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Abstract

An undirected graph G is locally irregular if every two of its adja-
cent vertices have distinct degrees. We say that G is decomposable into
k locally irregular graphs if there exists a partition E1 ∪ E2 ∪ ... ∪ Ek

of the edge set E(G) such that each Ei induces a locally irregular
graph. It was recently conjectured by Baudon et al. that every undi-
rected graph admits a decomposition into at most 3 locally irregular
graphs, except for a well-characterized set of indecomposable graphs.
We herein consider an oriented version of this conjecture. Namely, can
every oriented graph be decomposed into at most 3 locally irregular
oriented graphs, i.e. whose adjacent vertices have distinct outdegrees?
We start by supporting this conjecture by verifying it for several classes
of oriented graphs. We then prove a weaker version of this conjecture.
Namely, we prove that every oriented graph can be decomposed into
at most 6 locally irregular oriented graphs. We finally prove that even
if our conjecture were true, it would remain NP-complete to decide
whether an oriented graph is decomposable into at most 2 locally ir-
regular oriented graphs.

Keywords: oriented graph, locally irregular oriented graph, decom-
position into locally irregular graphs, complexity

1 Introduction

A common class of graphs is the class of regular graphs, which are graphs
whose all vertices have the same degree. One could naturally wonder about
an antonym notion of irregular graphs. In this scope, maybe the most natural
definition for an irregular graph could be a graph whose all vertices have
distinct degrees. Unfortunately this definition is not suitable for undirected
simple graphs as an easy argument shows that such a graph with at least two
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vertices necessarily has two vertices with the same degree. Indeed, assume
G has n vertices and is irregular. Since G is simple, the degree sequence of
its vertices is (0, 1, ..., n− 1). But if one vertex of G has degree n− 1, then
all of its vertices have degree at least 1. This contradicts the fact that some
vertex of G has degree 0.

Several studies then aimed at finding ways for introducing irregularity
in undirected simple graphs. One first solution, introduced by Chartrand et
al. [3], is to turn an undirected simple graph G into an irregular multigraph,
i.e. a graph with multiple edges, by multiplying the edges of G (i.e. replacing
them with several multiple edges). This led to the introduction of the notion
of irregularity strength, where the irregularity strength s(G) of G can be
defined as the least integer s(G) ≥ 2 for which G can be turned into an
irregular multigraph by multiplying each of its edges at most s(G) times.

Since the notion of irregularity above does not fit with undirected simple
graphs, we have to consider a weaker notion of irregularity. We may e.g.
want a graph to be irregular locally rather than totally. This definition
was notably introduced by Alavi et al. [1], who defined a highly irregular
graph as a graph whose every two adjacent vertices have distinct degrees.
To accord our terminology to the one introduced in [2], which inspired our
investigations, a highly irregular graph is said locally irregular throughout
this paper. An undirected simple graph G may of course not be locally
irregular, e.g. if G is regular, so once again we could try to turn G into a
locally irregular multigraph (this consideration gave birth to the so-called
1-2-3 Conjecture, see [7]).

Another direction for introducing irregularity in G is rather to try to
“decompose” G into several locally irregular graphs. More formally, we
say that G is decomposable into k locally irregular graphs if there exists a
partition E1 ∪ E2 ∪ ... ∪ Ek of E(G) such that G[Ei] is locally irregular
for every i ∈ {1, 2, ..., k}. Note that finding a decomposition of G into k
locally irregular graphs is similar to finding an improper k-edge-colouring
of G such that each colour class induces a locally irregular graph. Such
an edge-colouring is said locally irregular for convenience. As usual, we are
interested in the least number of colours used by a locally irregular edge-
colouring of G. This parameter is called the irregular chromatic index of G,
denoted χ′irr(G), and is defined as ∞ when G does not admit any locally
irregular edge-colouring (note e.g. that the irregular chromatic index of
every path or cycle with odd length is not finite).

It is conjectured that every undirected “colourable” graph G, i.e. whose
irregular chromatic index is finite, can be decomposed into at most 3 locally
irregular graphs [2]. This conjecture was verified for several classes of graphs,
including trees, complete graphs, and regular graphs with large degree which
are, in some sense, the least locally irregular graphs. However, no constant

2



upper bound on the number of necessary colours has been found so far, so
no weaker version of the conjecture mentioned above has been proved.

We here consider this problem in the context of oriented graphs, where
the notions of regularity and (local) irregularity are with respect to the out-

degree parameter1. Namely, an oriented graph
−→
G is regular (resp. irregular)

if all its vertices have the same (resp. distinct) outdegrees. In case every

two adjacent vertices of
−→
G have distinct outdegrees, we say that

−→
G is locally

irregular. The notions of locally irregular arc-colouring and irregular chro-

matic index of
−→
G then follows naturally as in the undirected case. Note that,

as for the undirected case, our investigations are somehow justified since
−→
G

is irregular if and only if
−→
G is a transitive tournament. Hence irregular

oriented graphs have a very restricted structure. Note further that a single
arc is a locally irregular oriented graph, while a single edge is clearly not
a locally irregular graph. Therefore, the irregular chromatic index of every

oriented graph is defined since a locally irregular |A(
−→
G)|-arc-colouring of

−→
G ,

where A(
−→
G) is the set of arcs of

−→
G , is obtained by assigning one distinct

colour to each arc of
−→
G .

Investigations on small oriented graphs suggest that, as for the undi-
rected case, the irregular chromatic index of every oriented graph should be
upper bounded by 3.

