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Convexity properties of the entropy along displacement interpolations are crucial in the Lott-Sturm-Villani theory of lower bounded curvature of geodesic measure spaces. As discrete spaces fail to be geodesic, an alternate analogous theory is necessary in the discrete setting. Replacing displacement interpolations by entropic ones allows for developing a rigorous calculus, in contrast with Otto's informal calculus. When the underlying state space is a Riemannian manifold, we show that the first and second derivatives of the entropy as a function of time along entropic interpolations are expressed in terms of the standard Bakry-Émery operators Γ and Γ 2 . On the other hand, in the discrete setting new operators appear. Our approach is probabilistic; it relies on the Markov property and time reversal. We illustrate these calculations by means of Brownian diffusions on manifolds and random walks on graphs. We also give a new unified proof, covering both the manifold and graph cases, of a logarithmic Sobolev inequality in connection with convergence to equilibrium.

Introduction

Displacement convexity of the relative entropy plays a crucial role in the Lott-Sturm-Villani (LSV) theory of curvature lower bounds of metric measure spaces [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF] and the related Ambrosio-Gigli-SavarÃľ gradient flow approach [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Ambrosio | Heat flow and calculus on metric measure space with Ricci curvature bounded below -the compact case[END_REF].

Let us explain shortly what is meant by displacement convexity of the relative entropy. Let (X , d, m) be a metric measure space and P(X ) denote the space of all Borel probability measures on X . The distance d is the basic ingredient of the construction of the displacement interpolations and the positive measure m enters the game as being the reference measure of the relative entropy which is defined by H(µ|m) := X log(dµ/dm) dµ ∈ (∞, ∞], µ ∈ P(X ). Its displacement convexity means that along any displacement interpolation [µ 0 , µ 1 ] disp = (µ t ) 0≤t≤1 between two probability measures µ 0 and µ 1 , the entropy

H(t) := H(µ t |m), 0 ≤ t ≤ 1
of the interpolation as a function of time admits some convexity lower bound. Let us recall briefly what displacement interpolations are. The Wasserstein pseudodistance W 2 is the square root of the optimal quadratic transport cost between µ 0 and µ 1 ∈ P(X ) given by W 2 2 (µ 0 , µ 1 ) := inf π X 2 d 2 dπ where the infimum is taken over all the couplings π ∈ P(X 2 ) of µ 0 and µ 1 . It becomes a distance on the subset P 2 (X ) of all µ ∈ P(X ) such that X d 2 (x o , x) µ(dx) < ∞, for some x o ∈ X . Displacement interpolations are the geodesics of the metric space (P 2 (X ), W 2 ). They were introduced in McCann's PhD thesis [START_REF] Mccann | A convexity theory for interacting gases and equilibrium crystals[END_REF] together with the notion of displacement convexity of the entropy. Related convex inequalities turn out to be functional and geometric inequalities (Brunn-Minkowski, Prekopa-Leindler, Borell-Brascamp-Lieb, logarithmic Sobolev, Talagrand inequalities), see [START_REF] Mccann | A convexity principle for interacting gases[END_REF][START_REF] Cordero-Erausquin | A Riemannian interpolation inequality à la Borell, Brascamp and Lieb[END_REF]. As a typical result, it is known [OV00, CEMS01, Sv05] that a Riemannian manifold has a nonnegative Ricci curvature if and only if t → H(t|vol) is convex along any displacement interpolation (µ t ) 0≤t≤1 .

An important hypothesis of the LSV theory is that the metric space is geodesic. This rules discrete spaces out. Something new must be found to develop an analogue of this theory in the discrete setting. Several attempts in this direction were proposed recently. Maas and Mielke [START_REF] Maas | Gradient flows of the entropy for finite Markov chains[END_REF][START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF][START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF][START_REF] Mielke | Geodesic convexity of the relative entropy in reversible Markov chains[END_REF] have discovered a Riemannian distance on the set of probability measures such that the evolution of continuous-time Markov chains on a graph are gradient flows of some entropy with respect to this distance. Bonciocat and Sturm in [START_REF] Bonciocat | Mass transportation and rough curvature bounds for discrete spaces[END_REF] and Gozlan, Roberto, Samson and Tetali in [GRST] proposed two different types of interpolations on the set of probability measures on a discrete metric measure graph which play the role of displacement interpolations in the LSV theory. The author recently proposed in [Léoa] a general procedure for constructing displacement interpolations on graphs by slowing down another type of interpolation, called entropic interpolation.

Entropic interpolations are the main actors of the present paper. Analogously to the displacement interpolations which solve dynamical transport problems, they solve dynamical entropy minimization problems. Although related to the purpose of this article, [Léoa] is mainly concerned by the slowing down asymptotic to build displacement, rather than entropic, interpolations. Displacement interpolations are connected to optimal transport, while entropic interpolations are connected to minimal entropy.

In this article, we consider the entropic interpolations in their own right, without slowing down. The goal remains the same: studying convexity of the entropy along these interpolations to derive curvature lower bounds of some Markov generators and state spaces. Our main result states that along any entropic interpolation [µ 0 , µ 1 ] = (µ t ) 0≤t≤1 between two probability measures µ 0 and µ 1 , the first and second derivatives of the relative entropy H(t) := H(µ t |m) of µ t with respect to some reference measure m can be written as

H ′ (t) = X ( -→ Θ ψ t - ← - Θ ϕ t ) dµ t , H ′′ (t) = X ( -→ Θ 2 ψ t + ← - Θ 2 ϕ t ) dµ t . (1) 
The arrows on Θ and Θ 2 are related to the forward and backward directions of time.

The functions ϕ and ψ depend on the endpoints µ 0 and µ 1 , but the nonlinear operators -→ Θ , ← -Θ , -→ Θ 2 and ← -Θ 2 only depend on some reference m-stationary Markov process. For instance, when this process is the Brownian diffusion with generator L = (∆ -∇V • ∇)/2 on a Riemannian manifold with m = e -V vol its reversing measure, we show that

-→ Θ = ← - Θ = Γ/2, -→ Θ 2 = ← - Θ 2 = Γ 2 /2 (2)
are respectively half the carrÃľ du champ Γu := L(u 2 ) -2uLu and the iterated carrÃľ du champ Γ 2 u := LΓu-2Γ(u, Lu) which were introduced by Bakry and Émery in their article [START_REF] Bakry | Diffusions hypercontractives[END_REF] on hypercontractive diffusion processes. In the discrete case, these operators are not linked to Γ and Γ 2 anymore, but they depend on L in a different manner, see ( 16) and (17). In the Riemannian case, Γ 2 is related to the Ricci curvature via Bochner's formula (34). This is the main connection between geometry and displacement convexity. Because of the tight relation (2) between (Θ, Θ 2 ) and (Γ, Γ 2 ) in the Riemannian case, it is natural to expect that (Θ, Θ 2 ) has also some geometric content in the discrete case. Does it allow for an efficient definition of curvature of graphs? This question is left open in the present paper. However, based on Θ and Θ 2 , we give a unified proof of the logarithmic Sobolev inequality on manifolds and a modified version on graphs. This is a clue in favor of the relevance of the entropic interpolations. An advantage of the entropic calculus, compared to its displacement analogue, is that entropic interpolations are regular in general. This is in contrast with displacement interpolations. Otto's informal calculus provides heuristics that necessitate to be rigorously proved by means of alternate methods while on the other hand entropic interpolations allow for a direct rigorous calculus. As a matter of fact, it is proved in [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF] Léonard | Lazy random walks and optimal transport on graphs[END_REF] that displacement interpolations are semiclassical limits of entropic interpolations: entropic interpolations are regular approximations of displacement interpolations.

Another pleasant feature of the entropic approach is that it is not only available for reversible reference Markov dynamics, but also for stationary dynamics (in the reversible case, the time arrows on Θ and Θ 2 disappear).

The article's point of view is probabilistic. Its basic ingredients are measures on path spaces: typically, Brownian diffusions on manifolds and random walks on graphs. The Markov property plays a crucial role and we take advantage of its time symmetry. Recall that it states that conditionally on the knowledge of the present state, past and future events are independent. In particular, a time-reversed Markov process is still Markov. Time-reversal stands in the core of our approach (even when the reference stochastic process is assumed to be reversible); it explains the forward and backward arrows on Θ and Θ 2 . In contrast with analytic approaches, very few probabilistic attempts have been implemented to explore geometric and functional inequalities. In this respect, let us cite the contributions of Cattiaux [START_REF] Cattiaux | A pathwise approach of some classical inequalities[END_REF] and Fontbona and Jourdain [FJ] where stochastic calculus is central. In the present article, stochastic calculus is secondary. The symmetry of the Markov property allows us to proceed with basic measure theoretical technics.

Outline of the paper. The article is organized as follows. Entropic interpolations are discussed at Section 1. In particular, we describe their dynamics. This permits us to write their equation of motion and derive our main abstract result (1) at Section 2. This abstract result is exemplified with Brownian diffusion processes at Section 3 and random walks on a countable graph at Section 4. A unified proof of an entropy-entropy production inequality (logarithmic Sobolev inequality) in both the Riemannian and discrete graph settings, is given at Section 5 in connection with convergence to equilibrium. The stationary nonreversible case is investigated. At Section 6, we propose a heuristics based on thought experiments in order to grasp the link between entropic and displacement interpolations. Finally, we address several open questions related to curvature and entropic interpolations, keeping in mind the LSV theory of geodesic measure spaces as a guideline. This article is a preliminary step and these open questions should be seen as part of a program toward an analogue of the LSV theory that is available in a discrete setting.

Notation. For any measurable space Y , we denote by P(Y ) and M + (Y ) the sets of all probability measures and positive measures on Y . Let Ω = D([0, 1], X ) be the space of all right-continuous and left-limited paths from the time interval [0, 1] taking their values in a Polish state space X endowed with its Borel σ-field. The canonical process X = (X t ) 0≤t≤1 is defined by X t (ω) = ω t ∈ X for all 0 ≤ t ≤ 1 and ω = (ω t ) 0≤t≤1 ∈ Ω. As usual, Ω is endowed with the canonical σ-field σ(X). For any T ⊂ [0, 1] and any positive measure Q on Ω, we denote

X T = (X t ) t∈T , Q T = (X T ) # Q, σ(X T ) is the σ-field generated by X T . In particular, for each t ∈ [0, 1], Q t = (X t ) # Q ∈ M + (X ) and Q 01 = (X 0 , X 1 ) # Q ∈ M + (X 2 ).

Entropic interpolation

Entropic interpolations are defined and their equations of motion are derived. The continuous and discrete space cases are both imbedded in the same abstract setting. This prepares next section where the first and second derivatives of H(t) := Hµ t |m) are calculated.

(f, g)-transform of a Markov process. The h-transform of a Markov process was introduced by Doob [Doo57] in 1957. It is revisited and slightly extended in two directions:

(1) We consider a two-sided version of the h-transform, which we call (f, g)-transform, taking advantage of the invariance of the Markov property with respect to time reversal; (2) We extend the notion of Markov property to unbounded positive measures on Ω, having in mind two typical examples:

• The reversible Wiener process on R n , i.e. the law of the Brownian motion with Lebesgue measure as its initial law; • The reversible simple random walk on a countable locally finite graph.

Assumptions on R. We specify some R ∈ M + (Ω) which we call the reference path measure and we assume that it is Markov and m-stationary1 where m ∈ M + (X ) is a σ-finite positive measure on X . See Definitions A.1 and A.4 at the appendix Section A.

Definition 1.1 ((f, g)-transform). Let f 0 , g 1 : X → [0, ∞) be two nonnegative functions in L 2 (m). The (f, g)-transform P ∈ P(Ω) of R associated with the couple of functions (f 0 , g 1 ) is defined by

P := f 0 (X 0 )g 1 (X 1 ) R ∈ P(Ω) (3)
with X 2 f 0 (x)g 1 (y) R 01 (dxdy) = 1 for P to be a probability measure.

Note that f 0 , g 1 ∈ L 2 (m) implies that f 0 (X 0 )g 1 (X 1 ) ∈ L 1 (R). Indeed, denoting F = f 0 (X 0 ) and G = g 1 (X 1 ), we see with R 0 = R 1 = m that E R F 2 = f 0 2 L 2 (m) , E R G 2 = g 1 2 L 2 (m) and E R (F G) = E R [F E R (G | X 0 )] ≤ E R F 2 E R (E R (G | X 0 ) 2 ) ≤ √ E R F 2 E R G 2 = f 0 L 2 (m) g 1 L 2 (m) < ∞.
Remarks 1.2. Let us write some easy facts about (f, g)-transforms and h-transforms.

(a) Taking f 0 = ρ 0 and g 1 = 1 gives us P = ρ 0 (X 0 )R which is the path measure with initial marginal µ 0 = ρ 0 m ∈ P(X ) and the same forward Markov dynamics as R. (b) Symmetrically, choosing f 0 = 1 and g 1 = ρ 1 corresponds to P = ρ 1 (X 1 )R which is the path measure with final marginal µ 1 = ρ 1 m ∈ P(X ) and the same backward Markov dynamics as R. (c) Doob's h-transform is an extension of item (b). It is defined by

P = h(X τ ) R [0,τ ]
where τ is a stopping time and h is such that P is a probability measure.

