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Abstract

We are given a sequence of items that can be packed into m unit size bins and the goal is to assign these
items online tom bins while minimizing the stretching factor. Bins have in�nite capacities and the stretching
factor is the size of the largest bin. We present an algorithm with stretching factor 26/17 ≈ 1.5294 improving
the best known algorithm by Kellerer and Kotov [1] with a stretching factor 11/7 ≈ 1.5714. Our algorithm
has 2 stages and uses bunch techniques: we aggregate bins into batches sharing a common purpose.
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1. Introduction

In bin packing problems, a set of items is to be packed into identical bins of size one; the goal is to
minimize the number of bins. We are interested in the online variant of this problem: the items arrive
consecutively and each of them must be packed irrevocably into a bin, without any knowledge on future
items. Recent research has focused on studying scenarios where some information is known in advance.

We consider the online problem where we know in advance that the items can be packed into m bins of
size 1. The objective is to pack the items on arrival into m stretched bins, i.e. bins of size at most β = 1+α
where β is called the stretching factor. Formally speaking, a bin-stretching algorithm is de�ned to have a
stretching factor β if, for every sequence of items that can be assigned to m bins of unit size, the algorithm
successfully packs the items into m bins of size at most β. The goal is to �nd an algorithm with the smallest
possible stretching factor.

This problem was introduced by Azar and Regev [2]. They described a practical application of trans-
ferring �les on a remote system and remarked that this problem is equivalent to the online makespan
minimization problem on identical parallel machines with known value of the optimal makespan.

Graham [3, 4] gave the �rst deterministic online algorithm for this online scheduling problem. He showed
that the famous List scheduling algorithm is (2− 1/m)-competitive. A long list of improved algorithms has
since been published, the best one is due to Fleisher and Wahl [5].

For the semi-online case, the algorithm is provided with some information on the job sequence or has
some extra ability to process it such as decreasing order [4, 6, 7], known total processing time [8, 9, 10, 11],
or known number of necessary bins [2] as in our case.

Notice that the bin stretching problem is di�erent from the semi-online scheduling problem with known
total processing time. A simple proof of this statement is that Albers and Hellwig [11] proved that 1.585 is
a lower bound for the semi-online scheduling problem with known total processing time while Kellerer and
Kotov [1] developed an algorithm with stretching factor 11/7 ≈ 1.5714 < 1.585 for the online bin stretching
problem. Until recently, 4/3 was the best known lower bound for the bin stretching problem. This bound is
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obtained with 2 bins, on input (1/3, 1/3, 1) or (1/3, 1/3, 2/3, 2/3) and can be generalized to any number
of bins [2]. A better lower bound of 19/14 ≈ 1.3571 for 3 and 4 bins is presented in [12].

Generalizations of the bin stretching problem includes bin stretching with di�erent machine speeds. The
case with 2 uniform machines was studied in [13, 14].

In this paper we present an algorithm that uses bunch techniques and provides a stretching factor
26/17 ≈ 1.5294. Recently, Böhm et al. [15] improved the upper bound to 1.5 for any number of bins and to
1.375 for 3 bins, building on the techniques presented in this paper.

1.1. Problem de�nition and notation

We are given a set of m identical unit size bins and a sequence of n items. Item j has a weight wj > 0
and each item has to be assigned online to a bin. We de�ne the weight of a bin B, denoted by w(B), as
the sum of the weights of all items assigned to B. In the course of the algorithm, we de�ne some structures
made up of one or several bins. For a given structure S, we denote by w(S) the sum of the weights of all
items packed into the bins composing S and |S| is the number of bins in S.

The number m of bins is given as part of the initial input and it is certi�ed that all items can �t into m
unit-sized bins. However, we have no more information in the initial input (e.g. the total number of items
n is unknown until the end of the input).

We divide the items into 4 disjoint classes as in Table 1 and Figure 1. Items with weight in (0; 9
34 ] are

called tiny, items in ( 9
34 ;

9
17 ] are called small, items in ( 9

17 ;
13
17 ] are called medium and items in ( 1317 ; 1] are

called large.