Conjecture 1. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 3.

This paper is mainly devoted to Conjecture 1. We support this conjec-
ture by showing it to hold for several classes of graphs in Section 2. We
then prove a weaker version of Conjecture 1 in Section 3. Namely, we prove

that χ′irr(
−→
G) ≤ 6 for every oriented graph

−→
G . We finally turn our concerns

on algorithmic aspects in Section 4. In particular, we prove that deciding
whether the irregular chromatic index of an oriented graph is at most 2
is an NP-complete problem. In case Conjecture 1 turned out to be true,
this would imply that oriented graphs with irregular chromatic index 2 are
not easy to recognize, unless P=NP. Some concluding remarks and open
questions are gathered in concluding Section 5.

Some terminology and notation

Let
−→
G be an oriented graph, and φ be a k-arc-colouring of

−→
G for some

k ≥ 1. We denote by V (
−→
G) and A(

−→
G) the vertex and arc sets of

−→
G ,

respectively. Throughout this paper, the i-subgraph of
−→
G (induced by φ)

refers to the subgraph of
−→
G induced by colour i of φ for any i ∈ {1, 2, ..., k}.

Given a vertex v of
−→
G , the i-outdegree of v refers to the outdegree of v in

1Note that our investigations could have be done with respect to the indegrees instead.
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the i-subgraph. We denote this parameter d+φ,i(v). We refer the reader to [4]
for every other usual notation or terminology.

2 Oriented graphs supporting Conjecture 1

Throughout this section, we exhibit families of oriented graphs for which
Conjecture 1 holds. Namely, we prove Conjecture 1 to hold for oriented
graphs whose underlying graph has chromatic number at most 3, acyclic
oriented graphs, and Cartesian products of oriented graphs with irregular
chromatic index at most 3.

2.1 Oriented graphs whose underlying graph is k-colourable

The underlying graph of an oriented graph
−→
G , denoted und(

−→
G), is the undi-

rected graph obtained from
−→
G by “replacing” every arc by an edge. A

proper k-vertex-colouring of an undirected graph G is a partition of V (G)
into k parts V1 ∪ V2 ∪ ... ∪ Vk such that Vi is an independent set for every
i ∈ {1, 2, ..., k}. The chromatic number χ(G) of G is the least number of
colours in a proper vertex-colouring of G. In the next result, we show that
every oriented graph whose underlying graph is k-colourable, i.e. admits a
proper k-vertex-colouring, admits a locally irregular k-arc-colouring.

Theorem 2. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ χ(und(

−→
G)).

Proof. Without loss of generality, we may assume that
−→
G is connected. Let

χ(und(
−→
G)) = k, and V1 ∪ V2 ∪ ... ∪ Vk be a proper k-vertex-colouring of

und(
−→
G). Consider the k-arc-colouring φ of

−→
G obtained by colouring i every

arc whose tail lies in Vi for every i ∈ {1, 2, ..., k}. Now consider every two
adjacent vertices u and v. By definition of a proper vertex-colouring, we
have u ∈ Vi and v ∈ Vj for some i, j ∈ {1, 2, ..., k} with i 6= j. Besides,
according to how φ was obtained, we have d+φ,i(u) ≥ 1 and d+φ,j(u) = 0,

and d+φ,i(v) = 0 and d+φ,j(v) ≥ 1, while the arc between u and v is coloured
either i or j. It should be thus clear that φ is locally irregular.

As a special case of Theorem 2, we get that every oriented graph whose
underlying graph is a tree, a bipartite graph, or more generally a 3-colourable
graph agrees with Conjecture 1.

Corollary 3. For every oriented graph
−→
G whose underlying graph is 3-

colourable, we have χ′irr(
−→
G) ≤ 3.
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2.2 Acyclic oriented graphs

An oriented graph is acyclic if it does not admit a circuit as a subgraph.
We herein show that every acyclic oriented graph admits a locally irregular
3-arc-colouring.

Theorem 4. For every acyclic oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 3.

Proof. We actually prove a stronger statement, namely that every acyclic

oriented graph
−→
G admits a locally irregular 3-arc-colouring in which only

two colours are used at each vertex, i.e. the arcs outgoing from every vertex
are coloured with at most two colours. The proof is by induction on the

order n of
−→
G , i.e. its number of vertices. The claim can be easily verified

for small values of n, e.g. for n ≤ 3. Let us thus assume the thesis holds

for every oriented graph with order at most n− 1. Since
−→
G is acyclic, there

has to be a vertex of
−→
G with indegree 0. Let v be such a vertex, and denote

its neighbours by u1, u2, ..., ud, i.e. −→vui is an arc for every i ∈ {1, 2, ..., d},
where d = d+(v).

Let
−→
H =

−→
G − v. Since removing vertices from an acyclic graph does not

create new circuits, the oriented graph
−→
H is still acyclic. Besides, it admits

a locally irregular 3-arc-colouring φ−→
H

with the restrictions above according
to the induction hypothesis. Now put back v and its adjacent arcs, and try
to extend φ−→

H
, i.e. colour the arcs outgoing from v, to a locally irregular

3-arc-colouring φ−→
G

of
−→
G satisfying the conditions above. We show below

that such an extension from φ−→
H

to φ−→
G

necessarily exists.