Let us denote the backward and forward Markov transition kernels of R by

← -r (s, •; t, z) := R(X s ∈ • | X t = z), 0 ≤ s ≤ t ≤ 1, -→ r (t, z; u, •) := R(X u ∈ • | X t = z), 0 ≤ t ≤ u ≤ 1,
and for m-almost all z ∈ X ,

f t (z) := E R (f 0 (X 0 ) | X t = z) = X f 0 (x) ← -r (0, dx; t, z) g t (z) := E R (g 1 (X 1 ) | X t = z) = X -→ r (t, z; 1, dy) g 1 (y). (4) 
The relation between (f 0 , g 1 ) and the endpoint marginals µ 0 , µ

1 ∈ P(X ) is    ρ 0 = f 0 g 0 , m-a.e. ρ 1 = f 1 g 1 , m-a.e.
(

) 5 
where the density functions ρ 0 and ρ 1 are defined by µ 0 = ρ 0 m µ 1 = ρ 1 m . The system of equations (5) was exhibited by SchrÃűdinger in 1931 [START_REF] Schrödinger | Über die Umkehrung der Naturgesetze[END_REF] in connection with the entropy minimization problem (S dyn ) below.

Entropic interpolation.

Let us introduce the main notion of this article.

Definition 1.3 (Entropic interpolation). Let P ∈ P(Ω) be the (f, g)-transform of R given by (3). Its flow of marginal measures µ t := (X t ) # P ∈ P(X ), 0 ≤ t ≤ 1, is called the R-entropic interpolation between µ 0 and µ 1 in P(X ) and is denoted by

[µ 0 , µ 1 ] R := (µ t ) t∈[0,1] .
When the context is clear, we simply write [µ 0 , µ 1 ], dropping the superscript R.

Next theorem tells us that µ t is absolutely continuous with respect to the reference measure m on X . We denote by ρ t := dµ t /dm, 0 ≤ t ≤ 1, its density with respect to m.

Identities (5) extend to all 0 ≤ t ≤ 1 as next result shows.

Theorem 1.4. Let P ∈ P(Ω) be the (f, g)-transform of R given by (3). Then, P is Markov and for all 0 ≤ t ≤ 1, µ t = ρ t m with

ρ t = f t g t , m-a.e. (6) 
Proof. Without getting into detail, the proof works as follows. As

m = R t , ρ t (z) := dP t dR t (z) = E R dP dR |X t = z = E R [f 0 (X 0 )g 1 (X 1 )|X t = z] = E R [f 0 (X 0 )|X t = z] E R [g 1 (X 1 )|X t = z] =: f t g t (z)
. The Markov property of R at the last but one equality is essential in this proof. For more detail, see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]Thm. 3.4].

With (6), we see that an equivalent analytical definition of [µ 0 , µ 1 ] R is as follows.

Theorem 1.5. The entropic interpolation

[µ 0 , µ 1 ] R satisfies µ t = ρ t m with ρ t (z) = X f 0 (x) ← -r (0, dx; t, z) X -→ r (t, z; 1, dy) g 1 (y),
for m-a.e. z ∈ X ,

for each 0 ≤ t ≤ 1.

Marginal flows of bridges are (possibly degenerate) entropic interpolations. Let us have a look at the R-entropic interpolation between the Dirac measures δ x and δ y . (a) When R 01 (x, y) > 0, [δ x , δ y ] R is the time marginal flow (R xy t ) 0≤t≤1 of the bridge R xy . Indeed, taking µ 0 = δ x and µ 1 = δ y , a solution (f 0 , g 1 ) of ( 5) is

f 0 = 1 x /R 01 (x, y) and g 1 = 1 y . It follows that the corresponding (f, g)-transform is f 0 (X 0 )g 1 (X 1 ) R = R 01 (x, y) -1 1 {X 0 =x,X 1 =y} R = R xy . (b) When R 01 (x, y) = 0, [δ x , δ y ] R is undefined. Indeed, Definition 1.3 implies that µ 0 , µ 1 ≪ m.
Let us take the sequences of functions f n 0 = c -1 n 1 B(x,1/n) and g n 1 = 1 B(y,1/n) with B(x, r) the open ball centered at x with radius r and c n = R 01 (B(x, 1/n) × B(y, 1/n)) > 0 the normalizing constant which is assumed to be positive for all n ≥ 1. The corresponding (f, g)-transform of R is the conditioned probability measure

P n = R(• | X 0 ∈ B(x, 1/n), X 1 ∈ B(y, 1/n))
which converges as n tends to infinity to the bridge R xy under some assumptions, see [START_REF] Chaumont | Markovian bridges: weak continuity and pathwise constructions[END_REF] for instance. As a natural extension, one can see [δ x , δ y ] R as the time marginal flow t → R xy t of the bridge R xy . (c) When the transition kernels are absolutely continuous with respect to m, i.e. -→ r (t, z; 1, dy) = -→ r (t, z; 1, y) m(dy), for all (t, z) ∈ [0, 1) × X and ←r (0, dx; t, z) = ←r (0, x; t, z) m(dx), for all (t, z) ∈ (0, 1] × X , then the density functions are equal: -→ r = ←r := r (this comes from the m-stationarity of R), and (7) extends as dR xy t dm (z) = r(0, x; t, z)r(t, z; 1, y) r(0, x; 1, y) , 0 < t < 1.

(d) Note that in general, for any intermediate time 0 < t < 1, R xy t is not a Dirac mass. This is in contrast with the standard displacement interpolation [δ x , δ y ] disp whose typical form is δ γ xy t where γ xy is the constant speed geodesic between x and y when this geodesic is unique. Any entropic interpolation is a mixture of marginal flows of bridges. This is expressed at (62). For a proof, see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF].

SchrÃűdinger problem. The notion of entropic interpolation is related to the entropy minimization problem (S dyn ) below. In order to state this problem properly, let us first recall an informal definition of the relative entropy

H(p|r) := log(dp/dr) dp ∈ (-∞, ∞]
of the probability measure p with respect to the reference σ-finite measure r; see the appendix Section A for further detail. The dynamical SchrÃűdinger problem associated with the reference path measure R ∈ M + (Ω) is H(P |R) → min; P ∈ P(Ω) :

P 0 = µ 0 , P 1 = µ 1 (S dyn )
It consists of minimizing the relative entropy H(P |R) of the path probability measure P with respect to the reference path measure R subject to the constraint that P 0 = µ 0 and P 1 = µ 1 where µ 0 , µ 1 ∈ P(X ) are prescribed initial and final marginals. We shall need a little bit more than f 0 , g 1 ∈ L 2 (m) in the sequel. The following set of assumptions implies that some relative entropies are finite and will be invoked at Theorem 1.7 below.

Assumptions 1.6. In addition to f 0 , g 1 ∈ L 2 (m) and the normalization condition X 2 f 0 (x)g 1 (y) R 01 (dxdy) = 1, the functions f 0 and g 1 entering the definition of the (f, g)transform P of R given at (3) satisfy

X 2 [log + f 0 (x) + log + g 1 (y)]f 0 (x)g 1 (y) R 01 (dxdy) < ∞, (8) 
where log + h := 1 {h>1} log h, and as a convention 0 log 0 = 0.

Theorem 1.7. Under the Assumptions 1.6, the (f, g)-transform P of R which is defined at (3) is the unique solution of (S dyn ) where the prescribed constraints µ 0 = ρ 0 m and µ 1 = ρ 1 m are chosen to satisfy (5).

Proof. See [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]Thm. 3.3].

Note that the solution of (S dyn ) may not be a (f, g)-transform of R. More detail about the SchrÃűdinger problem can be found in the survey paper [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF].

[µ, µ] R is not constant in time. One must be careful when employing the term interpolation as regards entropic interpolations, because in general when µ 0 = µ 1 =: µ, the interpolation [µ, µ] R is not constant in time. Let us give two examples. (a) Suppose that R 01 (x, x) > 0. Then the solution of (S dyn ) with Forward and backward stochastic derivatives of a Markov measure. Since P is Markov, its dynamics is characterized by either its forward stochastic derivative and its initial marginal µ 0 or its backward stochastic derivative and its final marginal µ 1 . Before computing these derivatives, let us recall some basic facts about these notions.

µ 0 = µ 1 = δ x is the bridge R xx and [δ x , δ x ] R is
Let Q ∈ M + (Ω) be a Markov measure. Its forward stochastic derivative ∂ + -→ L Q is defined by

[∂ t + -→ L Q t ](u)(t, z) := lim h↓0 h -1 E Q u(t + h, X t+h ) -u(t, X t ) | X t = z
for any measurable function u : [0, 1] × X → R in the set dom -→ L Q for which this limit exists Q t -a.e. for all 0 ≤ t < 1. In fact this definition is only approximate, we give it here as a support for understanding the relations between the forward and backward derivatives. For a precise statement see [START_REF] Léonard | Stochastic derivatives and generalized h-transforms of Markov processes[END_REF]§2]. Since the time reversed

Q * of Q is still Markov, Q admits a backward stochastic derivative -∂ + ← - L Q which is defined by [-∂ t + ← - L Q t ]u(t, z) := lim h↓0 h -1 E Q u(t -h, X t-h ) -u(t, X t ) | X t = z
for any measurable function u : [0, 1] × X → R in the set dom ← -L Q for which this limit exists Q t -a.e. for all 0 < t ≤ 1. Remark that ← - [START_REF] Léonard | Stochastic derivatives and generalized h-transforms of Markov processes[END_REF]§2] that these stochastic derivatives are extensions of the extended forward and backward generators of Q in the semimartingale sense, see [START_REF] Dellacherie | Probabilités et Potentiel. Ch. XII à XVI. Théorie du potentiel associée à une résolvante, théorie des processus de Markov[END_REF]. In particular, they offer us a natural way for computing the generators.

L Q t = -→ L Q * 1-t , 0 < t ≤ 1. It is proved in
Forward and backward dynamics of the entropic interpolation. The dynamics in both directions of time of [µ 0 , µ 1 ] R are specified by the stochastic derivatives -→ A := -→ L P and ← -A := ← -L P of the Markov measure P ∈ P(Ω) which appears at Definition 1.3. For simplicity, we also denote

-→ L R = -→ L and ← - L R = ← - L without the superscript R and assume that -→ L t = -→ L , ← - L t = ← - L , ∀0 ≤ t ≤ 1
, meaning that the forward and backward transition mechanisms of R do not depend on t.

To derive the expressions of -→ A and ← -A , we need to introduce the carrÃľ du champ Γ of both R and its time reversed R * . The exact definition of the extended carrÃľ du champ Γ and its domain is given at [START_REF] Léonard | Stochastic derivatives and generalized h-transforms of Markov processes[END_REF]Def. 4.10]. In restriction to the functions u, v on X such that u, v and uv are in dom -→ L , we recover the standard definition

-→ Γ (u, v) := -→ L (uv) -u -→ L v -v -→ L u ← - Γ (u, v) := ← - L (uv) -u ← - L v -v ← - L u When R is a reversible path measure, we denote L = -→ L = ← - L and Γ = -→ Γ = ← - Γ , dropping the useless time arrows.
Remark 1.8. In the standard Bakry-Émery setting [START_REF] Bakry | Diffusions hypercontractives[END_REF][START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF], X is a Riemannian manifold and one considers the self-adjoint Markov diffusion generator on L 2 (X , e -V vol) given by L = ∆-∇V •∇, with vol the volume measure and V : X → R a regular function. The usual definition of the carrÃľ du champ of L is Γ(u, v) := [ L(uv) -u Lv -v Lu]/2. In the present paper, Γ is not divided by 2 and we consider L = L/2, i.e.

L = (-∇V • ∇ + ∆)/2, (9) 
which corresponds to an SDE driven by a standard Brownian motion. Consequently,

Γ(u, v) = Γ(u, v) = ∇u • ∇v.
In general, even if R is a reversible path measure, the prescribed marginal constraints enforce a time-inhomogeneous transition mechanism: the forward and backward derivatives

(∂ t + -→ A t ) 0≤t≤1 and (-∂ t + ← - A t ) 0≤t≤1 of P depend explicitly on t.
It is known (see [Léoc] for instance) that for any function u : X → R belonging to some class of regular functions to be made precise,

         -→ A t u(z) = -→ L u(z) + -→ Γ (g t , u)(z) g t (z) , (t, z) ∈ [0, 1) × X , ← - A t u(z) = ← - L u(z) + ← - Γ (f t , u)(z) f t (z) , (t, z) ∈ (0, 1] × X , (10) 
where f and g are defined at (4). Because of (6), for any t no division by zero occurs µ t -a.e. For (10) to be meaningful, it is necessary that the functions f and g are regular enough for f t and g t to be in the domains of the carrÃľ du champ operators. In the remainder of the paper, we shall only be concerned with Brownian diffusion processes and random walks for which the class of regular functions will be specified, see Sections 3 and 4.

Going back to (4), we see that the processes f t (X t ) and g t (X t ) are respectively backward and forward local R-martingales. In terms of stochastic derivatives, this is equivalent to

(-∂ t + ← - L )f (t, z) = 0, 0 < t ≤ 1, f 0 , t = 0, (∂ t + -→ L )g(t, z) = 0, 0 ≤ t < 1, g 1 , t = 1, (11) 
where these identities hold µ t -almost everywhere for almost all t.