Table 1: Item classes

Item class tiny small medium large

Item weight (0; 9/34] (9/34; 9/17] (9/17; 13/17] (13/17; 1]

In the sequel, we design an algorithm with stretching factor 26
17 . Hence, each bin has a capacity 26

17
and we say that an item j �ts into a bin B (or equivalently that packing item j into bin B is feasible) if
w(B) + wj ≤ 26

17 .

-

α
2 α α+1

2
tiny small medium large

0 9
34

9
17

13
17 1

Figure 1: Item types for a stretching factor of β = 1 + α = 26
17

1.2. Algorithm overview

We design a two-stage algorithm. In the �rst stage, we open the bins and create bunches which we use
to �t the items. In the second stage, we �t the items into the remaining non-reduced bins and bunches.

In the algorithm, we use di�erent types of bin structures and qualify them as open, closed or reduced. A
structure is a group of one or several bins associated with a quali�er. We say that a bin is open if it can
be used during current stage of the algorithm. A bin is closed once it contains enough items. The closed
status simply means that the function of the bin changes. Closed bins can be reopened and converted into
a new structure anytime. Finally, a bin is reduced if it will not be used anymore. Any reduced structure S
has the property that the sum of the weights of its items is greater than its number of bins: w(S) ≥ |S| and
for any bin B ∈ S, w(B) ≤ 26

17 . Notice that if all bins have been reduced then there is no item remaining
and the stretching factor of the current solution is at most 26

17 .
We denote respectively by sB,mB and lB single bins whose �rst goal is to contain small, medium and

large items. T B and LB denote bunches intended to contain respectively tiny and large items. These bins
and bunches can also contain di�erent items as we will see later.
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A bunch is a group of 4 bins. The aim of these structures is to help �tting items with more �exibility and
then reduce them when structure's total weight is greater than or equal to 4. When a new bunch is created,
we �rst assign a single bin to the bunch, then a second one, a third one and eventually the fourth bin. Once
4 bins have been assigned to a bunch, the bunch is complete and its status changes to closed. Otherwise,
the bunch is incomplete and is denoted by T Bi where i ≤ 3 is the number of bins currently assigned to the
bunch.

In the following sections, we describe the di�erent stages of the algorithm and show that any incoming
item is packed into a non-reduced bin where it �ts. This proves Theorem 1.

Theorem 1. The two-stage algorithm described Sections 2 and 3 has a stretching factor of 26/17.

This means that the algorithm never fails and all the weights of the bins are at most 26
17 . In the following

sections, we describe the algorithm as a set of priority rules and prove its correctness.

2. Stage 1

At the beginning of the �rst stage, all bins are empty. Along the �rst stage, we open bins and organize
them into di�erent structures. When an item arrives, Algorithm 1 indicates in which structure it should be
packed.

Algorithm 1: Packing item j

Let k = 1 and c = class(j)
while j is not packed and all rules in Table 2 for class c have not been tried do

if the required structure for rule k of class c exists and is feasible then
Pack item j according to rule k of class c
Transform the structure into the new structure given Table 2

else
k ← k + 1

if j has not been packed then

return Fail ; // Goto Stage 2

return Success

Algorithm 1 is used while there is no failure. Once the algorithm fails to pack an item, Stage 1 is ended and
the algorithm goes into Stage 2.

When the new structure is �reduced X or Y �, it simply means that if w(B) > 1 then we reduce B and
otherwise, we obtain Y . For instance, if the current item is small and an open sB exists, then the item is
packed into an open sB. If the weight of the bin becomes greater than 1, then reduce it. Otherwise the bin
remains an open sB and further small items can still be packed in it. If no open sB exists but there is an
empty bin, then pack the current item into an empty bin which becomes an open sB. If there is no empty
bin, then the algorithm goes into Stage 2.