For this purpose, we first show that such an extension necessarily exists
whenever d ≤ 3 before generalizing our arguments. If d = 1, then, by our
assumptions on φ−→

H
, at most two colours, say 1 and 2, are used at u1. Then

by colouring 3 the arc −→vu1, no conflict may arise and φ−→
G

remains locally
irregular. Besides, only one colour is used at v.

Now, if d = 2, then start by colouring 1 all arcs outgoing from v. If φ−→
G

is not locally irregular, then one vertex ui1 has 1-outdegree 2 by φ−→
H

. Now
colour 2 all arcs outgoing from v. Again, if φ−→

G
is not locally irregular, then

it means that one vertex ui2 has 2-outdegree 2 by φ−→
H

. Now colour 3 all arcs
outgoing from v. If φ−→

G
is not locally irregular again, then some vertex ui3

has 3-outdegree 2. Since d = 2 and there are at most two colours used at
each of the ui’s, it means that we have revealed all the colours used at one
of the ui’s. Assume i1 = i2 = 1 without loss of generality. Then u1 has 1-
and 2-outdegree 2, while u2 has 3-outdegree 2. Note then that by setting
φ−→
G

(−→vu1) = 1 and φ−→
G

(−→vu2) = 3, the arc-colouring φ−→
G

is locally irregular.
Since d = 2, note further that at most two colours are used at v, as required.

Finally consider d = 3. As previously, start by colouring all arcs outgoing
from v with a same colour. Again, if φ−→

G
is not locally irregular for every of
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these three extensions of φ−→
H

, then we get that a vertex ui1 has 1-outdegree 3,
a vertex ui2 has 2-outdegree 3, and one vertex ui3 has 3-outdegree 3. Now
fix φ−→

G
(−−→vui1) = 1 (there is no conflict in the 1-subgraph since ui1 has 1-

outdegree 3) and colour all of the remaining arcs outgoing from v with a
same colour different from 1. Again, if φ−→

G
is never locally irregular, then

we get that some vertex ui4 has 2-outdegree 2, and some vertex ui5 has
3-outdegree 2. Similarly, if φ−→

G
is not locally irregular when assigning −−→vui2

colour 2 (again, there is not conflict in the 2-subgraph since ui2 has 2-
outdegree 3) and all of the other arcs outgoing from v colour 1, then we
get that some vertex ui6 has 1-outdegree 2. At this point, all of the colours
of the arcs outgoing from the ui’s are revealed. Since it was revealed that
colour 1 is used at ui6 , either colour 2 or 3 is not used at vi6 . Assume
this colour is 2 without loss of generality. Now just assign colour 2 to −−→vui6 ,
and colour 1 to all of the other arcs outgoing from v. Then v and ui6 are
adjacent in the 2-subgraph but have distinct 2-outdegrees, namely 1 and 0,
respectively, while v and its other two neighbours are adjacent in the 1-
subgraph and have distinct 1-outdegrees since v has 1-outdegree 2 and only
ui6 was revealed to have 1-outdegree 2. It then follows that φ−→

G
is locally

irregular. Note further that at most two colours are used to colour the arcs
outgoing from v at every moment of the procedure.

We now generalize our arguments for every d ≥ 4. The colouring scheme
we use below is quite similar to the one used so far. If, at some step, the
resulting arc-colouring φ−→

G
is locally irregular, then we are done. Suppose

this never occurs. We start by colouring with only one colour all arcs outgo-
ing from v (Step 1). Since φ−→

G
is never locally irregular, it means that some

vertex ui1 has 1-outdegree d, some vertex ui2 has 2-outdegree d, and some
vertex ui3 has 3-outdegree d. Next, we try to extend φ−→

H
to φ−→

G
by colouring

with some colour α one arc outgoing from v whose head was shown to have
α-outdegree strictly more than 1 in earlier steps of the process (i.e. ui1 , ui2
or ui3), and then colouring all of the other arcs outgoing from v with a colour
different from α (Step 2.a). Again, if φ−→

G
is not locally irregular for every of

these attempts, then we reveal that some vertex ui4 has 1-outdegree d− 1,
some vertex ui5 has 2-outdegree d− 1, and some vertex ui6 has 3-outdegree
d−1. Once the vertices ui4 , ui5 and ui6 are revealed, we can reveal additional
1-, 2- and 3-outdegrees as follows. Since ui4 has 1-outdegree d− 1, it means
that a colour different from 1, say 2, is not used at ui4 . Then colour 2 the
arc −−→vui4 , and 1 all of the other arcs outgoing from v. Then we reveal that a
vertex ui7 different from ui1 and ui4 has 1-outdegree d − 1. Repeating the
same strategy with ui5 and ui6 (Step 2.b), we reveal also that two vertices
ui8 (different from ui2 and ui5) and ui9 (different from ui3 and ui6) have 2-
and 3-outdegree d− 1, respectively.

Repeat the same strategy as many times as necessary until φ−→
G

is locally
irregular, or all of the 1-, 2- and 3-outdegrees of the ui’s are revealed. More
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precisely, for every j = 3, 4, ..., dd2e taken consecutively, colour with some
colour α exactly j − 1 of the arcs outgoing from v whose heads were shown
to have α-outdegree strictly more than j − 1 in earlier steps, and colour the
remaining d−j+1 arcs with some different colour β 6= α (Step j.a). At Step
j.a, we reveal that some vertex ui3+6(j−2)+1

has 1-outdegree d − j + 1, some
vertex ui3+6(j−2)+2

has 2-outdegree d − j + 1, and some vertex ui3+6(j−2)+3

has 3-outdegree d− j+ 1. Repeating Step j.a but with “forcing” ui3+6(j−2)+1

to be one of the j − 1 arcs coloured with some colour not appearing at it,
and then similarly for ui3+6(j−2)+2

and ui3+6(j−2)+3
(Step j.b), we reveal that

three other vertices, ui3+6(j−2)+4
, ui3+6(j−2)+5

and ui3+6(j−1)
, have 1-, 2- and

3-outdegree d− j + 1, respectively. We refer to Steps j.a and j.b as Step j.