Assumptions 1.9. We assume that the kernels -→ r , ←r that appear in (4) are (a) positivity improving and (b) regularizing:

(a) For all (t, z) ∈ (0, 1) × X , -→ r (t, z; 1, •) ≫ m and ← -r (0, •; t, z) ≫ m. (b)
The functions (f 0 , g 1 ) and the kernels -→ r , ←r are such that (t, z) → f (t, z), g(t, z) are twice t-differentiable classical solutions of the parabolic PDEs (11).

Assumption (a) implies that for any 0 < t < 1, f t and g t are positive everywhere. In particular, we see with (6) that µ t ∼ m. Assumption (b) will be made precise later in specific settings. It will be used when computing time derivatives of t → µ t .

Mainly because we are going to study the relative entropy H(µ t |m) = X log(f t g t ) dµ t , it is sometimes worthwhile to express -→ A and ← -A in terms of the logarithms of f and g :

ϕ t (z) := log f t (z) = log E R (f 0 (X 0 ) | X t = z), (t, z) ∈ (0, 1] × X ψ t (z) := log g t (z) = log E R (g 1 (X 1 ) | X t = z), (t, z) ∈ [0, 1) × X . (12) 
In analogy with the Kantorovich potentials which appear in the optimal transport theory, we call ϕ and ψ the SchrÃűdinger potentials. Under Assumption 1.9-(b), they are classical solutions of the "second order" Hamilton-Jacobi-Bellman (HJB) equations

(-∂ t + ← - B )ϕ = 0, 0 < t ≤ 1, ϕ 0 = log f 0 , t = 0, (∂ t + -→ B )ψ = 0, 0 ≤ t < 1, ψ 1 = log g 1 , t = 1, (13) 
where the non-linear operators

-→ B and ← - B are defined by -→ B u := e -u -→ L e u , ← - B v := e -v ← - L e v , for any functions u, v such that e u ∈ dom -→ L and e v ∈ dom ← - L . Let us introduce the notation -→ A θ := -→ L + e -θ -→ Γ (e θ , •) ← - A θ := ← - L + e -θ ← - Γ (e θ , •)
which permits us to rewrite (10) as

-→ A t = -→ A ψt and ← - A t = ← -
A ϕt , emphasizing their dependence on the SchrÃűdinger potentials.

Forward-backward systems. The complete dynamics of [µ 0 , µ 1 ] R is described by a forwardbackward system. We see that

(-∂ t + -→ A * ψt )µ = 0, 0 < t ≤ 1, µ 0 , t = 0, where (∂ t + -→ B )ψ = 0, 0 ≤ t < 1, ψ 1 = log g 1 , t = 1, (14) 
and A * is the algebraic adjoint of A : X Au dµ =: u, A * µ . The evolution equation for µ is understood in the weak sense, in duality with respect to a large enough class of regular functions u. Similarly,

(∂ t + ← - A * ϕt )µ = 0, 0 ≤ t < 1, µ 1 , t = 1, where (-∂ t + ← - B )ϕ = 0, 0 < t ≤ 1, ϕ 0 = log f 0 , t = 0. ( 15 
)
It appears that the boundary data for the systems ( 14) and ( 15) are (µ 0 , g 1 ) and (f 0 , µ 1 ).

Second derivative of the entropy

The aim of this section is to provide basic formulas to study the convexity of the entropy

t ∈ [0, 1] → H(t) := H(µ t |m) ∈ [0, ∞) as a function of time, along the entropic interpolation [µ 0 , µ 1 ] R associated with the (f, g)- transform P of R defined by (3). The interpolation [µ 0 , µ 1 ] R is
specified by its endpoint data (µ 0 , µ 1 ) defined by (5). We have also seen at ( 14) and ( 15) that it is specified by either (µ 0 , g 1 ) or (f 0 , µ 1 ).

Basic rules of calculus and notation. We are going to use the subsequent rules of calculus and notation where we drop the subscript t as often as possible. Assumption 1.9 is used in a significant way: it allows to work with everywhere defined derivatives.

• ρ t = f t g t m, ϕ := log f, ψ := log g.
The first identity is Theorem 1.4. The others are notation which are well defined everywhere under Assumption 1.9.

• u := ∂ t u, μ := ∂ t µ,
u, η := X u dη. These are simplifying notation.

• The first line of the following equalities is (10) and the other ones are definitions:

     -→ A u = -→ L u + -→ Γ (g, u)/g -→ B u := e -u -→ L e u -→ C u := -→ B u - -→ L u ,      ← - A u = ← - L u + ← - Γ (f, u)/f ← - B u := e -u ← - L e u ← - C u := ← - B u - ← - L u. • u, μ = -→ A u, µ = - ← -
A u, µ . These identities hold since µ is the time-marginal flow of the Markov law P whose forward and backward derivatives are -→ A and ← -A . • A short way for writing (11) and ( 13) is:

ġ = - -→ L g ψ = - -→ B ψ , ḟ = ← - L f φ = ← - B ϕ.
Entropy production. By Assumption 1.9, the evolution PDEs (11) and (13) are defined in the classical sense and the functions -→ I and ← -I below are well defined.

Definition 2.1 (Forward and backward entropy production). For each 0 ≤ t ≤ 1, we define respectively the forward and backward entropy production at time t along the interpolation

[µ 0 , µ 1 ] R by    -→ I (t) := X -→ Θ ψ t dµ t ← - I (t) := X ← - Θ ϕ t dµ t
where for any regular enough function u,

   -→ Θ u := e -u -→ Γ (e u , u) - -→ C u ← - Θ u := e -u ← - Γ (e u , u) - ← - C u. (16) 
Calling the functions -→ I and ← -I "entropy production" is justified by Corollary 2.4 below. We shall see at Section 3 that in the reversible Brownian diffusion setting where R is associated with the generator (9), we have

-→ Θ u = ← - Θ u = Γ(u)/2
with no dependence on t and as usual, ones simply writes Γ(u) := Γ(u, u).

Proposition 2.2. Suppose that the Assumptions 1.6 and 1.9 hold. The first derivative of t → H(t) is

d dt H(µ t |m) = -→ I (t) - ← - I (t), 0 < t < 1.
Proof. With Theorem 1.4 and the definition of the relative entropy, we immediately see that H(t) = log ρ, µ = ϕ + ψ, µ . It follows with our basic rules of calculus that

H ′ (t) = φ + ψ, µ + ϕ + ψ, μ = ← - B ϕ - -→ B ψ, µ + - ← - A ϕ + -→ A ψ, µ .
The point here is to apply the forward operators

-→ A = -→ A ψ , -→ B to ψ and the backward operators ← - A = ← - A ϕ , ← - B to ϕ. This is the desired result since ( -→ A - -→ B )ψ = -→ Θ ψ and ( ← - A - ← - B )ϕ = ← - Θ ϕ. Remark that φ + ψ, µ = ∂ t log ρ, µ = ρ/ρ, µ = ρ, m = (d/dt) ρ, m = 0. Hence, φ + ψ, µ = ← - B ϕ - -→ B ψ, µ = 0.
As an immediate consequence of this Proposition 2.2, we obtain the following Corollary 2.4 about the dynamics of heat flows. Corollary 2.4.

(a) Along any forward heat flow (µ t ) 0≤t≤1 , we have:

d dt H(µ t |m) = - ← - I (t), 0 < t < 1. (b) Along any backward heat flow (µ t ) 0≤t≤1 , we have: d dt H(µ t |m) = -→ I (t), 0 < t < 1.
Second derivative. The computations in this subsection are informal and the underlying regularity hypotheses are kept fuzzy. We assume that the Markov measure R is nice enough for the SchrÃűdinger potentials ϕ and ψ to be in the domains of the compositions of the operators L, Γ, A, B and C which are going to appear below. To keep formulas into a reasonable size, we have assumed that R is m-stationary. The informal results that are stated below at Claims 2.6 and 2.7 will turn later at Sections 3 and 4 into formal statements in specific settings. We introduce

   -→ Θ 2 u := -→ L -→ Θ u + e -u -→ Γ e u , - → Θ u + e -u -→ Γ (e u , u) -→ B u -e -u -→ Γ (e u -→ B u, u), ← - Θ 2 u := ← - L ← - Θ u + e -u ← - Γ e u , ← - Θ u + e -u ← - Γ (e u , u) ← - B u -e -u ← - Γ (e u ← - B u, u), (17) 
provided that the function u is such that these expressions are well defined. It will be shown at Section 3, see (30), that in the Brownian diffusion setting where R is associated with the generators

-→ L = -→ b • ∇ + ∆/2 ← - L = ← - b • ∇ + ∆/2 , we have -→ Θ 2 = -→ Γ 2 /2 ← - Θ 2 = ← - Γ 2 /2 , where -→ Γ 2 (u) := -→ L -→ Γ (u) -2 -→ Γ ( -→ L u, u), ← - Γ 2 (u) := ← - L ← - Γ (u) -2 ← - Γ ( ← - L u, u), (18) 
are the forward and backward iterated carrÃľ du champ operators.

Remark 2.5. We keep the notation of Remark 1.8. In the standard Bakry-Émery setting, the iterated carrÃľ du champ of

L = ∆ -∇V • ∇ is Γ 2 (u) = [ L( Γ(u)) -2 Γ(u, Lu)]/2.
In the present paper, we consider L = L/2 instead of L and we have already checked at Remark 1.8 that Γ = Γ. Consequently,

Γ 2 = Γ 2 .
Introducing these definitions is justified by the following claim.

Claim 2.6 (Informal result). Assume that R is m-stationary. Then,

d 2 dt 2 H(µ t |m) = ← - Θ 2 ϕ t + -→ Θ 2 ψ t , µ t , ∀0 < t < 1. Proof. Starting from H(t) = ρ log ρ, m , we obtain H ′ (t) = 1 + log ρ, μ = log ρ, μ = - ← - A ϕ + -→ A ψ, µ and H ′′ (t) = d dt - ← - A ϕ, µ + d dt -→ A ψ, µ . We have d dt - ← - A ϕ, µ = ← - A 2 ϕ - ← - A φ - ← - A ϕ, µ = ← - A ( ← - A - ← - B )ϕ - ← - Γ ( ḟ , •) f - ḟ f 2 ← - Γ (f, •) ϕ, µ = ← - A ( ← - A - ← - B )ϕ - ← - Γ ( ← - L f, •) f - ← - L f f 2 ← - Γ (f, •) ϕ, µ = ← - A ← - Γ (f, •) f - ← - C ϕ - ← - Γ ( ← - L f, •) f - ← - B ϕ ← - Γ (f, •) f ϕ, µ = ← - Θ 2 ϕ, µ .
Similarly, we obtain

d dt -→ A ψ, µ = -→ A 2 ψ + -→ A ψ + - → A ψ, µ = -→ A ( -→ A - -→ B )ψ + -→ Γ ( ġ, •) g - ġ g 2 -→ Γ (g, •) ψ, µ = -→ A ( -→ A - -→ B )ψ - -→ Γ ( -→ L g, •) g - -→ L g g 2 -→ Γ (g, •) ψ, µ = -→ Θ 2 ψ, µ , (19) 
which completes the proof of the claim.

Gathering Proposition 2.2 and Claim 2.6, we obtain the following

Claim 2.7 (Informal result). When R is m-stationary, for all 0 < t < 1,          d dt H(µ t |m) = -→ Θ ψ t - ← - Θ ϕ t , µ t , d 2 dt 2 H(µ t |m) = -→ Θ 2 ψ t + ← - Θ 2 ϕ t , µ t .

Brownian diffusion process

As a first step, we compute informally the operators Θ and Θ 2 associated with the Brownian diffusion process on X = R n whose forward and backward generators are given for all 0 ≤ t ≤ 1 by

-→ L = -→ b • ∇ + ∆/2, ← - L = ← - b • ∇ + ∆/2. ( 20 
)
Here, z → -→ b (z), ←b (z) ∈ R n are the forward and backward drift vector fields. The term "informally" means that we suppose that -→ b and ←b satisfy some unstated growth and regularity properties which ensure the existence of R and also that Assumptions 1.9 are satisfied. Then, we consider reversible Brownian diffusion processes on a compact manifold.