If there is no item remaining, the current solution is feasible and has a stretching factor smaller than or
equal to 26

17 . Observe that the empty bin belongs to every set of rules. Hence, Stage 2 cannot be triggered
while there is at least one empty bin remaining.

Algorithm 2 explains how items are packed into bunches. Closed bunches are made up of 4 bins added
one after another. Notice that an open T B bunch contains only tiny items and has been assigned at most
3 bins.
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Table 2: Stage 1 priority rules

Class k. Pack in New structure

large

1. open LB reduced LB or open LB
2. closed T B open LB
3. open T B1 reduced bin or open lB

4. open T Bi reduced bin and open T Bi−1
5. empty open lB

medium
1. open mB reduced bin
2. empty open mB

small
1. open sB reduced bin or open sB
2. empty open sB

tiny

1. open lB reduced bin or open lB
2. open T B3 open T B3 or closed T B
3. open T Bi open T Bi or open T Bi+1

4. empty open T B1

Algorithm 2: Packing tiny item j into bunch T Bi

// We have an open bunch T Bi composed of bins B1, . . . , Bi with i ∈ {1, 2, 3}
// Bh is the hth bin assigned to the bunch.

Let h = 1
while j is not packed and h ≤ i do

if w(Bh) + wj ≤ 9
17 then

Pack item j into Bh

else
h← h+ 1

if j has not been packed then

// h = i+ 1
if there is no empty bin remaining then

return Fail ; // Goto Stage 2

Assign an empty bin to the bunch as Bi+1 and assign j to this bin

else if B3 contains two items then
// any two tiny items fit into B3 with total weight smaller than 9

17
if there is no empty bin remaining then

return Fail ; // Goto Stage 2

Assign an empty bin to the bunch as B4 and close the bunch

return Success

We apply these building rules and obtain the corresponding structures. We give the details of some rules
in which there are two structures in the �New structure� �eld:

• Rule 4 for a large item: we pack the item into B1, the �rst bin of the bunch. We reduce B1 and the
other bins are renamed: B2 becomes B1 and B3 (if exists) becomes B2. Rule 3 was not applied, hence
i ≥ 2. Since there is more than one bin in the bunch, w(B1) > 9/34. So any large item �ts into B1

and the weight of B1 is then greater than 1.

• Rule 2 for a tiny item: we apply the bunch building rules described in Algorithm 2. If the item is
packed into B1 or B2, we obtain T B3. Otherwise, we obtain a closed T B.
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• Rule 3 for a tiny item: we apply the bunch building rules described in Algorithm 2. If the item is
packed into Bl with l ≤ i, we obtain T Bi. Otherwise, we obtain T Bi+1. Notice that, since rule 2 for
a tiny item was not applied, we have: i+ 1 ≤ 3.

Observe that for any T B bunch, each bin (except B4) contains at least two items. Denote j and k, the
two items in B3, we have:

w(T B) = (w(B1) + wj) + (w(B2) + wk) >
18

17

Once a bunch is closed, sort its bins by decreasing order of the weights: w(B1) ≥ w(B2) ≥ w(B3) ≥ w(B4) =
0. Then, the following property holds:

Property 1. When a bunch is closed, we have:

w(B1) ≥ w(B2) ≥
6

17

Proof. w(B1)+w(B2)+w(B3) >
18
17 . Hence the largest weight of a bin is greater than the mean: w(B1) ≥ 6

17 .
Both of the two remaining bins are containing at least two items. One precedes the other in the original
ordering. W.l.o.g suppose that B2 was before B3. Let j and k be two items from B3. If wj ≥ 3

17 and wk ≥ 3
17

then w(B3) ≥ 6
17 . Otherwise, min(wj , wk) <

3
17 and it did not �t into B2, hence w(B2) >

9
17 −

3
17 = 6

17 .