Hence, at each Step j, we reveal that two of the ui’s have 1-outdegree d−
j + 1, two of the ui’s have 2-outdegree d− j + 1 and two of the ui’s have 3-
outdegree d−j+1 (except for Step 1 where only one outdegree of each colour
is revealed). Since d ≥ 4 and there are only two colours used at each vertex
ui according to the assumption on φ−→

H
, and hence at most 2d outdegrees to

be revealed, it should be clear that all of the 1-, 2- and 3-outdegrees of the
ui’s are revealed once j reaches dd2e. Besides, every 1-, 2- or 3-outdegree

is revealed to be strictly more than dd2e (except when d = 5, see below).
One can then obtain the locally irregular 3-arc-colouring φ−→

G
by assigning

colour 1 to dd2e arcs outgoing from v whose head were shown to have 1-

outdegree strictly more than dd2e, and colour 2 to the remaining arcs (there

are bd2c of them). Under this colouring, the vertex v has 1- and 2-outdegree

dd2e and bd2c, respectively, while its neighbours have 1- and 2-outdegree 0
or strictly greater than these in the 1- and 2-subgraphs, respectively (when
d = 5, one of the ui’s, say u1, is revealed to have 1-outdegree 3 - in this
special case, force −→vu1 to be coloured 2. For every other value of d, the
revealed outdegrees are strictly greater than dd2e). Besides, only two colours
are used at v. This ends up the proof.

It is worth noting that the stronger statement proved in the proof of
Theorem 4 is crucial for our colouring scheme. Indeed, assume e.g. that
d = 1, that three colours are allowed at each vertex, and that u1 has 1-,
2- and 3-outdegree exactly 1 by φ−→

H
. In such a situation, we clearly cannot

extend φ−→
H

to φ−→
G

.

2.3 Cartesian products of oriented graphs with irregular chro-
matic index at most 3

We herein investigate a last family of oriented graphs, namely Cartesian
products of oriented graphs with irregular chromatic index at most 3 (the
reader is referred to [6] for details on this construction). The main interest
for focusing on this operation is that it provides numerous more examples of
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oriented graphs verifying Conjecture 1, assuming that we are provided with
oriented graphs agreeing with Conjecture 1 themselves.

Theorem 5. Let
−→
G and

−→
H be two oriented graphs such that χ′irr(

−→
G) ≤ k

and χ′irr(
−→
H ) ≤ `. Then we have χ′irr(

−→
G�
−→
H ) ≤ max{k, `}.

Proof. Let φ−→
G

and φ−→
H

be locally irregular k- and `-arc-colourings of
−→
G and

−→
H , respectively. Now let φ−→

G�
−→
H

be the max{k, `}-arc-colouring of
−→
G�
−→
H

obtained from φ−→
G

and φ−→
H

as follows:

φ−→
G�
−→
H

(
−−−−−−−−−−→
(u1, v1)(u2, v2)) =

{
φH(−−→v1v2) if u1 = u2,
φG(−−→u1u2) otherwise.

Note that we have d+φ−→
G�
−→
H
,i((u1, v1)) = d+φ−→

G
,i(u1) + d+φ−→

H
,i(v1) for every

colour i ∈ {1, 2, ...,max{k, `}}. Assume
−−−−−−−−−−→
(u1, v1)(u2, v2) is an arc of

−→
G�
−→
H

with φ−→
G�
−→
H

(
−−−−−−−−−−→
(u1, v1)(u2, v2)) = i. By definition, we have either u1 = u2

or v1 = v2. Suppose u1 = u2 without loss of generality. Then we have
d+φ−→

G
,i(u1) = d+φ−→

G
,i(u2), and, because φ−→

H
is locally irregular, also d+φ−→

H
,i(v1) 6=

d+φ−→
H
,i(v2). It then follows that d+φ−→

G�
−→
H
,i((u1, v1)) 6= d+φ−→

G�
−→
H
,i((u2, v2)). Re-

peating the same argument for every arc of
−→
G�
−→
H , we get that φ−→

G�
−→
H

is
locally irregular.

Regarding Conjecture 1, we get the following.

Corollary 6. For every two oriented graphs
−→
G and

−→
H such that χ′irr(

−→
G), χ′irr(

−→
H ) ≤

3, we have χ′irr(
−→
G�
−→
H ) ≤ 3.

3 Decomposing oriented graphs into at most 6 lo-
cally irregular oriented graphs

In this section we show, in Theorem 9 below, that every oriented graph has
irregular chromatic index at most 6. For this purpose, we first introduce the

following observation stating that if an oriented graph
−→
G can be “decom-

posed” into arc-disjoint subgraphs
−→
G1,
−→
G2, ...,

−→
Gk, then a locally irregular

arc-colouring of
−→
G can be obtained by considering independent locally ir-

regular arc-colourings of
−→
G1,
−→
G2, ...,

−→
Gk.