Dynamics of the entropic interpolations. The associated nonlinear operators are

-→ B u = ∆u/2 + -→ b • ∇u + |∇u| 2 /2, ← - B u = ∆u/2 + ← - b • ∇u + |∇u| 2 /2 and -→ Γ (u, v) = ← - Γ (u, v) = ∇u • ∇v for any t and u, v ∈ C 2 (R n ). The expressions -→ A t = ∆/2 + ( -→ b + ∇ψ t ) • ∇, ← - A t = ∆/2 + ( ← - b + ∇ϕ t ) • ∇,
of the forward and backward derivatives tell us that the density µ t (z) := dµ t /dz solves the following forward-backward system of parabolic PDEs

(∂ t -∆/2)µ t (z) + ∇ • (µ t ( -→ b + ∇ψ t ))(z) = 0, (t, z) ∈ (0, 1] × X µ 0 , t = 0,
where ψ solves the HJB equation

(∂ t + ∆/2 + -→ b • ∇)ψ t (z) + |∇ψ t (z)| 2 /2 = 0, (t, z) ∈ [0, 1) × X ψ 1 = log g 1 , t = 1. (21) 
In the reversed sense of time, we obtain

(-∂ t -∆/2)µ t (z) + ∇ • (µ t ( ← - b + ∇ϕ t ))(z) = 0, (t, z) ∈ [0, 1) × X µ 1 , t = 1,
where ϕ solves the HJB equaltion

(-∂ t + ∆/2 + ← - b • ∇)ϕ t (z) + |∇ϕ t (z)| 2 /2 = 0, (t, z) ∈ (0, 1] × X ϕ 0 = log f 0 , t = 0. (22) 
We put log g 1 = -∞ on the set where g 1 vanishes and the boundary condition at time t = 1 must be understood as lim t↑1 ψ t = log g 1 . Similarly, we have also

lim t↓0 ϕ t = log f 0 in [-∞, ∞).
Because of the stochastic representation formulas (4), the functions ϕ and ψ are the unique viscosity solutions of the above Hamilton-Jacobi-Bellman equations, see [FS93, Thm. II.5.1]. The existence of these solutions is ensured by the Assumptions 1.6. 

∇ • (m {v os -∇ log √ m}) = 0 ∇ • (m v cu ) = 0 (23) 
for all t, where m(x) := dm/dx, these identities are considered in the weak sense and

v os := ( -→ b + ← - b )/2 v cu := ( -→ b - ← - b )/2
are respectively the osmotic and the (forward) current velocities of R that were introduced by E. Nelson in [START_REF] Nelson | Dynamical theories of Brownian motion[END_REF]. In fact, the first equation in ( 23) is satisfied in a stronger way, since the duality formula associated to time reversal [START_REF] Föllmer | Time reversal on Wiener space[END_REF] is

v os = ∇ log √ m. ( 24 
)
An interesting situation is given by

-→ b = -∇V /2 + b ⊥ where V : R n → R is C 2 and the drift vector field b ⊥ satisfies ∇ • (e -V b ⊥ ) = 0. ( 25 
)
It is easily seen that

m = e -V Leb
is the stationary measure of R. Moreover, with (24), we also obtain

-→ b = -∇V /2 + b ⊥ ← - b = -∇V /2 -b ⊥ , v os = -∇V /2 v cu = b ⊥ . (26) 
In dimension 2, choosing b ⊥ = e V (-∂ y U, ∂ x U) with U : R 2 → R a C 2 -regular function, solves (25). Regardless of the dimension, b ⊥ = e V S∇U where S is a constant skewsymmetric matrix and U : R n → R a C 2 -regular function, is also a possible choice. In dimension 3 one can take b ⊥ = e V ∇ ∧ A where A : R 3 → R 3 is a C 2 -regular vector field.

Computing Θ and Θ 2 . Our aim is to compute the operators

-→ Θ , ← - Θ , - → Θ 2 and
← -Θ of the Brownian diffusion process R with the forward and backward derivatives given by ( 20) and ( 26):

-

→ L = (-∇V • ∇ + ∆)/2 + b ⊥ • ∇, ← - L = (-∇V • ∇ + ∆)/2 -b ⊥ • ∇, (27) 
where ∇ • (e V b ⊥ ) = 0. For simplicity, we drop the arrows and the index t during the intermediate computations.

Computation of Θ. We have Γ(u) = e -u Γ(e u , u) = |∇u| 2 and Cu = |∇u| 2 /2. Therefore,

Θu = Cu = Γ(u)/2 = |∇u| 2 /2. This gives -→ Θ t ψ t = |∇ψ t | 2 /2, ← - Θ t ϕ t = |∇ϕ t | 2 /2, (28) 
and the entropy productions writes as follows, for all 0 < t < 1,

         -→ I (t) = 1 2 X |∇ψ t | 2 dµ t , ← - I (t) = 1 2 X |∇ϕ t | 2 dµ t . (29) 
Recall that f t , g t > 0, µ t -a.e. : for all 0 < t < 1.

Computation of Θ 2 . Since R is a diffusion, Γ is a derivation i.e. Γ(uv, w) = uΓ(v, w) + vΓ(u, w), for any regular enough functions u, v and w. In particular, the two last terms in the expression of Θ 2 u simplify:

e -u Γ(e u Bu, u) -e -u Γ(e u , u)Bu = Γ(Bu, u) = Γ(Lu, u) + Γ(Cu, u),
and we get

Θ 2 u = LΓ(u)/2 + Γ(Cu, u) -Γ(Lu, u) -Γ(Cu, u) = LΓ(u)/2 -Γ(Lu, u). This means that -→ Θ 2 = -→ Γ 2 /2, ← - Θ 2 = ← - Γ 2 /2. ( 30 
)
They are precisely half the iterated carrÃľ du champ operators -→ Γ 2 and ← -Γ 2 defined at (18). The iterated carrÃľ du champ

Γ o 2 of L o = ∆/2 is Γ o 2 (u) = ∇ 2 u 2 HS = i,j (∂ ij u) 2
where ∇ 2 u is the Hessian of u and ∇ 2 u 2 HS = tr ((

∇ 2 u) 2 ) is its squared Hilbert-Schmidt norm. As Γ 2 (u) = Γ o 2 (u)-2∇b(∇u) where 2∇b(∇u) = 2 i,j ∂ i b j ∂ i u∂ j u = [∇+∇ * ]b(∇u) with ∇ * b the adjoint of ∇b, it follows that -→ Γ 2 (u) = ∇ 2 u 2 HS + (∇ 2 V -[∇ + ∇ * ]b ⊥ )(∇u), ← - Γ 2 (u) = ∇ 2 u 2 HS + (∇ 2 V + [∇ + ∇ * ]b ⊥ )(∇u). (31) 
Regularity problems. To make Claim 2.7 a rigorous statement, one needs to rely upon regularity hypotheses such as Assumptions 1.9. If one knows that f 0 , g 1 , -→ b and ←b are such that the linear parabolic equations (11) admit positive C 2,2 ((0, 1)×X )-regular solutions then we are done. Verifying this is a standard (rather difficult) problem which is solved under various hypotheses. Rather than giving detail about this PDE problem which can be solved by means of Malliavin calculus, we present an example at next subsection.

Working with classical solutions is probably too demanding. The operators Θ and Θ 2 are functions of ∇u and the notion of gradient can be extended as in [Léoc] in connection with the notion of extended stochastic derivatives, see Remark 3.1-(a). Furthermore, when working with integrals with respect to time, for instance when considering integrals of the entropy production (see Section 5), or in situations where H(t) is known to be twice differentiable almost everywhere (e.g. H(t) is the sum of a twice differentiable function and a convex function), it would be enough to consider dt-almost everywhere defined extended gradients. This program is not initiated in the present paper.

Reversible Brownian diffusion process on a Riemannian manifold X . We give some detail about the standard Bakry-Émery setting that already appeared at Remark 1.8. It corresponds to the case where b ⊥ = 0. Let us take

m = e -V vol (32) 
where V ∈ C 2 satisfies X e -V (x) vol(dx) < ∞. The m-reversible Brownian diffusion process R ∈ M + (Ω) is the Markov measure with the initial (reversing) measure m and the semigroup generator

L = (-∇V • ∇ + ∆)/2. The reversible Brownian motion R o ∈ M + (Ω) corresponds to V = 0. Its stochastic deriva- tives are -→ L o = ← - L o = ∆/2 ( 
33) and vol is its reversing measure. Since R o is the unique solution to its own martingale problem, there is a unique R which is both absolutely continuous with respect to R o and m-reversible. Lemma 3.2. In fact R is specified by

R = exp -[V (X 0 ) + V (X 1 )]/2 + [0,1] ∆V (X t )/4 -|∇V (X t )| 2 /8 dt R o .
Proof. To see this, let us define R by means of d R/dR o := e -V (X 0 ) Z 1 where

Z t = exp t 0 -∇V 2 (X s ) • dX s -1 2 t 0 | ∇V 2 (X s )| 2 is a local positive forward R o -martingale. Since R n e -V (z) dz < ∞, it follows that t → e -V (X 0 ) Z t is a forward R o -supermartingale. In particular its expectation t → E R o [e -V (X 0 ) Z t ] is a decreasing function so that R(Ω) = E R o (e -V (X 0 ) Z 1 ) ≤ E R o (e -V (X 0 ) Z 0 ) = X e -V (z) dz < ∞.
On the other hand, since both R o and d R/dR o are invariant with respect to the time reversal X * : X * t := X 1-t, t∈[0,1] , R is also invariant with respect to time reversal: (X * ) # R = R. In particular, its endpoint marginals are equal: R0 = R1 . Consequently, R[0,t] doesn't send mass to a cemetery point † outside X as time increases, for otherwise its terminal marginal R1 would give a positive mass to †, in contradiction with R0 ( †) = 0 and R0 = R1 . Hence, Z is a genuine forward R o -martingale. With Itô's formula, we see that

dZ t = -Z t ∇ V 2 (X t ) • dX t , R o -a.
e. and by Girsanov's theory we know that R is a (unique) solution to the martingale problem associated with the generator L = (-∇V • ∇ + ∆)/2. Finally, we take R = R and it is easy to check that L is symmetric in L 2 (m), which implies that m is reversing.

Remark 3.3. When L is given by (33), for any non-zero nonnegative functions f 0 , g 1 ∈ L 2 (vol), the smoothing effect of the heat kernels -→ r and ←r in (4) allows us to define classical gradients ∇ψ t and ∇ϕ t for all t in [0, 1) and (0, 1] respectively. We see that ∇ψ t and ∇ϕ t are the forward and backward drift vector fields of the canonical process under P.

Next result proposes a general setting where Assumptions 1.9 are satisfied. The manifold X is assumed to be compact to avoid integrability troubles.

Proposition 3.4. Suppose that X is a compact Riemannian manifold without boundary and V : X → R is C 4 -regular. Then, for any C 2 -regular function u : X → R, the function

(t, x) → u(t, x) := E R [u(X t ) | X 0 = x] belongs to C 1,2 ((0, 1) × X ).
In particular, if in addition X is assumed to be connected and f 0 and g 1 are non-zero nonnegative C 2 -regular functions, the functions f and g defined at (4) and their logarithms ϕ and ψ are classical solutions of (11) and (13).

Proof. For any path ω ∈ Ω and any 0 ≤ t ≤ 1, we denote

Z t (ω) := exp -[V (ω 0 ) + V (ω t )]/2 + t 0 ∆V (ω s )/4 -|∇V (ω s )| 2 /8 ds .

With Lemma 3.2 we see that for all

0 ≤ t ≤ 1, Z t = dR [0,t] dR o [0,t] and u(t, x) = E R o [u(X t )Z 1 | X 0 = x] E R o [Z 1 | X 0 = x] = e V (x) E[u(B x t )Z t (B x )]
where (B x s ) 0≤s≤1 is a Brownian motion starting from x under some abstract probability measure whose expectation is denoted by E. By means of parallel transport, it is possible to build on any small enough neighborhood U of x a coupling such that x ′ ∈ U → B x ′ is almost surely continuous with respect to the uniform topology on Ω. This coupling corresponds to B x = x + B 0 in the Euclidean case. The announced x-regularity is a consequence of our assumptions which allow us to differentiate (in the usual deterministic sense) in the variable x under the expectation sign E. On the other hand, the t-regularity is a consequence of stochastic differentiation: apply ItÃť's formula to u(B x t ) and take advantage of the martingale property of Z t (B x ).

As regards last statement, the connectivity assumption implies the positivity of f and g on (0, 1) × X as soon as f 0 and g 1 are nonnegative and not vanishing everywhere.

We gave the detail of the proof of Proposition 3.4 because of its ease. But in view of Remark 3.3, the requirement that f 0 and g 1 are C 2 is not optimal. However, this restriction will not be harmful when investigating convexity properties of the entropy along interpolations.

In view of Proposition 3.4, we remark that under its assumptions the functions f t , g t belong to the domain of the carrÃľ du champ operator. Hence, for any 0 < t < 1, the stochastic derivatives of P are well-defined on C 2 (X ) and equal to

-→ A t = ∆/2 + ∇(-V /2 + ψ t ) • ∇, ← - A t = ∆/2 + ∇(-V /2 + ϕ t ) • ∇.
Here, ψ and ϕ are respectively the classical solutions (compare Remark 3.1-(a)) of the HJB equations ( 21) and ( 22) with

-→ b = ← - b = -∇V /2. Bochner's formula relates the iterated carrÃľ du champ Γ o 2 of L o = ∆/2 and the Ricci curvature: Γ o 2 (u) = ∇ 2 u 2 HS + Ric(∇u) (34) where ∇ 2 u is the Hessian of u and ∇ 2 u 2 HS = tr ((∇ 2 u) 2 ) is its squared Hilbert-Schmidt norm. As Γ 2 (u) = Γ o 2 (u) -[∇ + ∇ * ]b(∇u), it follows that Γ 2 (u) = ∇ 2 u 2 HS + (Ric + ∇ 2 V )(∇u). (35) 
Theorem 3.5 (Reversible Brownian diffusion process). Let the reference Markov measure R be associated with L given at (9) on a compact connected Riemannian manifold X without boundary. It is assumed that V : X → R is C 4 -regular and f 0 , g 1 are nonzero nonnegative C 2 -regular functions. Then, along the entropic interpolation [µ 0 , µ 1 ] R associated with R, f 0 and g 1 , we have for all 0 < t < 1,

d dt H(µ t |e -V vol) = 1 2 |∇ψ t | 2 -|∇ϕ t | 2 , µ t , d 2 dt 2 H(µ t |e -V vol) = 1 2 Γ 2 (ψ t ) + Γ 2 (ϕ t ) , µ t
where ψ and ϕ are the classical solutions of the HJB equations (21) and (22) with

-→ b = ← - b = -∇V /2, Γ(u) = |∇u| 2 and Γ 2 is given by (35).
Proof. The assumptions imply that f 0 and g 1 satisfy (8) and they allow us to apply Proposition 3.4 so that Assumptions 1.9 are satisfied and Claim 2.7 is a rigorous result.