If a closed bunch is reopened (as an LB) during Stage 1, items are packed into the �rst bin in which
they �t, by increasing order of bin indices. Note that in a closed T B, the remaining capacity in each bin
is larger than 1. Hence, we can �t one large item into each bin and then w(LB) > 18

17 + 4× 13
17 > 4 and the

bunch can be reduced.
Now it remains to state the reduction rules. For any structure composed of a single bin, reduce it once

its weight exceeds 1. LB structures are reduced once they contain 4 large items.
Using the priority rules, one can now easily verify the following properties:

Lemma 1. Anytime during Stage 1, the following properties hold:

(i) all the weights of the bins are smaller than or equal to 26
17 ,

(ii) there is at most one open mB,

(iii) there is at most one open sB,

(iv) there is at most one open LB,
(v) there is at most one open T B,
(vi) there is either no open lB or no bunch (neither open nor closed),

(vii) (Except rules 2 and 3 for a tiny item) packing an item into the �rst existing structure is always feasible
and results in one of the corresponding structures stated Table 2.

Note that the exception on property (vii) from Lemma 1 is related to the fact that rules 2 and 3 for a
tiny item may require an additional empty bin. In such case, if there is no empty bin, the algorithm goes
into Stage 2.

Observe that Property (i) from Lemma 1 proves Theorem 1 if the input ends before the algorithm goes
into Stage 2.

3. Stage 2

In the second stage, there is no empty bin remaining (except B4 bins in bunches). We use the remaining
space in the open and closed bins and bunches to pack the items. Moreover, there is either no open lB or
no bunch. We deal with both of these cases separately. In the following, we rely on the following property:

Property 2. At any step, let Sr be the set of reduced bins, |Sr| = r. The total weight of the items which
are not packed into Sr is at most m− r.
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Proof. If a structure S is reduced then w(S) ≥ |S|. We sum this up on all reduced structures and ob-
tain: w(Sr) ≥ r. Let I be the set of all items and Ir the set of items packed into the reduced bins.
w(Sr) =

∑
i∈Ir wi = w(Ir). Since all items can be packed into m bins with capacity 1, w(I) ≤ m. Hence

w(I)− w(Ir) ≤ m− r.

3.1. All bunches have been reduced

If there is no non-reduced bunch remaining, then there are no open T Bi or closed T B or open LB
remaining. At the end of Stage 1, we have some of the following structures:

Reduced bins Reduced LB
Open lB Open mB (0 or 1) Open sB (0 or 1)

Algorithm 3: Packing item j in Stage 2 (no non-reduced bunch remaining)

if item j �ts in an open lB then
Pack item j into the largest bin open lB in which it �ts

else
Pack item j into the largest bin in which it �ts

Let B be the bin in which j has been packed
if w(B) ≥ 1 then

Reduce B

Algorithm 3 indicates how an item is packed during Stage 2. Note that any small or tiny item can be
packed into any non-reduced bin. Hence, while some lB are remaining, open mB or open sB are only used
to pack medium or large items.

Lemma 2. If there is no open or closed bunch at the beginning of Stage 2, then Algorithm 3 does not fail
and the weight of all bins is smaller than or equal to 26

17 .

Proof. Suppose that a remaining item j cannot be packed into the remaining open bins. For any non reduced
bin Bi, the following inequalities hold:

w(Bi) >
9

17
(1)

wj + w(Bi) >
26

17
(2)

Inequality (2), together with the fact that the weight of a non reduced bin is smaller than 1, give wj >
9
17 .

Therefore j is medium or large.
If there is 0 or 1 open bin remaining, then (2) contradicts Property 2. Hence, there are at least two open

bins remaining.
Suppose there is no open lB remaining. Then, there are exactly two bins remaining: B1, an open mB

and B2, an open sB. We sum up inequalities (1) and (2) and get: w(B1) + w(B2) + wj > 35/17 > 2 which
contradicts Property 2. Therefore, there are some open lB's remaining.