Observation 7. Let
−→
G be an oriented graph whose arc set A(

−→
G) can

be partitioned into k parts A1 ∪ A2 ∪ ... ∪ Ak such that χ′irr(
−→
G [A1]) ≤

x1, χ
′
irr(
−→
G [A2]) ≤ x2, ..., χ

′
irr(
−→
G [Ak]) ≤ xk for some values of x1, x2, ..., xk.

Then χ′irr(
−→
G) ≤∑k

i=1 xi.
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Proof. Let φ1, φ2, ..., φk be locally irregular x1-, x2-, ..., xk-arc-colourings of−→
G [A1],

−→
G [A2], ...,

−→
G [Ak], respectively, and denote by φ the (

∑k
i=1 xi)-arc-

colouring of
−→
G defined as

φ(−→a ) = (φi(
−→a ), i) for every −→a ∈ A(

−→
G) such that −→a ∈ Ai.

By the partition of A(
−→
G), every arc of

−→
G receives a colour by φ, and φ

uses
∑k

i=1 xi colours. Besides, the subgraph of
−→
G induced by colour (j, i)

is nothing but the subgraph of
−→
G [Ai] induced by colour j of φi, which is

locally irregular by the definition of φi. All subgraphs of
−→
G induced by φ

are then locally irregular as required.

Observation 7 provides an easy upper bound on the irregular chromatic
index of every oriented graph which may be partitioned into arc-disjoint
subgraphs with upper-bounded irregular chromatic index. In particular, by
showing below that every oriented graph can be arc-partitioned into two
acyclic oriented graphs (which have irregular chromatic index at most 3,
see Theorem 4), we directly get that every oriented graph has irregular
chromatic index at most 6.

Lemma 8. The arc set of every oriented graph
−→
G can be partitioned into

two parts A1 ∪A2 such that
−→
G [A1] and

−→
G [A2] are acyclic.

Proof. Let v1, v2, ..., vn denote the vertices of
−→
G following an arbitrary order.

Now consider every arc −−→vivj of
−→
G , and{

add −−→vivj to A1 if i < j,
add −−→vivj to A2 otherwise.

Then observe that if −−−−−−−−−→vi1vi2 ...vikvi1 , with i1 < i2 < ... < ik, were a circuit

of
−→
G [A1], then we would have both i1 < ik and ik < i1, a contradiction. A

similar contradiction can be deduced from any circuit of
−→
G [A2].

Theorem 9. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 6.

Proof. According to Lemma 8, there exists a partition A1 ∪ A2 of A(
−→
G)

such that
−→
G [A1] and

−→
G [A2] are acyclic. Since every acyclic oriented graph

has irregular chromatic index at most 3 according to Theorem 4, the thesis
follows directly from Observation 7.
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v′1

u1

v1

u2

v′2

v2

u3

v′3

v3

v′x

vx

ux

v′x+1

Figure 1: The 2-fiber gadget
−→
F2, and a locally irregular 2-arc-colouring of−→

F2 (thick (resp. thin) arcs are arcs coloured 1 (resp. 2)).

4 Algorithmic complexity

In this section, we deal with the algorithmic complexity of the following
decision problem.

Locally Irregular k-Arc-Colouring
Instance: An oriented graph

−→
G .

Question: Do we have χ′irr(
−→
G) ≤ k?

Since checking whether
−→
G is locally irregular can be done in quadratic

time, the problem Locally Irregular 1-Arc-Colouring is in P. In
case Conjecture 1 turned out to be true, note that every problem Locally
Irregular k-Arc-Colouring with k ≥ 3 would be in P. At the moment,
by Theorem 9 we only get that Locally Irregular k-Arc-Colouring
is in P for every k ≥ 6. On contrary, if Locally Irregular k-Arc-
Colouring were shown to be NP-complete for some k ∈ {3, 4, 5}, then one
would disprove Conjecture 1.

In the light of the previous explanations, only Locally Irregular
2-Arc-Colouring is of interest at the moment. We prove this problem
to be NP-complete in Theorem 12 below. This result implies that, even if
Conjecture 1 turned out to be true, no good characterization of oriented
graphs with irregular chromatic index at most 2 can exist, unless P = NP.

To prove Theorem 12, we first need to introduce some forcing gadgets,
i.e. some oriented graphs which will be used in our reduction to “force” the
propagation of a locally irregular 2-arc-colouring within an oriented graph.

The 2-fiber gadget, denoted
−→
F2, is depicted in Figure 1. We refer to the

arcs
−−→
v′1v1,

−−→
v′2v2, ..,

−−→
v′xvx as the outputs of

−→
F2. Every output

−−→
v′ivi with i odd

is referred to as an odd output, or as an even output otherwise. Note that−→
F2 is actually made of a same small pattern repeated consecutively from left

to right. The dashed section of
−→
F2 means that this pattern can be repeated

10



v1

v′1

v2

v′2 v′3

v3

v′x

vx

v′x+1

Figure 2: The 3-fiber gadget
−→
F3, where the top-most arcs are outputs of

−→
F2,

and a locally irregular 2-arc-colouring of
−→
F3 (thick (resp. thin) arcs are arcs

coloured 1 (resp. 2)).

an arbitrary number of times, i.e. x can be arbitrarily large, so that
−→
F2 has

arbitrarily many outputs, which are either even or odd, alternatively. This
gadget has the following colouring property.