Random walk on a graph

Now we take as our reference measure R a continuous-time Markov process on a countable state space X with a graph structure (X , ∼). The set X of all vertices is equipped with the graph relation x ∼ y which signifies that x and y are adjacent, i.e. {x, y} is a non-directed edge. The degree n x := # {y ∈ X , x ∼ y} of each x ∈ X is the number of its neighbors. It is assumed that (X , ∼) is locally finite, i.e. n x < ∞ for all x ∈ X and also that (X , ∼) is connected. This means that for any couple (x, y) ∈ X 2 of different states, there exists a finite chain (z 1 , . .

. , z k ) in X such that x ∼ z 1 ∼ z 2 • • • ∼ z k ∼ y. In particular n x ≥ 1, for all x ∈ X .

Dynamics of the entropic interpolation. A (time homogeneous) random walk on

(X , ∼) is a Markov measure with forward derivative ∂ + -→ L defined for all function u ∈ R X by -→ L u(x) = y:x∼y (u y -u x ) -→ J x (y) =: X D x u d -→ J x , 0 ≤ t < 1, x ∈ X ,
where -→ J x (y) is the instantaneous frequency of forward jumps from x to y,

D x u(y) = Du(x, y) := u(y) -u(x)
is the discrete gradient and

-→ J x = y:x∼y -→ J x (y) δ y ∈ M + (X ), 0 ≤ t < 1, x ∈ X
is the forward jump kernel. Similarly, one denotes its backward derivative by

← - L u(x) = X D x u d ← - J x , x ∈ X , u ∈ R X .
For the m-stationary Markov measure R with stochastic derivatives -→ L and ← -L , the timereversal duality formula is

m(x) -→ J x (y) = m(y) ← - J y (x), ∀x ∼ y ∈ X .
The expressions -→ L u and ← -L u can be seen as the matrices

→ L = 1 {x∼y} -→ J x (y) -1 {x=y} -→ J x (X ) x,y∈X ← - L = 1 {x∼y} ← - J x (y) -1 {x=y} ← - J x (X ) x,y∈X (36) 
acting on the column vector u = [u x ] x∈X . Therefore, the solutions f and g of (11) are

f (t) = e t ← - L f 0 , g(t) = e (t-1) -→ L g 1 , where f : t ∈ [0, 1] → [f x ] x∈X (t) ∈ R X and g : t ∈ [0, 1] → [g x ] x∈X (t) ∈ R X are column
vectors, whenever these exponential matrices are well-defined.

Let us compute the operators B, Γ and A. By a direct computation, we obtain for all

0 < t < 1 and x ∈ X , -→ B u(x) = X (e Dxu -1) d -→ J x , ← - B u(x) = X (e Dxu -1) d ← - J x , -→ Γ (u, v)(x) = X D x uD x v d -→ J x , ← - Γ (u, v)(x) = X D x uD x v d ← - J x , and              -→ A t u(x) = X D x u e Dxψt d -→ J x = y:x∼y [u(y) -u(x)] g t (y) g t (x) -→ J x (y), ← - A t u(x) = X D x u e Dxϕt d ← - J x = y:x∼y [u(y) -u(x)] f t (y) f t (x) ← - J x (y).
The matrix representation of these operators is

               -→ A t = -→ A (g t ) = 1 {x∼y} g t (y) g t (x) -→ J x (y) -1 {x=y} z:z∼x g t (z) g t (x) -→ J x (z) x,y∈X ← - A t = ← - A (f t ) = 1 {x∼y} f t (y) f t (x) ← - J x (y) -1 {x=y} z:z∼x f t (z) f t (x) ← - J x (z)
x,y∈X

The forward-backward systems describing the evolution of [µ 0 , µ 1 ] R are

µ t = µ 0 exp t 0 -→ A (e (s-1) -→ L g 1 ) ds = µ 1 exp 1 t ← - A (e s ← - L f 0 ) ds , 0 ≤ t ≤ 1
where the measures µ t are seen as row vectors and the functions f 0 , g 1 as column vectors.

Derivatives of the entropy. A pleasant feature of the discrete setting is that no spatial regularity is required for a function to be in the domain of the operators L, Γ, . . . The only required regularity is that the functions f and g defined by (4) have to be twice differentiable with respect to t on the open interval (0, 1). But this is ensured by the following lemma.

Lemma 4.1. Consider f 0 , g 1 as in Definition 1.1 and suppose that f 0 , g

1 ∈ L 1 (m)∩L 2 (m)
where the stationary measure m charges every point of X . Then, under the assumption that

sup x∈X { -→ J x (X ) + ← - J x (X )} < ∞, (37) 
for each x ∈ X , t → f (t, x) and t → g(t, x) are C ∞ -regular on (0, 1).

Proof. For any 0 ≤ t ≤ 1, f t and g t are well-defined P t -a.e., where P is given by (3). But, as R is an irreducible random walk, for each 0 < t < 1, "P t -a.e." is equivalent to "everywhere". Since

f 0 ∈ L 1 (m) and R is m-stationary, we have X f t dm = E R E R [f 0 (X 0 ) | X t ] = E R (f 0 (X 0 )) = X f 0 dm < ∞, implying that f t ∈ L 1 (m). As sup x ← - J x (X ) < ∞, ← - L is a bounded operator on L 1 (m). This implies that t ∈ (0, 1) → f t = e t ← - L f 0 ∈ L 1 (m) is differentiable and (d/dt) k f t = ← - L k f t for any k.
As m charges every point, we also see that t ∈ (0, 1) → f t (x) ∈ R is infinitely differentiable for every x. A similar proof works with g instead of f .

As an important consequence of Lemma 4.1 for our purpose, we see that the statement of Claim 2.7 is rigorous in the present discrete setting.

Theorem 4.2. Let R be an m-stationary random walk with jump measures -→ J and ← -J which satisfy (37). Along any entropic interpolation [µ 0 , µ 1 ] R associated with a couple (f 0 , g 1 ) as in Definition 1.1 and such that f 0 , g 1 ∈ L 1 (m)∩L 2 (m), we have for all 0 < t < 1,

d dt H(µ t |m) = x∈X -→ Θ ψ t - ← - Θ ϕ t (x) µ t (x), d 2 dt 2 H(µ t |m) = x∈X -→ Θ 2 ψ t + ← - Θ 2 ϕ t (x) µ t (x)
where the expressions of -→ Θ ψ t and ← -Θ ϕ t are given at (38) and the expressions of -→ Θ 2 ψ t and ← -Θ 2 ϕ t are given at Proposition 4.4 below.

Computing Θ and Θ 2 . Our aim now is to compute the operators -→ Θ , ← -Θ , -→ Θ 2 and ← -Θ 2 for a general random walk R. We use the shorthand notation X a(x, y) J x (dy) = [ X a dJ](x) and drop the arrows and the index t during the intermediate computations. The Hamilton-Jacobi operator is Bu := e -u Le u = X (e Du -1) dJ which gives

Cu := (B -L)u = X θ(Du) dJ
where the function θ is defined by

θ(a) := e a -a -1, a ∈ R. Compare Cu = |∇u| 2 /2, remarking that θ(a) = a 2 /2 + o a→0 (a)
. The convex conjugate θ * of θ will be used in a moment. It is given by

θ * (b) =    (b + 1) log(b + 1) -b, b > -1, 1, b = -1, ∞, b < -1.
Computation of Θ. The carré du champ is Γ(u, v) = X DuDv dJ so that e -u Γ(e u , u) =

X Du(e Du -1) dJ. Since a(e a -1) -θ(a) = ae a -e a + 1 = θ * (e a -1), with Θu := e -u Γ(e u , u) -Cu, we obtain

         -→ Θ ψ t (x) = y:x∼y θ * Dg t (x, y) g (x) -→ J x (y), ← - Θ ϕ t (x) = y:x∼y θ * Df t (x, y) f t (x) ← - J x (y). (38) 
where we used e Dψt(x,y) -1 = Dg t (x, y)/g t (x) and e Dϕt(x,y) -1 = Df t (x, y)/f t (x). The ratio Dg/g should be seen as the discrete logarithmic derivative of g. Recall that g t > 0, µ t -a.e. : we do not divide by zero. Compare Θψ = |∇g/g| 2 /2, remarking that θ

* (b) = b 2 /2 + o b→0 (b).
Entropy production. The entropy productions are

   -→ I (t) = (x,y):x∼y θ * Dgt(x,y) gt(x) µ t (x) -→ J x (y), ← - I (t) = (x,y):x∼y θ * Dft(x,y) ft(x) µ t (x) ← - J x (y). ( 39 
)
Computation of Θ 2 . Unlike the diffusion case, no welcome cancellations occur. The carré du champ Γ is not a derivation anymore since Γ(uv, w) -[uΓ(v, w) + vΓ(u, w)] = uvLw + X DuDvDw dJ. Furthermore, we also loose the simplifying identity C = Θ. To give a readable expression of Θ 2 , it is necessary to introduce some simplifying shorthand notation:

       a = Du(x, y) a ′ = Du(x, y ′ ) b = Du(y, z) c = Du(x, z) ,        x→y F (a) = X F (Du(x, y)) J x (dy) x→y;x→y ′ F (a, a ′ ) = X 2 F (Du(x, y), Du(x, y ′ )) J x (dy)J x (dy ′ ) x→y→z F (a, b) = X 2 F (Du(x, y), Du(y, z)) J x (dy)J y (dz) x→y→z F (a, c) = X 2 F (Du(x, y), Du(x, z)) J x (dy)J y (dz).
Remark that x→y→z F (c) = X F (Du(x, z)) J 2 x (dz) with J 2 x (dz) := y∈X J x (dy)J y (dz) and a + b = c. 

Θ 2 u(x) = x→y (e a -1) 2 + x→y [J y (X ) -J x (X )]h(a) + x→y→z [2e a h(b) -h(c)].
Proof. The first identity is (38). Let us look at Θ 2 u(x). Rather than formula (17), for an explicit formulation of Θ 2 in terms of J, it will be easier to go back to (19):

-→ Θ 2 ψ t = -→ A 2 t ψ t + d dt ( -→ A t ψ t ) with -→ A t u = X Du e Dψt d -→ J and ψ = - -→ B ψ = -X (e Dψ -1) d -→ J .
Making use of Aψ(x) = x→y ae a and ψ(x) = x→y -(e a -1), we see that Proposition 4.4. Consider f 0 , g 1 as in Definition 1.1 and suppose that f 0 , g 1 ∈ L 1 (m) ∩ L 2 (m) where the stationary measure m charges every point of X . Also assume that -→ J , ← -J satisfy (37). Then,

A 2 ψ(x) = X (Aψ y -Aψ x )e Dψ(x,y) J x (dy) =
-→ Θ 2 ψ t (x) (41) = y:x∼y (e Dψt(x,y) -1) - → J x (y) 2 + y:x∼y [ -→ J y (X ) - -→ J x (X )]θ * e Dψt(x,y) -1 -→ J x (y) + (y,z):x∼y∼z 2θ * e Dψt(y,z) -1 -→ A t,x (y) -→ J y (z) -θ * e Dψt(x,z) -1 -→ J x (y) -→ J y (z) and ← - Θ 2 ϕ t (x) (42) = y:x∼y (e Dϕt(x,y) -1) ← - J x (y) 2 + y:x∼y [ ← - J y (X ) - ← - J x (X )]θ * e Dϕt(x,y) -1 ← - J x (y) + (y,z):x∼y∼z 2θ * e Dϕt(y,z) -1 ← - A t,x (y) ← - J y (z) -θ * e Dϕt(x,z) -1 ← - J x (y) ← - J y (z)
where

-→ A t,x (y) = e Dψt(x,y) -→ J x (y) = g t (y) g t (x) -→ J x (y), ← - A t,x (y) = e Dϕt(x,y) ← - J x (y) = f t (y) f t (x) ← - J x (y)
are the forward and backward jump frequencies of P = f 0 (X 0 )g 1 (X 1 ) R.

Reversible random walks. Let us take a positive measure m = x∈X m x δ x ∈ M + (X ) with m x > 0 for all x ∈ X . It is easily checked with the detailed balance condition

m(dx)J x (dy) = m(dy)J y (dx) (43) 
which characterizes the reversibility of m that the jump kernel

J x = y:x∼y s(x, y) m y /m x δ y ( 44 
)
where s(x, y) = s(y, x) > 0 for all x ∼ y, admits m as a reversing measure. As (X , ∼) is assumed to be connected, the random walk is irreducible and the reversing measure is unique up to a multiplicative constant.