During Stage 1, tiny items can only be packed within lB bins or T B bunches. Since there were no bunches
remaining at the beginning of Stage 2, all bunches have been reduced to reduced LB. Moreover, there are
some open lB's remaining. Hence, during Stage 2, all tiny items were packed into lB bins. Therefore, tiny
items have been packed only into bins containing large items.

In any feasible solution to the bin packing problem, any bin containing a large item can only hold a few
additional tiny items. Let p be the total number of large items and l the number of large items already
packed.

Denote B1, . . . , Bl, the bins containing large items in the current solution. Because of the preced-
ing remark, we know that Bl+1, . . . , Bm contain no tiny item. Hence we can pack j and all items from
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Bl+1, . . . , Bm into m− l bins. All bins which are not containing large items have been reduced (and hence
their weight is greater than 1), except maybe an open mB and an open sB. From the fact that at least
m− l − 2 bins with no large item are reduced, together with inequalities (1) and (2), we obtain:

wj +

m∑
i=l+1

w(Bi) ≥ m− l − 2 +
9

17
+

26

17
> m− l

This contradicts the feasibility of the packing problem. Indeed, we can pack all medium, small and any
p − l large items into m − l bins (one bin for each large item and the medium and small items �t in the
other bins). Therefore, there is no such item j.

We have proved in this case that the algorithm never fails and always returns a solution using at most
m bins, �lled to at most 26

17 .
Note that if we de�ne the classes as in Figure 1: (0; α2 ] (tiny), (

α
2 ;α] (small), (α; 1+α

2 ] (medium) and
( 1+α2 ; 1] (large), then all the previous results hold for any α > 0.5.

3.2. There are some non-reduced bunches

We now show that Lemma 2 still holds if there are some non-reduced bunches remaining at the end of
Stage 1. In this case, there is no open lB remaining. Stage 2 starts with some of the following structures:

Reduced bins Reduced LB
Open mB (0 or 1) Open sB (0 or 1)

Open T Bi (0 or 1) Open LB (0 or 1) Closed T B

During Stage 2, closed bunches are reopened and used to pack some of the remaining items. In the
meantime, some bu�er bins are used to pack the other items. These bu�ers will receive the smaller items
while the larger ones will be packed in the bunches.

Current bu�er is called X . Along with this bu�er, we use up to 3 other single bins: Z1, Z2 and Z3.
If there is an Open T Bi at the beginning of Stage 2 we assign its bins to Z1 and possibly Z2 and Z3, by
decreasing order of their weights. Whenever we have no X (Stage 2 is beginning or X is reduced), the �rst
existing structure among the following becomes X :

open sB, open mB, Z3, Z2, Z1, closed T B

In all but the last case, we get X by renaming a bin. In the last case, we denote by B1, B2, B3, B4 the bins
from the bunch, w(B1) ≥ w(B2) ≥ w(B3) ≥ w(B4). We assign: X ← B4, Z1 ← B1, Z2 ← B2 and Z3 ← B3

and the bunch is disbanded.
If we cannot get a new X , then only a few bins are remaining. Stage 2 is terminated and the algorithm

goes into a last stage, detailed in Section 3.2.2.
During Stage 2, an additional type of bunch, denoted byMB is used. The main purpose of these bunches

is to receive medium items.
The process is then very similar to Stage 1: items are packed into bins according to priority rules and

bins are reduced. Priority rules are given Table 3. There is however a slight di�erence with Table 2: it
should be read as �Pack item j into structure S if S exists and packing item j into S is feasible and results
in the new structure indicated in Table 3�. This di�erence only concerns rule (1) for large items. Indeed:
Z1 was part of a (possibly open) bunch. Therefore, at the end of Stage 1, its weight was smaller than 9/17
and any item can be packed into Z1. However, we only pack an item into Z1 if we can reduce it afterwards.
If Z1 is reduced, then Z1 ← Z2 and Z2 ← Z3 (if exists).