Lemma 10. In every locally irregular 2-arc-colouring φ of
−→
F2, all of the

even outputs of
−→
F2 have the same colour, while all of the odd outputs have

the second colour. Besides, for every output
−−→
v′ivi of

−→
F2, the vertex v′i has

outdegree 2 in the φ(
−−→
v′ivi)-subgraph.

Proof. Note that for every i ∈ {1, 2, ..., x}, the vertex ui has α-outdegree 1
by φ for some α ∈ {1, 2} and is adjacent to v′i in the α-subgraph. For this

reason, the two arcs
−−→
v′ivi and

−−−→
v′iv
′
i+1 cannot have distinct colours by φ since

otherwise v′i would have α-outdegree 1 too.

Hence, all of the arcs outgoing from v′i have the same colour. Suppose
e.g. that all of the arcs outgoing from v′1 are coloured 1. Then v′1 has 1-
outdegree 2, and v′1 and v′2 are adjacent in the 1-subgraph. For these reasons,
all of the arcs outgoing from v′2 cannot be coloured 1 since otherwise v′2 would
have 1-outdegree 2 too. Then all of the arcs outgoing from v′2 are coloured 2

by φ. Repeating the same argument from the left to the right of
−→
F2, we

get that v′i has 1-outdegree 2 for every odd i, while v′i has 2-outdegree 2
otherwise, i.e. when i is even. Furthermore, every two consecutive outputs

of
−→
F2 have distinct colours.

We now generalize the notion of k-fiber gadget for every k ≥ 3. Consider
any value of k such that every i-fiber gadget has been defined for every i ∈
{2, 3, ..., k − 1}. Start from a directed path

−−−−−−−−−→
v′1v
′
2...v

′
xv
′
x+1 for some arbitrary

value of x. For every v′i with i ∈ {1, 2, ..., x}, add arcs from v′i towards k− 1
new vertices with outdegree 0. Call vi one such resulting vertex. Finally,
identify v′i with the heads of one distinct even output and one distinct odd

output of each of
−→
F2,
−→
F3, ...,

−−→
Fk−1. Refer to Figure 2 for an illustration of the

3-fiber gadget
−→
F3. Similarly as for

−→
F2, we refer to the arcs

−−→
v′ivi of

−→
Fk as its

11



outputs, making again the distinction between even and odd outputs. The

generalized fiber gadgets share a similar colouring property as
−→
F2.

Lemma 11. In every locally irregular 2-arc-colouring φ of
−→
Fk, all of the

even outputs of
−→
Fk have the same colour, while all of the odd outputs have

the second colour. Besides, for every output
−−→
v′ivi of

−→
Fk, the vertex v′i has

outdegree k in the φ(
−−→
v′ivi)-subgraph.

Proof. The proof is similar to the one of Lemma 10. Consider every vertex

v′i of
−→
Fk. Since the heads of one even output and one odd output of

−→
Fj are

identified with v′i for every j ∈ {2, 3, ..., k−1}, there are two vertices w1 and
w2 neighbouring v′i such that:

• w1 and v′i are adjacent in the 1-subgraph induced by φ,

• w2 and v′i are adjacent in the 2-subgraph induced by φ,

• w1 has 1-outdegree j and w2 has 2-outdegree j.

Since this observation holds for every j ∈ {2, 3, ..., k − 1}, note that all the
arcs outgoing from v′i must have the same colour by φ since otherwise v′i
would have the same outdegree as one of its neighbours in either the 1- or 2-
subgraph. Assume all the arcs outgoing from v′1 have colour 1 by φ without
loss of generality. Then all arcs outgoing from v′2 cannot all be coloured 1
since otherwise v′1 and v′2 would be adjacent vertices with outdegree k in
the 1-subgraph. Then all arcs outgoing from v′2 have colour 2 by φ. Again,
by repeating this argument from left to right, similarly as in the proof of

Lemma 10, we get that the colours of the outputs of
−→
Fk alternate between 1

and 2, and that the tail of each output has α-outdegree k, where α is the
colour of this output by φ.

The generalized fiber gadgets described above are actually not all nec-
essary to prove our main result, but using these we can “generate” vertices
with arbitrarily large outdegree in either the 1- or 2-subgraph induced by a
locally irregular 2-arc-colouring of some oriented graph. Used conveniently
(note in particular that if we identify the heads of one even output and one

odd output of, say,
−→
F2, with a vertex v, then v cannot have outdegree 2

in the 1- and 2-subgraphs by some locally irregular 2-arc-colouring), one
can construct arbitrarily many oriented graphs with various structures and
which have irregular chromatic index 3. This should convince the reader that
even if Conjecture 1 turned out to be true, oriented graphs with irregular
chromatic index 2 do not have a predictable structure.

We are now ready to prove the main result of this section.

12



Theorem 12. Locally Irregular 2-Arc-Colouring is NP-complete.

Proof. Clearly Locally Irregular 2-Arc-Colouring is in NP since,

given a 2-arc-colouring of
−→
G , one can easily check whether the two sub-

graphs of
−→
G it induces are locally irregular (this property can be checked in

quadratic time).

We now prove that Locally Irregular 2-Arc-Colouring is NP-
hard, and thus NP-complete since it is also in NP, by reduction from the
following well-known NP-hard problem [5].

Not-All-Equal 3-Satisfiability
Instance: A 3CNF formula F over variables x1, x2, ..., xn and clauses C1, C2, ..., Cm.
Question: Is F nae-satisfiable, i.e. does there exist a truth assignment to
the variables of F such that every clause of F has at least one true and one
false literal?