Examples 4.5. Let us present the simplest examples of reversible random walks. (a) Reversible counting random walk. The simplest example is provided by the counting jump kernel J x = y:x∼y δ y ∈ P(X ), x ∈ X which admits the counting measure m = x δ x as a reversing measure: take m x = 1 and s(x, y) = 1 in (44). (b) Reversible simple random walk. The simple jump kernel is J x = 1 nx y:x∼y δ y ∈ P(X ), x ∈ X . The measure m =

x n x δ x is a reversing measure: take m x = n x and s(x, y) = (n x n y ) -1/2 in (44).

The dynamics of R is as follows. Once the walker is at x, one starts an exponential random clock with frequency J x (X ). When the clock rings, the walker jumps at random onto a neighbor of x according to the probability law J x (X ) -1 y:x∼y J(x; y) δ y . This procedure goes on and on. Since R is reversible, we have -→ J = ← -J = J and the forward and backward frequencies of jumps of the (f, g)-transform P = f 0 (X 0 )g 1 (X 1 ) R are respectively

-→ A x (y) = g t (y) g t (x) J x (y) and ← - A x (y) = f t (y) f t (x) J x (y).
As a direct consequence of Theorem 4.2 and Proposition 4.4, we obtain the following result.

Theorem 4.6. Let R be an m-reversible random walk with jump measure J which is given by (44) and satisfies sup

x∈X J x (X ) < ∞.
For this condition to be satisfied, it suffices that for some 0 < c, σ < ∞, we have for all

x ∼ y ∈ X , m y /n y ≤ cm x /n x , 0 < s(x, y) √ n x n y ≤ σ, (45) 
with the notation of (44).

Then, along any entropic interpolation [µ 0 , µ 1 ] R associated with a couple (f 0 , g 1 ) as in Definition 1.1 and such that f 0 , g 1 ∈ L 1 (m) ∩ L 2 (m), we have for all 0 < t < 1,

d dt H(µ t |m) = x∈X [Θψ t -Θϕ t ](x) µ t (x), d 2 dt 2 H(µ t |m) = x∈X [Θ 2 ψ t + Θ 2 ϕ t ](x) µ t (x)
where the expressions of Θψ t and Θϕ t are given at (38) and the expressions of Θ 2 ψ t and Θ 2 ϕ t are given at Proposition 4.4 (drop the useless time arrows).

Convergence to equilibrium

Let R be an m-stationary Markov probability measure. In this section m is assumed to be a probability measure (and so is R). We are interested in the convergence as t tends to infinity of the forward heat flow

µ t := (X t ) # (ρ 0 (X 0 ) R) ∈ P(X ), t ≥ 0, (46) 
where ρ 0 = dµ 0 /dm is the initial density. If the solution of the forward heat equation

∂ t ν t = ν t -→ L ν 0 = ν o
with the initial profile ν o = µ 0 is unique, then it is the heat flow (46).

But in general (µ t ) t≥0 is only a solution of this heat equation. We are going to prove by implementing the "stochastic process strategy" of the present paper, that under some hypotheses, the following convergence to equilibrium

lim t→∞ µ t = m
holds. As usual, the function t → H(µ t |m) is an efficient Lyapunov function of the dynamics.

Stationary dynamics. Let us first make the basic assumptions precise.

Assumptions 5.1. The stationary measure m is a probability measure and we assume the following. (a) Brownian diffusion. The forward derivative is

-→ L = -→ b • ∇ + ∆/2
on a connected Riemannian manifold X without boundary. The initial density ρ 0 := dµ 0 /dm is regular enough for ρ t (z) = dµ t /dm(z) to be positive and twice differentiable in t and z on (0, ∞) × X . (b) Random walk. The forward derivative is

-→ L u(x) = y:x∼y [u(y) -u(x)] -→ J x (y)
on the countable locally finite connected graph (X , ∼). We assume that (37) holds:

sup x { -→ J x (X ) + ← - J x (X )} < ∞.
The point in the following Theorem 5.2 is that no curvature bound such as (49) below nor reversibility are required. We define

I(µ|m) := X ← - Θ (log ρ) dµ ∈ [0, ∞], µ = ρ m ∈ P(X ).
We have seen at (28) and (38) that ← -Θ ≥ 0 (remark that θ * ≥ 0), this shows that I(µ|m) ≥ 0.

Theorem 5.2. The Assumptions 5.1 are supposed to hold. Then, lim t→∞ I(µ t |m) = 0. Let us assume in addition that the initial density ρ 0 := dµ 0 /dm is bounded: sup X ρ 0 < ∞. Then, lim t→∞ H(µ t |m) = 0.

Remark 5.3. The total variation norm of a signed measure η on X is defined by η TV := |η|(X ) and Csiszár-Kullback-Pinsker inequality is 1 2 µ -m 2 T V ≤ H(µ|m), for any µ ∈ P(X ). Therefore we have lim t→∞ µ t -m TV = 0.

Proof. The main idea of this proof is to consider the forward heat flow (µ t ) t≥0 as an entropic interpolation, see Definition 2.3, and to apply Claim 2.7. It will be seen that the general regularity hypotheses of the theorem ensure that this claim turns into a rigorous statement.

Instead of restricting time to [0, 1], we allow it to be in [0, T ], T > 0, and let T tend to infinity. We denote ρ t := dµ t /dm. Since µ is the time-marginal flow of P = ρ 0 (X 0 ) R, we have f 0 = ρ 0 and g T = 1. This implies that g t = 1 and

f t = ρ t . Indeed, g t (z) = E R [g T (X T ) | X t = z] = E R (1 | X t = z) = 1 and f t (z) = E R [f 0 (X 0 ) | X t = z] = E R [ρ 0 (X 0 ) | X t = z] = E R [dP/dR | X t = z] = dP t /dR t (z) = dP t /dm(z) =: ρ t (z)
. Therefore, ψ t = 0, ϕ t = log ρ t , for all 0 ≤ t ≤ T . Our assumptions guarantee that for all t > 0, ϕ t is regular enough to use our previous results about "Θ 2 -calculus". Denoting H(t) = H(µ t |m), with Corollary 2.4, we see that

-H ′ (t) = ← - I (t) := X ← - Θ (log ρ t ) dµ t =: I(µ t |m).
As I(•|m) ≥ 0, H is decreasing. Of course, H(0) -H(T ) = T 0 I(µ t |m) dt. Now, we let T tend to infinity. As H is non-negative and decreasing, it admits a limit H(∞) := lim T →∞ H(T ) and the integral in

H(0) -H(∞) = ∞ 0 I(µ t |m) dt (47) 
is convergent, implying lim t→∞ I(µ t |m) = 0.

Diffusion setting. By (29) with ϕ t = ρ t , this limit implies that lim t→∞ X |∇ √ ρ t |2 dvol = 0. By PoincarÃľ's inequality, for any open bounded connected domain U with a smooth boundary, there exists a constant

C U such that √ ρ t - √ ρ t U L 2 (U ) ≤ C U ∇ √ ρ t L 2 (U ) for all t, where √ ρ t U := U √ ρ t dvol/vol(U). It follows that lim t→∞ √ ρ t - √ ρ t U L 2 (U ) = 0
which in turns implies that lim t→∞ ρ t = c everywhere on X (recall that ρ is continuous on (0, ∞) × X and X is connected) for some constant c ≥ 0. Therefore, lim t→∞ ρ t = 1 everywhere. As ρ 0 is assumed to be bounded, for all t we have ρ t

(X t ) = E R (ρ 0 | X t ) ≤ sup ρ 0 < ∞.
This allows us to apply Lebesgue dominated convergence theorem to assert that lim t→∞ H(µ t |m) = 0.

Random walk setting. Since lim t→∞ I(µ t |m) = 0, we obtain

lim t→∞ (x,y):x∼y ρ t (x)θ * ρ t (y)/ρ t (x) -1 m(x) ← - J x (y) = 0. (48) 
We have

aθ * (b/a -1) ≥    C (b-a) 2 a ≥ C(b -a) 2 , if b/a ≤ 2, a ≤ 1 θ * (b/a -1) ≥ C(b/a -1) 2 , if b/a ≤ 2, a ≥ 1 C log(b/a), if b/a ≥ 2, a ≥ 2,
for some constant 2 C > 0. In these three cases, we see that the convergence to zero of the left-hand side implies the convergence of b to a. The remaining case when b/a ≥ 2 and a ≤ 2 is controlled by considering the symmetric term bθ * (a/b -1) which also appears in the series in the limit (48), reverting x and y; recall that ← -J x (y) > 0 ⇔ ← -J y (x) > 0. As bθ * (a/b -1) ≥ b ≥ 2a ≥ 0, the convergence of the left-hand term to zero also implies the convergence of b to a. Therefore, the limit (48) implies that for all adjacent x and y ∈ X , lim t→∞ ρ t (x) = lim t→∞ ρ t (y). Since the graph is connected, we have lim t→∞ ρ t = 1 everywhere. Finally, the estimate sup t,x ρ t (x) ≤ sup X ρ 0 < ∞ allows us to conclude with the dominated convergence theorem.

Theorem 5.4. The Assumptions 5.1 are supposed to hold. Then, under the additional hypotheses that

H(µ 0 |m) < ∞ and ← - Θ 2 ≥ κ ← - Θ (49 
) for some constant κ > 0, we have

I(µ t |m) ≤ I(µ 0 |m)e -κt , t ≥ 0 (50) H(µ t |m) ≤ H(µ 0 |m)e -κt , t ≥ 0 (51) 
and the following functional inequality

H(ρm|m) ≤ κ -1 I(ρm|m), (52) 
holds for any nonnegative function ρ : X → [0, ∞) such that X ρ dm = 1, which in the diffusion setting (a) is also assumed to be C 2 -regular.

Proof of Theorem 5.4. We already saw during the proof of Theorem 5.2 that our general assumptions allow us to apply Θ 2 -calculus: Claim 2.7 is rigorous with ϕ t = log ρ t . This gives: ← -

I (t) = -H ′ (t) = X ← - Θ (log ρ t ) dµ t and ← - I ′ (t) = -H ′′ (t) = -X ← - Θ 2 (log ρ t ) dµ t . The inequality (49) implies that ← - I ′ (t) ≤ -κ ← - I (t)
, for all t ≥ 0. Integrating leads to ← -I (t) ≤ ← -I (0)e -κt , t ≥ 0, which is (50). Let us assume for a while, in addition to (49), that sup X ρ 0 < ∞. It is proved at Theorem 5.2 that under this restriction, H(∞) = 0. With (47) and (50), we see that

H(µ 0 |m) = H(0) = ∞ 0 ← - I (t) dt ≤ ← - I (0) ∞ 0 e -κt dt = ← - I (0)/κ.
A standard approximation argument based on the sequence ρ n = (ρ ∧ n)/ X (ρ ∧ n) dm and Fatou's lemma: H(ρm|m) ≤ lim inf n H(ρ n m|m), allows to extend this inequality to unbounded ρ. This proves (52). Plugging µ t instead of µ 0 into (52), one sees that H(t) ≤ ← -I (t)/κ = -H ′ (t)/κ. Integrating leads to H(t) ≤ H(0)e -κt , which is (51).

Remark 5.5 (About time reversal). It appears with (49) that time reversal is tightly related to this convergence to stationarity. Let us propose an informal interpretation of this phenomenon. The forward entropy production -→ I (t) vanishes along the forward heat flow (µ t ) t≥0 since -→ I (t) = X -→ Θ ψ t dµ t and ψ = 0. Similarly X -→ Θ 2 ψ t dµ t = 0. No work is needed to drift along the heat flow. In order to evaluate the rate of convergence, one must measure the strength of the drift toward equilibrium. To do so "one has to face the wind" and measure the work needed to reach µ 0 when starting from m, reversing time. 

[ ← - J y (X ) - ← - J x (X )]h(a y ) ← - J x (y) + (y,z):x∼y∼z [2e ay h(c z -a y ) -h(c z )] ← - J x (y) ← - J y (z) (53) ≥ κ y:x∼y h(a y ) ← - J x (y)
for all x ∈ X and any numbers a y , c z ∈ R, (y, z) : x ∼ y ∼ z, where h(a) := θ * (e a -1) = ae a -e a + 1, a ∈ R, see (40).

(a) In the diffusion setting (a), Theorem 5.4 becomes Theorem 5.8. The Assumptions 5.7 are supposed to hold. Then, under the additional hypotheses that H(µ 0 |m) < ∞ and Θ 2 ≥ κΘ (57) for some constant κ > 0, we have I(µ t |m) ≤ I(µ 0 |m)e -κt , t ≥ 0 H(µ t |m) ≤ H(µ 0 |m)e -κt , t ≥ 0 and the following (modified) logarithmic Sobolev inequality

I(µ|m) = 1 2 X |∇ log ρ| 2 dµ = 1 2 X |∇ρ| 2 ρ dm = 2 X |∇ √ ρ| 2 dm; ( 
H(µ|m) ≤ κ -1 I(µ|m), (58) 
for any µ ∈ P(X ) which in the diffusion setting (a) is also restricted to be such that dµ/dm is C 2 -regular.