When an item is assigned to a single bin structure, if the weight of the bin becomes greater than 1, then
the bin is reduced.
When an item is assigned to an open LB, we try to pack it into B3, then B2, B1 and eventually B4. Once
B4 contains an item, we reduce the bunch. As seen in Stage 1, the weight of the structure is greater than 4.
When a medium item is assigned to a closed T B, it is packed into B3. When an item is assigned to an
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Table 3: Stage 2 priority rules

Item Pack in New structure

large

1. Z1 reduced bin
2. open LB reduced LB or open LB
3. closed T B open LB
4. X reduced bin or X

medium

1. open mB reduced bin
2. X reduced bin or X
3. open MB reduced MB or open MB
4. closed T B open MB{

small
tiny

1. X
2. open MB

reduced bin or X
reduced MB or open MB

open MB we try to pack it into B3, then B2 and eventually B4. Since B4 was empty at the end of Stage 1,
we can pack any two medium items into B4. When B4 contains 2 items, we reduce B2, B3, B4 and X and
X ← B1. The following property shows that these bins can indeed be reduced:

Property 3. Once B4 from an openMB contains two items, w(X ) + w(B2) + w(B3) + w(B4) > 4.

Proof. During Stage 2, at least one item j which did not �t into B3 has been packed into B2. Hence, by
Property 1:

w(B3) + w(B2) = (w(B3) + wj) + (w(B2)− wj)
> 26/17 + 6/17 = 32/17

Therefore, max(w(B3), w(B2)) > 16/17. Moreover, B4 contains two items k and l (with l the last item
packed). Neither k, nor l �t into B3 or B2 and l does not �t into X . Hence:

w(X ) + min(w(B3), w(B2)) + w(B4)

≥ (w(X ) + wl) + (min(w(B3), w(B2)) + wk)

> 26/17 + 26/17 = 52/17

Eventually, summing this up with max(w(B3), w(B2)) gives:

w(X ) + w(B2) + w(B3) + w(B4) > 4

Observe that there is no assumption on the classes of the items packed into X , B2 and B3 in Property 3.

3.2.1. Termination stage

Stage 2 is completed, either when the input is over or no packing rule is feasible (or we cannot get a new
X � in such case, refer to Subsection 3.2.2). In the following, we consider the di�erent cases and show that
we can always �t remaining items into non-reduced bins with a 26/17 stretching factor.

If the algorithm �nishes before an item cannot be packed according to priority rules, then all items have
been packed and none of the bins capacities exceeds 26/17. If all bins have been reduced, then the sum of
all the weights of the bins is greater than m and hence all items have been packed.
Otherwise, no rule can be applied to pack the current item. Table 4 sums up the possibly remaining
structures depending on the current item. Note that for a large item, if Z2 exists, then w(Z1) >

9
34 >

4
17

and since w(Z1) ≤ 9
17 , we can apply rule 1 for a large item. Hence if current item is large and no rule can be
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applied, then there is no Z2 remaining. The reader can easily verify remaining con�gurations for the other
classes of items.

Table 4 does not take open mB into account. We deal with this case as follows: if an open mB is
remaining, then no medium item came during Stage 2. Hence, there is no MB bunch. Moreover, the
current item j is large since any tiny or small item would �t into X and any medium into open mB.
Therefore, there is no Z2. The remaining bins are X , open mB and possibly Z1. The remaining items are
packed according to Subsection 3.2.4.

Table 4: Remaining structures depending on the current item

Current item Remaining bins
large open MB, X , Z1

medium open LB, X , Z1, Z2, Z3

small open LB
tiny open LB

If a bunch is remaining, we denote its bins by B1, B2, B3 and B4. Depending on the current con�guration,
we reduce some of the remaining bins as detailed in Algorithm 4.