Not-All-Equal 3-Satisfiability is notoriously hard, even in its mono-
tone form, i.e. when restricted to instances with no negated variable [5]. We
hence suppose throughout this proof that every of its instances, i.e. every
formula F , has no negated variable.

From F , we construct an oriented graph
−→
GF such that

F is nae-satisfiable
⇔−→

GF admits a locally irregular 2-arc-colouring φF .

We design
−→
GF in such a way that the propagation of φF along

−→
GF is repre-

sentative of the constraints attached to Not-All-Equal 3-Satisfiability,
i.e. of the consequences on F of setting such or such variable of F to true.
This is typically done by designing gadgets with specific colouring proper-
ties. Throughout this proof, colour 1 of φF must be thought of as the truth
value true, while colour 2 represents the truth value false of a truth assign-
ment to the variables of F (one could actually switch these two equivalences
as we are dealing with Not-All-Equal 3-Satisfiability).

The first requirement of Not-All-Equal 3-Satisfiability we have to
“translate” is that every clause of F is considered satisfied if and only if it has
at least one true and one false variable. This is done by “transforming” every

clause Cj = (xi1∨xi2∨xi3) into some clause gadget
−→
GF (Cj) in

−→
GF with three

special arcs −→a1, −→a2 and −→a3 representing the variables of Cj , and such that all
of these three arcs cannot have the same colour by φF . Assuming that, say,
φF (−→a1) = 1 (resp. φF (−→a1) = 2) simulates the fact that xi1 supplies Cj with
value true (resp. false), the requirement above then follows naturally from

the colouring property of
−→
GF (Cj).
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uj
bj

v1,j v2,j v3,j

Figure 3: The clause gadget
−→
GF (Cj), where the top-most arcs are outputs of

the 3- and 4-fiber gadgets
−→
F3 and

−→
F4, and a locally irregular 2-arc-colouring

of
−→
GF (Cj) (thick (resp. thin) arcs are arcs coloured 1 (resp. 2)).

Consider then every clause Cj = (xi1 ∨ xi2 ∨ xi3), whose some variables

may be the same. The clause gadget
−→
GF (Cj), associated with Cj , is obtained

as follows (see Figure 3). Add five vertices uj , v1,j , v2,j , v3,j and bj to
−→
GF ,

as well as all arcs from uj towards every vertex in {v1,j , v2,j , v3,j , bj}. Now
identify uj with the heads of one even output and one odd output of each

of
−→
F3 and

−→
F4, where

−→
F3 and

−→
F4 are the 3- and 4-fiber gadgets. The arcs

−→a1, −→a2 and −→a3 mentioned in the explanations above actually refer to −−−→ujv1,j ,−−−→ujv2,j and −−−→ujv3,j . Besides, one has to think of every vertex vi,j as a vertex

associated with the ith variable of Cj . We show that
−→
GF (Cj) cannot have

all of its arcs −−−→ujv1,j ,
−−−→ujv2,j and −−−→ujv3,j having the same colour by φF , as

required.

Claim 1. Let Cj be a clause of F , with j ∈ {1, 2, ...,m}. Then one arc of
−−−→ujv1,j,

−−−→ujv2,j and −−−→ujv3,j has some colour by φF , while the other two arcs
have the second colour.

Proof. The claim follows from the facts that uj has outdegree 4 and is ad-
jacent to vertices with outdegree 3 and 4 in both the 1- and 2-subgraphs

induced by φF , namely the tails of some outputs of
−→
F3 and

−→
F4 whose heads

were identified with uj .

The second requirement of Not-All-Equal 3-Satisfiability we have
to model is that, by a truth assignment of the variables of F , a variable
provides the same truth value to every clause it appears in. At the moment,
this requirement is not met as φF may be locally irregular but with, say,
φF (−−−→ujvi,j) = 1 and φF (−−−−→uj′vi′,j′) = 2 with the ith variable of Cj being identical
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r

r′

w′
1

w1 w2

Figure 4: The collecting gadget
−→
Gg, and a locally irregular 2-arc-colouring

of
−→
Gg (thick (resp. thin) arcs are arcs coloured 1 (resp. 2)).

to the i′th variable of Cj′ , say x`. Following our analogy above, this would
simulates that x` belongs to both of the clauses Cj and Cj′ , but x` provides
true to Cj and false to Cj′ by a truth assignment, which is impossible.
Hence, we have to check somehow whether all the arcs −−−−−→uj1vi1,j1 , −−−−−→uj2vi2,j2 , ...,
−−−−−−−→ujni

vini ,jni
, representing the membership of x` to the clauses Cj1 , Cj2 , ..., Cjni

of F that contain x`, have the same colour by φF .

This is done by using the collecting gadget
−→
Gg depicted in Figure 4. The

arcs −−→w1r and −−→w2r are called the inputs of
−→
Gg, while

−−→
r′w′1 is its output. Note

that w1, w2 and r′ have outdegree 2. This gadget
−→
Gg has the following

colouring property.

Claim 2. Let φ be a locally irregular 2-arc-colouring of
−→
Gg such that the

two arcs outgoing from w1 have the same colour, and the two arcs outgoing

from w2 have the same colour. Then φ(−−→w1r) = φ(−−→w2r) = φ(
−−→
r′w′1).