In the diffusion setting (a), Theorem 5.8 is covered by the well-known result by Bakry and Émery [START_REF] Bakry | Diffusions hypercontractives[END_REF]. Inequality (58) is the standard logarithmic Sobolev inequality and (57) is the usual Γ 2 -criterion: Γ 2 ≥ κΓ. In the random walk setting (b), inequality (58) is a modified logarithmic Sobolev inequality which was introduced by Bobkov and Tetali [START_REF] Bobkov | Modified logarithmic Sobolev inequalities in discrete settings[END_REF] in a general setting and was already employed by Dai Pra, Paganoni and Posta [START_REF] Dai Pra | Entropy inequalities for unbounded spin systems[END_REF] in the context of Gibbs measures on Z d . Later Caputo, Dai Pra and Posta [CP07, CDPP09, DPP13] have derived explicit criteria for (58) to be satisfied in specific settings related to Gibbs measures of particle systems. These criteria are close in spirit to (57).

Some open questions about curvature and entropic interpolations

We have seen at Section 5 that convergence to equilibrium is obtained by considering heat flows. The latter are the simplest entropic interpolations since f = 1 or g = 1. In the present section, general entropic interpolations are needed to explore curvature properties of Markov generators and their underlying state space X by means of the main result of the article:

H ′ (t) = X 1 2 ( -→ Θ ψ t - ← - Θ ϕ t ) dµ t , H ′′ (t) = X 1 2 ( -→ Θ 2 ψ t + ← - Θ 2 ϕ t ) dµ t .
Convexity properties of the entropy along displacement interpolations are fundamental for the Lott-Sturm-Villani (LSV) theory of lower bounded curvature of metric measure spaces [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF][START_REF] Villani | Optimal Transport. Old and New[END_REF]. An alternate approach would be to replace displacement interpolations by entropic interpolations, taking advantage of the analogy between these two types of interpolations. Although this program is interesting in itself, it can be further motivated by remarking the following facts.

(1) Entropic interpolations are more regular than displacement interpolations.

(2) Displacement interpolations are (semiclassical) limits of entropic interpolations, see [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF] Léonard | Lazy random walks and optimal transport on graphs[END_REF]. (3) Entropic interpolations work equally well in continuous and discrete settings while LSV theory fails in the discrete setting (see below).

As regards (1), note that the dynamics of an entropic interpolation shares the regularity of the solutions f and g of the backward and forward "heat equations" (11). Their logarithms, the SchrÃűdinger potentials ϕ and ψ, solve second order Hamilton-Jacobi-Bellman equations. This is in contrast with a displacement interpolation whose dynamics is driven by the Kantorovich potentials (analogues of ϕ and ψ) which are solutions of first order Hamilton-Jacobi equations. Entropic interpolations are linked to regularizing dissipative PDEs, while displacement interpolations are linked to transport PDEs. More detail about these relations is given in [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF].

In practice, once the regularity of the solutions of the dissipative linear PDEs (11) is ensured, the rules of calculus that are displayed at the beginning of Section 2 are efficient. Again, this is in contrast with Otto calculus which only yields heuristics about displacement interpolations.

As regards (3), recall that we have seen at Theorems 5.4 and 5.8 unified proofs of entropy-entropy production inequalities, available in the diffusion and random walk settings.

In order to provide a better understanding of the analogy between displacement and entropic interpolations, we start describing two thought experiments. Then, keeping the LSV strategy as a guideline, we raise a few open questions about the use of entropic interpolations in connection with curvature problems on Riemannian manifolds and graphs.

Thought experiments. Let us describe two thought experiments.

• SchrÃűdinger's hot gas experiment. The dynamical SchrÃűdinger problem (see (S dyn ) at Section 1) is a formalization of SchrÃűdinger's thought experiment which was introduced in [START_REF] Schrödinger | Über die Umkehrung der Naturgesetze[END_REF]. Ask a perfect gas of particles living in a Riemannian manifold X which are in contact with a thermal bath to start from a configuration profile µ 0 ∈ P(X ) at time t = 0 and to end up at the unlikely profile µ 1 ∈ P(X ) at time t = 1. For instance the gas may be constituted of undistinguishable mesoscopic particles (e.g. grains of pollen) with a random motion communicated by numerous shocks with the microscopic particles of the thermal bath (e.g. molecules of hot water). Large deviation considerations lead to the following conclusion. In the (thermodynamical) limit of infinitely many mesoscopic particles, the most likely trajectory of the whole mesoscopic particle system from µ 0 to µ 1 is the Rentropic interpolation [µ 0 , µ 1 ] R where R describes the random motion of the noninteracting (the gas is assumed to be perfect) mesoscopic particles. Typically, R describes a Brownian motion as in SchrÃűdinger's original papers [START_REF] Schrödinger | Über die Umkehrung der Naturgesetze[END_REF][START_REF] Schrödinger | Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique[END_REF].

For more detail see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]§6] for instance. • Cold gas experiment. The same thought experiment is also described in [START_REF] Villani | Optimal Transport. Old and New[END_REF] in a slightly different setting where it is called the lazy gas experiment.

The only difference with SchrÃűdinger's thought experiment is that no thermal bath enters the game. The perfect gas is cold so that the paths of the particles are Riemannian geodesics in order to minimize the average kinetic action of the whole system: entropy minimization is replaced by quadratic optimal transport.

Connection between entropic and displacement interpolations. It is shown in [START_REF] Léonard | From the Schrödinger problem to the Monge-Kantorovich problem[END_REF][START_REF] Léonard | Lazy random walks and optimal transport on graphs[END_REF] that displacement interpolations are limits of entropic interpolations when the frequency of the random elementary motions encrypted by R tends down to zero. With the above thought experiment in mind, this corresponds to a thermal bath whose density tends down to zero. Replacing the hot water by an increasingly rarefied gas, at the zero-temperature limit, the entropic interpolation

[µ 0 , µ 1 ] R is replaced by McCann's displacement interpo- lation [µ 0 , µ 1 ] disp .
Cold gas experiment. As the gas is (absolutely) cold, the particle sample paths are regular and deterministic. The trajectory of the mass distribution of the cold gas is the displacement interpolation [µ 0 , µ 1 ] disp which is the time marginal flow of a probability measure P on Ω concentrated on geodesics:

P = X 2 δ γ xy π(dxdy) ∈ P(Ω) (59) 
where π ∈ P(X 2 ) is an optimal transport plan between µ 0 and µ 1 , see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]. Therefore,

µ t = P t = X 2 δ γ xy t π(dxdy) ∈ P(X ), 0 ≤ t ≤ 1, (60) 
where for simplicity it is assumed that there is a unique minimizing geodesic γ xy between x and y (otherwise, one is allowed to replace δ γ xy with any probability concentrated on the set of all minimizing geodesics from x to y).

In a positively curved manifold, several geodesics starting from the same point have a tendency to approach each other. Therefore, it is necessary that the gas initially spreads out to thwart its tendency to concentrate. Otherwise, it would not be possible to reach a largely spread target distribution. The left side of Figure 1 below (taken from [START_REF] Villani | Optimal Transport. Old and New[END_REF]) depicts this phenomenon. This is also the case of the right side as one can be convinced of by reversing time. The central part is obtained by interpolating between the initial and final segments of the geodesics. On the other hand, in a negatively curved manifold, several geodesics starting from the same point have a tendency to depart form each other. Therefore, it is necessary that the gas initially concentrates to thwart its tendency to spread out. Otherwise, it would not be possible to reach a condensed target distribution.

t = 0 0 < t < 1 t = 1
t = 0 0 < t < 1 t = 1
Figure 2. The cold gas experiment. Negative curvature SchrÃűdinger's hot gas experiment. As the gas is hot, the particle sample paths are irregular and random. The trajectory of the mass distribution of the hot gas is the entropic interpolation [µ 0 , µ 1 ] R . An R-entropic interpolation is the time marginal flow of a probability measure P on Ω which is a mixture of bridges of R:

P = X 2 R xy π(dxdy) ∈ P(Ω) (61) 
where π ∈ P(X 2 ) is the unique minimizer of η → H(η|R 01 ) among all η ∈ P(X 2 ) with prescribed marginals µ 0 and µ 1 , see [START_REF] Léonard | A survey of the Schrödinger problem and some of its connections with optimal transport[END_REF]. Therefore,

µ t = P t = X 2 R xy t π(dxdy) ∈ P(X ), 0 ≤ t ≤ 1. (62) 
Comparing ( 59) and (61), one sees that the deterministic evolution δ γ xy is replaced by the random evolution R xy . At a lower temperature And eventually, at zero temperature R xy must be replaced by its determinestic limit δ γ xy . The superposition of Figures 2 and3 describes the hot gas experiment in a negative curvature manifold: Open questions. As far as one is interested in the curvature of the metric measure space (X , d, m), rather than in the curvature of some Markov generator -→ L such as in Section 5, it seems natural to restrict our attention to a reversible reference path measure R. For instance when looking at a Riemannian manifold X considered as a metric measure space (X , d, m) with the Riemannian metric d and the weighted measure m = e -V vol, the efficient choice as regards LSV theory is to take R as the reversible Markov measure with generator L = (∆ -∇V • ∇)/2 (or any positive multiple) and initial measure m.

t = 0 t = 1
A representative result in the case where the reference measure m is the volume measure (V = 0) is that relative entropy is convex along any displacement interpolation in a Riemannian manifold with a nonnegative Ricci curvature. Based on McCann's seminal work [START_REF] Mccann | A convexity theory for interacting gases and equilibrium crystals[END_REF][START_REF] Mccann | A convexity principle for interacting gases[END_REF] and Otto's heuristic calculus, Otto and Villani have conjectured this result in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF]. This was proved by Cordero-Erausquin, McCann and Schmucken-schlÃďger in [START_REF] Cordero-Erausquin | A Riemannian interpolation inequality à la Borell, Brascamp and Lieb[END_REF]. The converse is also true, as was shown later by Sturm and von Renesse [START_REF] Sturm | Transport inequalities, gradient estimates, entropy, and Ricci curvature[END_REF].

In the same spirit, an immediate consequence of Theorem 3.5 is the following Corollary 6.1. Let R o be the reversible Brownian motion on a connected Riemannian manifold X without boundary. Then, along any entropic interpolation

[µ 0 , µ 1 ] R o associated with R o and f 0 , g 1 ∈ L 2 (vol) such that (8) holds, the entropy t ∈ [0, 1] → H(µ t |vol) ∈ R is a convex function.
Remark that in Theorem 3.5, X is assumed to be compact and f 0 , g 1 must be C 2 . This was assumed to ensure the regularity of the interpolation (Proposition 3.4). But in the present setting this regularity follows from the regularity of the heat kernel.

Open questions 6.2. (a) Is the converse of Corollary 6.1 true? (b) Is there a way to define a notion of κ-convexity on P(X ) along entropic interpolations:

H(µ t ) ≤ (1-t)H(µ 0 )+tH(µ 1 )-κC(µ 0 , µ 1 )t(1-t)/2, 0 ≤ t ≤ 1? What term C(µ 0 , µ 1 )
should replace the quadratic transport cost W 2 2 (µ 0 , µ 1 ) of the LSV and AGS (Ambrosio, Gigli and SavarÃľ [AGS08, AGS]) theories? (c) Is there a notion of "entropic gradient flow" related to entropic interpolations that would be similar to a gradient flow and would allow interpreting heat flows as "entropic gradient flows" of the entropy. This question might be related to the previous one: the entropic cost C(µ 0 , µ 1 ) could play the role of a squared distance on P(X ).

The LSV theory requires that the metric space (X , d) is geodesic. Consequently, discrete metric graphs are ruled out. Alternate approaches are necessary to develop a theory of lower bounded curvature on discrete metric graphs.

(1) Bonciocat and Sturm [START_REF] Bonciocat | Mass transportation and rough curvature bounds for discrete spaces[END_REF] have obtained precise results for a large class of planar graphs by introducing the notion of h-approximate t-midpoint interpolations: d(x 0 , x t ) ≤ td(x 0 , x 1 ) + h, d(x t , x 1 ) ≤ (1 -t)d(x 0 , x 1 ) + h where typically h is of order 1. (2) Erbar and Maas [START_REF] Maas | Gradient flows of the entropy for finite Markov chains[END_REF][START_REF] Erbar | Ricci curvature of finite Markov chains via convexity of the entropy[END_REF] and independently Mielke [START_REF] Mielke | A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems[END_REF][START_REF] Mielke | Geodesic convexity of the relative entropy in reversible Markov chains[END_REF] have shown that the evolution of a reversible random walk on a graph is the gradient flow of an entropy for some distance on P(X ) and derived curvature bounds for discrete graphs by following closely the gradient flow strategy developed by Ambrosio, Gigli and SavarÃľ [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] in the setting of the LSV theory. where Bu(x) = y:x∼y (e Du(x,y) -1) J x (y) and h(a) := θ * (e a -1) = ae a -e a + 1, a ∈ R.

In the diffusion setting where L = (∆ -∇V • ∇)/2, we have seen at Section 3 that Θ 2 = Γ 2 /2 where Γ 2 is given by the Bochner formula Γ 2 (u) = ∇ 2 u 2 HS + ∇ 2 V (∇u) + Ric(∇u).