Algorithm 4: Termination Stage

if there is an open LB containing 3 large items and no Z3 then // case 1
Reduce B1, B2 and B3

else if there is an open LB containing 3 large items and Z3 then // case 2

if current item j �ts into X then
Pack j into X
if w(X ) ≥ 1 then

Reduce X , B1, B2 and B3

else
Pack j into Z1

Reduce X , Z1, B1, B2 and B3

else if there is an openMB remaining then // case 3

if current item j �ts into B2 then
Pack j into B2

Resume Stage 2

else
Pack j into B1

Reduce B1, B2 and B3

else if there is an open LB containing 1 or 2 large items remaining then // case 4
Consider this bunch as an open MB and resume Stage 2

else // case 5

// There is no bunch and at most 4 remaining bins

Use the rules given in Section 3.2.3 to 3.2.5 to terminate

In the following, we explain why Algorithm 4 works and show that the remaining bins are in one of the
con�gurations treated in the next subsections.

1. If there is an open LB containing 3 large items and no Z3. Reducing B1, B2 and B3 is feasible because
the bunch contains 3 large items and was a closed T B bunch before being reopened; hence its weight
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was greater than 18/17. Therefore:

w(B1) + w(B2) + w(B3) ≥ 18/17 + 3× 13/17 = 57/17 > 3

Then, we have at most 4 bins remaining: B4,X ,Z1 and Z2.

2. If there is an open LB containing 3 large items and Z3, we pack all coming items into X until it is
reduced and then we reduce B1, B2 and B3 as previously. Otherwise, current item j does not �t into
X . Since Z3 exists, we can use Property 1 for Z1:

wj + w(X ) + w(Z1) + (w(B1) + w(B2) + w(B3)) >

26/17 + 6/17 + 57/17 > 5

We pack j into Z1 and reduce X , Z1, B1, B2 and B3. Then, Z1 ← Z2, Z2 ← Z3 and we have exactly
3 bins remaining: Z1, Z2 and B4.

3. If there is an open MB remaining, then j (the current item) is large. If j �ts into B2 we pack
it into B2 and resume with priority rules. Property 3 still holds. Otherwise, B2 contains an item
which does not �t into B3. Hence, w(B2) + w(B3) >

26
17 + 6

17 = 32
17 . Once j is packed into B1,

w(B1) + w(B2) + w(B3) >
6
17 + 13

17 + 32
17 = 3 and we can reduce B1, B2 and B3. There are at most 3

remaining bins: B4, X and Z1.

4. If there is an open LB containing 1 or 2 large items remaining, we consider this bunch as an open MB
and keep on applying priority rules and eventually previous point (3).

5. Otherwise, there is no bunch. There are at most 4 bins remaining: X ,Z1,Z2 and Z3.

After these reductions, we have at most 4 bins remaining. Let b be the number of remaining bins. In
each case, we explain how to use the remaining bins and then consider j, an item which does not �t into
any of the remaining bins. We show that wj plus the sum of the weights of the remaining bins is strictly
greater than b, contradicting Property 2.

The cases with 0 or 1 bin remaining are trivial so we only deal with the other cases.

3.2.2. We cannot get a new X
If we cannot get a new X , then remaining bins are possibly an open MB and an open LB. We keep on

applying priority rules. However, when an item is packed into open MB, we try to pack it into B3, then
B2, then B1 and eventually B4. Hence, if the open MB is reduced, its 4 bins are reduced.

Once there is a single structure remaining, if it is the open LB, then we reduce the bins and �nish as
presented Subsection 3.2.1.

Otherwise there is an open MB remaining. We keep on applying priority rules and suppose some item
j cannot be packed.

The item j cannot be packed. Hence B1 and B4 both contain an item which �ts into neither B2, nor
B3. Denote those items k and l. By Property 1: w(B1)−wk ≥ 6

17 . Moreover, Property 3 holds. Therefore,
B4 contains a single item. Therefore, either l or j (or both) is large. Without loss of generality, suppose j
is large, then:

w(B1) + w(B2) + w(B3) + w(B4) + wj

≥ (w(B1)− wk) + (w(B2) + wk) + (w(B3) + wl) + wj

> 6/17 + 26/17 + 26/17 + 13/17

> 4

Which is a contradiction.