Proof. Assume φ(−−→w1r) = 1 and φ(−−→w2r) = 2 without loss of generality. In
particular, note that w1 and r are adjacent in the 1-subgraph, and that
w2 and r are adjacent in the 2-subgraph. Besides, by assumption w1 has
1-outdegree 2 while w2 has 2-outdegree 2. For these reasons, note that the
two arcs outgoing from r cannot have the same colour since otherwise r
would have 1- or 2-outdegree 2, a contradiction. Then one arc outgoing
from r has colour 1 by φ while the other arc has colour 2, implying that r
has both 1- and 2-outdegree 1. But then we necessarily get a contradiction
while colouring the arc outgoing from the vertex with outdegree 1 attached
to r.

On the contrary, note that if φ(−−→w1r) = φ(−−→w2r) = 1 without loss of
generality, then, so that we avoid every contradiction mentioned above, we
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have to colour 2 all arcs outgoing from r. Then r and r′ are neighbouring
vertices in the 2-subgraph, and r has 2-outdegree 2. Since there is a vertex
with outdegree 1 attached to r′, again we cannot colour the two arcs outgoing
from r′ with distinct colours. Then we have to colour 1 the two arcs outgoing
from r′.

Roughly speaking, assuming we are given two arcs −→a1 and −→a2 whose
tails necessarily have outdegree 2 in the φF (−→a1)- and φF (−→a2)-subgraphs,
respectively, we can “check” whether φF (−→a1) = φF (−→a2). Namely, take a

copy of
−→
Gg and “replace” the arcs −−→w1r and −−→w2r with −→a1 and −→a2, respectively.

We refer to this operation as collecting −→a1 and −→a2 (with some copy of
−→
Gg).

According to Claim 2, the arc-colouring φF cannot then be extended to
the collecting gadget if φF (−→a1) 6= φF (−→a2). Recall further that if φF (−→a1) =
φF (−→a2), then all of the arcs outgoing from the tail of the output of the
collecting gadget have colour φF (−→a1), and the tail of the output thus has
φF (−→a1)-outdegree 2. In some sense, this property means that the output of
a collecting gadget “memorizes” the colour used at its two inputs.

To end up the construction of
−→
GF , proceed as follows. Consider every

variable xi of F with i ∈ {1, 2, ..., n}, and let −→o1 ,−→o2 , ...,−→oni denote the ni

arcs of
−→
GF representing the membership of xi to some clause, where ni is

the number of clauses that contain xi. More precisely, these arcs are of
the form −−−→ujvi′,j , where i′ ∈ {1, 2, 3} and j ∈ {1, 2, ...,m}, and xi is the i′th

variable of Cj . Recall further that if any of these arcs −→o is coloured, say, 1
by φF , then the tail of −→o has 1-outdegree 2. Start by collecting −→o1 and −→o2
with a copy

−→
G1 of

−→
Gg. Then collect the output of

−→
G1 and −→o3 with a new

copy
−→
G2 of

−→
Gg. Then collect the output of

−→
G2 and −→o4 with a new copy

−→
G3

of
−→
Gg. And so on. This procedure uses ni − 1 copies of

−→
Gg.

We claim that we have the desired equivalence between nae-satisfying F

and finding a locally irregular 2-arc-colouring φF of
−→
GF . If φF exists, then

for each clause Cj = (xi1 ∨xi2 ∨xi3), one arc of ujv1,j , ujv2,j , ujv3,j has some
colour by φF while the other two arcs have the other colour (Claim 1). Be-
sides, this arc-colouring, because of the collecting gadgets, has the property
that all arcs corresponding to the membership of a same variable to some
clauses have the same colour (Claim 2). Assuming having φF (−−−→ujvi′,j) = 1
(resp. φF (−−−→ujvi′,j) = 2) simulates the fact that the i′th variable of Cj is set to
true (resp. false), we can directly deduce a truth assignment nae-satisfying
F from φF , and vice-versa. This completes the proof.
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5 Conclusion and open questions

Conjecture 1 remains the most important open question at the moment.
Maybe the strategy we proposed in Section 3 could be refined to slightly
improve Theorem 9, e.g. by showing that every oriented graph can be de-
composed into two subgraphs with irregular chromatic index at most 2 and 3,
respectively, or two subgraphs with irregular chromatic index at most 2 plus
some isolated arcs, etc. However, we do not think that Conjecture 1 can be
tackled using this method.

In particular, it is worth mentioning that Theorem 4 is tight since there
are acyclic oriented graphs with irregular chromatic index exactly 3 (so we
cannot improve Theorem 9 from 6 to 4 by just improving Theorem 4). To
be convinced of this statement, one just has to note that Locally Irreg-
ular 2-Arc-Colouring remains NP-complete when restricted to acyclic
oriented graphs as it can be easily checked that the reduction in the proof
of Theorem 12 actually provides acyclic oriented graphs.

It is worth adding that we were not able to prove that Conjecture 1 holds
when restricted to tournaments. Although the question can be handled eas-
ily for some restricted families of tournaments, e.g. transitive tournaments
(which are locally irregular), we could not find any argument for the gen-
eral case. Until a proof of Conjecture 1 is exhibited, which would solve the
problem, we raise the following weaker conjecture.

Conjecture 13. For every tournament
−→
T , we have χ′irr(

−→
T ) ≤ 3.
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[7] M. Karoński, T.  Luczak, and A. Thomason. Edge weights and vertex
colours. J. Combin. Theory, Ser. B, 91(1):151 – 157, 2004.

18