(64)

Open questions 6.3.

(1) In view of (63) and (64), is (63) a Bochner formula ? Where is the curvature ? A definition of curvature should be justified by its usefulness in terms of rate of convergence to equilibrium, concentration of measure or isoperimetric behavior.

Let us indicate that with the discrete Laplacian Lu(x) = [u(x + 1) -2u(x) + u(x -1)]/2 on Z, a rather tedious computation leads to the desired flatness result: curv L (x) = 0, for all x ∈ Z.

Appendix A. Basic definitions

This appendix section is part of the articles [Léob, LRZ]. We give it here for the reader's convenience.

Markov measures. We slightly extend the notion of Markov property to unbounded positive measures on Ω.

Definitions A.1. Any positive measure on Ω is called a path measure. Let Q be a path measure. (a) It is said to be a conditionable path measure if for any 0 ≤ t ≤ 1, Q t is a σ-finite measure on X . (b) It is said to be a Markov measure if it is conditionable and for all 0 ≤ t ≤ 1 and B ∈ σ(X [t,1] ), we have:

Q(B | X [0,t] ) = Q(B | X t )
. When Q has an infinite mass, the notion of conditional expectation must be handled with care. We refer to the following definition. Definition A.2 (Conditional expectation). Let φ : Ω → Y be a measurable map. Suppose that φ # Q is a σ-finite measure on Y. Then, for any f ∈ L p (Q) with p = 1, 2 or ∞, the conditional expectation of f knowing φ is the unique (up to Q-a.e. equality) function E Q (f | φ) := θ f (φ) ∈ L p (Q) such that for all measurable function h on Y in L p * (m) where 1/p + 1/p * = 1, we have Ω h(φ)f dQ = Ω h(φ)θ f (φ) dQ.

It is essential in this definition that the measure φ # Q is σ-finite on Y to be allowed to invoke Radon-Nikodym theorem when proving the existence of θ f . Inspecting the above definition of a Markov measure, one sees that it is necessary that Q [0,t] and Q t are σ-finite for all t ∈ [0, 1] for the corresponding conditional expectations to be defined. But this is warranted by the requirement that Q is conditionable, as shown by the following result.

Lemma A.3. Let Q be a path measure and T ⊂ [0, 1]. For Q T to be σ-finite, it is enough that Q to is σ-finite for some t o ∈ T .

Proof. Let t o ∈ T be such that Q to is σ-finite with (X n ) n≥1 an increasing sequence of measurable subsets of X such that Q to (X n ) < ∞ and ∪ n≥1 X n = X . Then, Q T is also σ-finite since Q T (X to ∈ X n ) = Q to (X n ) for all n ≥ 1 and ∪ n≥1 [X T (Ω) ∩ {X to ∈ X n }] = X T (Ω).

Consequently, for any Markov measure Q and any T ⊂ [0, 1], the conditional expectation E Q (• | X T ) is well-defined and since Ω is a Polish space, there exists a regular conditional probability kernel Q(• | X T ) : Ω → P(Ω) such that for all f ∈ L 1 (Q), A reversible path measure is stationary. When Q is reversible, one sometimes says that m = Q 0 = Q 1 is a reversing measure for the forward kernel (Q(• | X 0 = x); x ∈ X ), or the backward kernel (Q(• | X 1 = y); y ∈ X ) or shortly for Q. One also says that Q is m-reversible to emphasize the role of the reversing measure.

E Q (f | X T ) = Ω f dQ(• | X T ),
Relative entropy. This subsection is a short part of [Léob, § 2] which we refer to for more detail. Let r be some σ-finite positive measure on some space Y . The relative entropy of the probability measure p with respect to r is loosely defined by 

′ : Y → [0, ∞) such that z W ′ < ∞, then H(p|r W ) -Y W dp -log z W = H(p|r W ′ ) -Y W ′ dp -log z W ′ ∈ (-∞, ∞].
Therefore, H(p|r) is well-defined for any p ∈ P(Y ) such that Y W dp < ∞ for some measurable nonnegative function W verifying (66).

  Definitions 2.3 (Heat flows).

  (a) We call forward heat flow the time marginal flow of the (f, g)-transform described at Remark 1.2-(a). It corresponds to f 0 = ρ 0 and g 1 = 1, i.e. to P = ρ 0 (X 0 ) R. (b) We call backward heat flow the time marginal flow of the (f, g)-transform described at Remark 1.2-(b). It corresponds to f 0 = 1 and g 1 = ρ 1 , i.e. to P = ρ 1 (X 1 ) R.

  Remarks 3.1.(a) In general, ϕ and ψ might not be classical solutions of their respective HJB equations, the gradients ∇ψ and ∇ϕ are not defined in the usual sense. One has to consider the notion of P -extended gradient: ∇ P , that is introduced in[Léoc]. The complete description of the Markov dynamics of P is a special case of [Léoc, Thm. 5.4]: the forward and backward drift vector fields of the canonical process under P are respectively -→ b + ∇ P ψ t and ←b + ∇ P ϕ t . (b) Suppose that the stationary measure m associated with R is equivalent to the Lebesgue measure. Then, the forward and backward drift fields -→ b and ←b are related to m as follows. Particularizing the evolution equations with µ t = m and ∇ψ = ∇ϕ = 0, we see that the requirement that R is m-stationary implies that

  We also define the function h(a) := θ * (e a -1) = ae a -e a + 1, a ∈ R.(40)Lemma 4.3. For any function u ∈ R X and any x ∈ X ,

  x→y→z e a be b -x→y;x→y ′ e a a ′ e a ′ d dt (Aψ)(x) = X (Dψ(x, y)e Dψ(x,y) + e Dψ(x,y) )( ψyψx ) J x (dy) = -x→y→z (ae a + a)(e b -1) + x→y;x→y ′ (ae a + a)(e a ′ -1) where a, a ′ and b are taken with u = ψ. This shows that Θ 2 u(x) = x→y→z e a be b -(ae a + e a )(e b -1) -x→y;x→y ′ e a a ′ e a ′ -(ae a + e a )(e a ′ -1) The functions defining the integrands rewrite as follows e a be b -(ae a + e a )(e b -1) = h(a) + 2e a h(b) -h(c) with c = a + b, e a a ′ e a ′ -(ae a + e a )(e a ′ -1) = (e a -1)h(a ′ ) -h(a)(e a ′ -1) + h(a ′ ) -(e a -1)(e a ′ -1). Hence, x→y;x→y ′ e a a ′ e a ′ -(ae a + e a )(e a ′ -1) = x→y;x→y ′ (e a -1)h(a ′ ) -x→y;x→y ′ h(a)(e a ′ -1) + x→y;x→y ′ h(a ′ ) -x→y;x→y ′ (e a -1)(e a ′ -1) = J x (X ) x→y h(a) -x→y (e a -1) 2 and the desired result follows. Lemma 4.3 leads us to the following evaluations.

  In the diffusion setting, (49) writes ← -Γ 2 ≥ κΓ.When-→ L is the reversible forward derivative (9), it is the standard Bakry-Émery curvature condition CD(κ, ∞), see[START_REF] Bakry | Diffusions hypercontractives[END_REF][START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF]. Further detail is given below at Theorem 5.8. (b) In the random walk setting, we see with Lemma 4.3 that (49) writes

  b) In the random walk setting (b), y) -ρ(x)][log ρ(y) -log ρ(x)] m(x)J x (y).

Figure 1 .

 1 Figure 1. The cold gas experiment. Positive curvature

Figure 3 .

 3 Figure 3. Hot gas experiment with µ 0 = δ x and µ 1 = δ y The grey leaf in this figure is a symbol for the (say) 95%-support of the bridge R xy . It spreads around the geodesic γ xy and in general the support of R xy t for each intermediate time 0 < t < 1 is the whole space X . At a lower temperature, R xy is closer to δ γ xy :

Figure 4 .

 4 Figure 4. Hot gas experiment with µ 0 = δ x and µ 1 = δ y .At a lower temperature And eventually, at zero temperature R xy must be replaced by its determinestic limit δ γ xy . The superposition of Figures2 and 3describes the hot gas experiment in a negative curvature manifold:

Figure 5 .

 5 Figure 5. The hot gas experiment in a negative curvature manifold Figures 3, 4 and 5 are only suggestive pictures that describe most visited space areas.

  (3) Recently, Gozlan, Roberto, Samson and Tetali[GRST] obtained curvature bounds by studying the convexity of entropy along binomial interpolations. On a geodesic (x := z 0 , z 1 , . . . , z d(x,y) =: y) for the standard graph distance d, the binomial interpolation is defined byµ t (z k ) = B(d(x, y), t)(k), 0 ≤ k ≤ d(x, y), 0 ≤ t ≤ 1, where B(n, p)(k) = n k p k (1 -p) n-k is the usual binomial weight.We know by Lemma 4.3 thatΘ 2 u(x) = Bu(x) 2 + y:x∼y [J y (X ) -J x (X )]h Du(x, y) J x (y) + (y,z):x∼y∼z2e Du(x,y) h Du(y, z) -h Du(x, z) J x (y)J y (z) (63)

( 2 )

 2 Are the following definitions relevant? (a) The m-reversible random walk generator L has curvature bounded below by κ ∈ R if x Θ 2 (u)(x)m(x) ≥ κ x Θ(u)(x)m(x), ∀u. (b) The curvature at x ∈ X of the Markov generator L is curv L (x) := inf u

  see [Dud02, Thm. 10.2.2]. Stationary path measures. Let us make precise a couple of other known notions. Definitions A.4. Let Q be a path measure. (a) It is said to be stationary if for all 0≤ t ≤ 1, Q t = m, for some m ∈ M ( X ). One says that Q is m-stationary. (b) It is said to be reversible if for any subinterval [a, b] ⊂ [0, 1], we have (rev [a,b] ) # Q [a,b] = Q [a,b]where rev[a,b] is the time reversal on [a, b] which is defined by rev [a,b] [η](t) = η([a + b -t] + ) for any η ∈ D([a, b], X ), t ∈ [a, b].

H

  (p|r) := Y log(dp/dr) dp ∈ (-∞, ∞], p ∈ P(Y )(65)if p ≪ r and H(p|r) = ∞ otherwise. More precisely, when r is a probability measure, we haveH(p|r) = Y h(dp/dr) dr ∈ [0, ∞], p, r ∈ P(Y )with h(a) = a log a -a + 1 ≥ 0 for all a ≥ 0, (take h(0) = 1). Hence, the definition (65) is meaningful. If r is unbounded, one must restrict the definition of H(•|r) to some subset of P(Y ) as follows. As r is assumed to be σ-finite, there exist measurable functionsW : Y → [1, ∞) such that z W := Y e -W dr < ∞. (66)Define the probability measure r W := z -1 W e -W r so that log(dp/dr) = log(dp/dr W ) -Wlog z W . It follows that for any p ∈ P(Y ) satisfying Y W dp < ∞, the formulaH(p|r) := H(p|r W ) -Y W dp -log z W ∈ (-∞, ∞]is a meaningful definition of the relative entropy which is coherent in the following sense. If Y W ′ dp < ∞ for another measurable function W

This stationarity assumption is not necessary and one could replace m by R t everywhere. It simply makes things more readable and shortens some computations.

C = 2 is all right, but we do not seek precision.

(c) An inspection of the proof of Theorem 5.4 shows that only the integrated version of (49):

is sufficient.

In the diffusion setting (27) on X = R n , we know with (31) that (49) becomes

≥ κ|∇u| 2 for any sufficiently regular function u. This Γ 2 -criterion was obtained by Arnold, Carlen and Ju [START_REF] Arnold | Large-time behavior of non-symmetric Fokker-Planck type equations[END_REF]; see also the paper [START_REF] Hwang | Accelerating diffusions[END_REF] by Hwang, Hwang-Ma and Sheu for a related result. These results are recovered in the recent paper [FJ] by Fontbona and Jourdain who implement a stochastic process approach, slightly different from the present article's one but where time reversal plays also a crucial role, see Remark 5.5.

Reversible dynamics. More precisely, we are concerned with the following already encountered m-reversible generators L. (a) On a Riemannian manifold X , see (9):

with the reversing measure m = e -V vol. (b) On a graph (X , ∼), see (44):

with s(x, y) = s(y, x) > 0 for all x ∼ y. Let us recall our hypotheses.

Assumptions 5.7. It is required that the reversing measure m is a probability measure. The assumptions (a) and (b) below allow us to apply respectively Theorems 3.5 and 4.6. (a) The Riemannian manifold X is compact connected without boundary and L is given at (54). We assume that V : X → R is C 4 -regular and without loss of generality that V is normalized by an additive constant such that m = e -V vol is a probability measure. (b) The countable graph (X , ∼) is assumed to be locally finite and connected. The generator L is given at (55) and the equilibrium probability measure m and the function s satisfy (45).

Reversibility allows for a simplified expression of I(•|m). Indeed, as ρΘ(log ρ) = L(ρ log ρρ) -log ρ Lρ, we obtain

where the last equality follows from the symmetry of L in L 2 (m) (a consequence of the m-reversibility of R), whenever (ρ, log ρ) ∈ dom Γ. Therefore,

It is the Fisher information of µ with respect to m. A direct computation shows that