10



Table 5: Renaming scheme

New names L1 L2 L3 L4

Old names
X B4 Z2 Z1

X Z3 Z2 Z1

3.2.3. 4 bins remaining

If there are 4 remaining bins, the possibly remaining bins are detailed Table 5. We rename those bins
L1, L2, L3 and L4. Note that w(L2), w(L3), w(L4) ≤ 9

17 at the beginning of this step. Hence we can �t at
least one item in any of those three bins.

Pack any �tting item into L1, otherwise L2, then L3 and eventually into L4. Suppose j is an item which
does not �t into any of the remaining bins. Denote ki the last item packed into Li and observe that, for
i = 2, 3, 4, ki does not �t into Lf for all f < i.

If the weight of a bin is greater than 1, then:

w(L1) + w(L2) + w(L3) + w(L4) + wj

> 1 + 26/17 + 26/17

> 4

Otherwise, all the weights of the bins are smaller than one. Hence wj >
9
17 . Moreover, at the beginning

of this step, w(L3) + w(L4) >
9
17 .

w(L1) + w(L2) + w(L3) + w(L4) + wj

≥ (w(L1) + wk3) + (w(L2) + wk4)+

(w(L3) + w(L4)− wk3 − wk4) + wj

> 26/17 + 26/17 + 9/17 + 9/17

> 4

Which is a contradiction.

3.2.4. 3 bins remaining

If there are 3 bins remaining, then Z1 is among them and w(Z1) ≤ 9
17 . Rename it L3 and the other bins

are renamed L1 and L2. Pack any �tting item into L1, otherwise L2 and eventually L3. Suppose that the
item j does not �t into any of them and let k be the last item packed into L3. There is at least one such
item since w(Z1) ≤ 9

17 in the beginning.

w(L1) + w(L2) + w(L3) + wj

≥ (w(L1) + wj) + (w(L2) + wk)

> 26/17 + 26/17

> 3

Which is a contradiction.

3.2.5. 2 bins remaining

In this case, denote one bin by L1 and the other bin by L2. Pack any �tting item into L1, otherwise
into L2. If j does not �t into L2, then w(L2) >

9
17 .

wj + w(L1) + w(L2) > 26/17 + 9/17 > 2

Which is a contradiction.
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4. Complexity

We represent a bin and its content using a stack plus its current weight and use a dedicated data structure
(a stack) for each kind of structure used in the algorithm. The overall space used is O(m).

In order to pack any given item during Stage 1, we need to check its class and try to pack it in at most
5 di�erent structures with at most 3 bins tested for each one. Hence, any item is packed in O(1) time.
Therefore the overall complexity of the �rst stage is bounded by O(n).

During Stage 2, we need to sort the structures. Each structure has at most 4 bins. Hence, a structure
is sorted in O(1) time and we have at most m

4 structures to sort. Therefore, we sort all of them in O(m)
time. In order to pack any item, we need to check its class and try at most 4 di�erent structures. Hence,
any item is packed in O(1) time and the overall complexity of this stage is bounded by O(n).

Same goes for the termination stage. Moreover, additional operations, like renumbering the bins, are
performed but there is a �xed number of di�erent additional operations and all of them are performed in
constant time.

Furthermore, when m ≥ n, at most n bins are used. Hence, the overall time and space complexity of the
algorithm is O(n).

5. Summary and future work

The presented algorithm has a stretching factor of 26
17 and runs in linear time. Notice that this bound is

tight with the input m = 2 and the items: { 1317 ,
13
17}.

The techniques of combining bins into bunches with certain properties and analyzing the bunches has
been successfully applied to other online and o�ine packing problems, see e.g. [16, 17].

It seems reasonable to hope that better worst-case behavior can be achieved by re�ning this approach.
Based on this scheme, it might be possible to reduce the gap between lower and upper bound for both known
total sum and bin-stretching problems. Improving lower bounds is also a challenging task.
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