supported by project ICS No 5379 and Belarusian
BRFFI grant (Project F13K-078).

References

[1] Hans Kellerer and Vladimir Kotov. An e�cient algorithm for bin stretching. Operations Research Letters, 41(4):343 �
346, 2013.

[2] Yossi Azar and Oded Regev. On-line bin-stretching. Theoretical Computer Science, 268(1):17�41, 2001.
[3] Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9):1563�1581, 1966.
[4] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17(2):416�429,

1969.
[5] Rudolf Fleischer and Michaela Wahl. On-line scheduling revisited. Journal of Scheduling, 3(6):343�353, 2000.
[6] Steve Seiden, Ji°í Sgall, and Gerhard Woeginger. Semi-online scheduling with decreasing job sizes. Operations Research

Letters, 27(5):215�221, 2000.
[7] TCE Cheng, Hans Kellerer, and Vladimir Kotov. Algorithms better than lpt for semi-online scheduling with decreasing

processing times. Operations Research Letters, 40(5):349�352, 2012.
[8] Hans Kellerer, Vladimir Kotov, Maria Grazia Speranza, and Zsolt Tuza. Semi on-line algorithms for the partition problem.

Operations Research Letters, 21(5):235�242, 1997.
[9] E Angelelli, AB Nagy, MG Speranza, and Zs Tuza. The on-line multiprocessor scheduling problem with known sum of

the tasks. Journal of Scheduling, 7(6):421�428, 2004.
[10] TC Cheng, Hans Kellerer, and Vladimir Kotov. Semi-on-line multiprocessor scheduling with given total processing time.

Theoretical computer science, 337(1):134�146, 2005.
[11] Susanne Albers and Matthias Hellwig. Semi-online scheduling revisited. Theoretical Computer Science, 443(0):1�9, 2012.
[12] Hans Kellerer and Vladimir Kotov. An approximation algorithm with absolute worst-case performance ratio 2 for two-

dimensional vector packing. Operations Research Letters, 31(1):35�41, 2003.
[13] Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line bin-packing problems with cardinality

constraints. Discrete Applied Mathematics, 143(1):238�251, 2004.

10

	Introduction
	Problem definition and notation
	Algorithm overview

	Stage 1
	Stage 2
	There is no non-reduced bunch
	There are some non-reduced bunches
	Termination stage
	We cannot get a new X
	4 bins remaining
	3 bins remaining
	2 bins remaining

	Complexity
	Summary and future work

