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Abstract 
5-axis milling simulations in CAM software are mainly used to detect collisions 

between the tool and the part. They are very limited in terms of surface topography 
investigations to validate machining strategies as well as machining parameters 
such as chordal deviation, scallop height and tool feed. Z-buffer or N-Buffer 
machining simulations provide more precise simulations but require long 
computation time, especially when using realistic cutting tools models including 
cutting edges geometry.  

Thus, the aim of this paper is to evaluate Nvidia CUDA architecture to speed-up 
Z-buffer or N-Buffer machining simulations. Several strategies for parallel 
computing are investigated and compared to CPU conventional and parallel 
computing, relative to the complexity of the simulation. Simulations are conducted 
with a professional CAD/CAM workstation equipped with a Nvidia Quadro4000 
graphic card. 
 

1 Introduction 
All manufactured goods present surfaces that interact 
with external elements. These surfaces are designed to 
provide sealing or friction functions, optical or aero 
dynamics properties. The technical function of the surface 
requires specific geometrical deviations, which can be 
performed with specific manufacturing process. In 
particular, to reduce the cycle time of product 
development, it is essential to simulate the evolution of 
geometrical deviations of surfaces throughout the 
manufacturing process. 
Currently, simulations of the machined surfaces in CAM 
software are very limited. These simulations are purely 
geometric where cutting tools are modelled as spheres or 
cylinders without any representation of cutting edges. In 
addition, these simulations do not include any 
characteristic of the actual process that may damage the 
surface quality during machining. Finally, these 
simulations do not provide the required accuracy within a 
reasonable computation time and the selection of an area 
in which the user wishes to have more precision is 
impossible.  
However, there are many methods to perform machining 
simulations in the literature: methods based on a partition 
of the space by lines [1], by voxels [2] or by planes [3], 
methods based on meshes [4], etc. If we consider the 
Zbuffer or Nbuffer methods applied to a realistic 
description of both the tools and the machining path, 
earlier work have shown that it is possible to simulate the 
resulting geometry only on small portions of the surface in 
a few minutes [5]. Simulation results are very close to 
experimental results but the simulated surfaces have an 
area of a few square millimeters with micrometer 
resolution (fig. 1).  
Therefore, the limits in terms of computing capacity and 
simulation methods restrict the realistic simulations of 

geometrical deviations. Regarding the hardware, NVIDIA 
has recently developed CUDA, a parallel processing 
architecture for faster computing performance, harnessing 
the power of GPUs.  
 

 
Fig. 1 Real (left) and simulated (right) topography 

 
The aim of this paper is thus to propose an evaluation of 
this architecture to improve the computation time and 
therefore computing complexity. After having presented 
the machining simulation algorithm to be parallelized, 
constraints related to the use of the CUDA architecture 
are exposed. Then, different solutions to the problem of 
parallelization with CUDA are investigated. Finally a 
comparison of the computing time between GPU and 
CPU processors is proposed on several 3 and 5-axis 
milling examples with real time zooming.  

2 Computation algorithm 
The computation algorithm relies on relies on the Zbuffer 
method [1]. This method consists in partitioning the space 
around the surface to be machined in a set of lines, which 
are equally distributed in the x-y plane and oriented along 
the z-axis. The machining simulation is carried out by 
computing the intersections between the lines and the tool 
along the tool path. The geometry of the tool is modelled 
by a triangular mesh including cutting edges, which allows 
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to simulate the effect of the rotation of the tool on surface 
topography. The tool path is whether a 3-axis tool path 
with a fixed tool axis orientation or a 5-axis tool path with 
variable tool axis orientations. 
In order to simulate the material removal, intersections 
with a given lines are compared and the lowest is 
registered (fig. 2). The complete simulation requires the 
computation of the intersections between the N lines and 
the T triangles of the tool mesh at each tool posture P on 
the tool path. The complexity C of the algorithm is thus 
defined by: 
 
 C = N ×T × P  (1) 
 
If we consider a finish operation on a 5mm x 5mm patch 
of surface with a resolution of 3 µm, this leads to 
2,250,000 lines. The tool mesh contains 3,000 triangles 
and the tool path contains 70,000 postures including the 
tool rotation around the spindle axis. The number of 
intersection to compute is equal to 4.7x1014. This 
technique can be accelerated by decreasing the number 
of tests by first calculating the intersection with the 
bounding box of the tool and using data structures such 
as Bounding Volume Hierarchy or Binary Space 
Partitioning trees. 

 
 
 

          
Fig. 2 Zbuffer simulation method 

In the case of Z-buffer, all lines are oriented in the same 
direction, which allows many optimizations on both the 
number of intersection tests to be performed, and the 
number of operations required for each test. For each 
triangle, its projection on the grid and its 2D bounding box 
is calculated (fig. 3). The lines outside the bounding box 
(shaded circles) are not tested; they can not have an 
intersection with the triangle. A double loop is then 
performed to test the intersection of each line within the 
bounding box with the 2D projection of the triangle. The 
lines may intersect with the triangle (green) or not (red). If 
the intersection exists, the height is calculated and then 
compared with the current height of the line.  
As there are no dependencies between the milling 
process at different locations on the tool path, each of 
theses intersections could be carried out simultaneously. 
However, due to memory limitations and tasks 
scheduling, the parallel computing of these intersections 
on graphics processing units with CUDA has to be done 
carefully. 
 

 
Fig. 3 2D bounding boxe 

 

3 Compute Unified Device Architecture  
CUDA is a parallel computing platform that unlocks 
programmability of NVIDIA graphic cards in the goal of 
speeding up the execution of algorithms exhibiting a high 
parallelization potential. Algorithms are written using a 
modified version of the ANSI C programming language 
(CUDA C) and can consequently be executed seamlessly 
on any CUDA capable GPU [6]. 
The strength of the CUDA programming model lies in its 
capability of achieving high performance through its 
massively parallel architecture. In order to achieve high 
throughput, the algorithm must be divided into a set of 
tasks with minimal dependencies. Tasks are mapped into 
lightweight threads, which are scheduled and executed 
concurrently on the GPU. 32 threads are grouped to form 
a warp. Threads within the same warp are always 
executed simultaneously; maximum performance is 
therefore achieved if all the 32 threads are executing the 
same instruction at each cycle. Warps are themselves 
grouped into virtual entities called blocks; the set of all 
blocks forms the grid, representing the parallelization of 
the algorithm (fig. 4).  
 

 
Fig. 4 Cuda architecture 

Threads from the same block can be synchronized and 
are able to communicate efficiently using a fast on-chip 
memory, called shared memory, whereas threads from 
different blocks are executed independently and can only 
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communicates through global (GDDR) memory of the 
GPU. 
The number of threads executing simultaneously can be 
two orders of magnitude larger than on a classical CPU 
architecture.  As a consequence, task decomposition 
should be fine-grained opposed to the traditional coarse-
grained approach for CPU parallelization. The 
combination of this execution model and memory 
hierarchy advocates a multi-level parallelization of the 
algorithm with homogeneous fine-grained tasks; 
dependent tasks should be mapped to the same warp or 
block in order to avoid costly accesses to global memory. 
In order to harness the power of the massively parallel 
architecture of GPUs, a complete overhaul of the 
algorithm is often required [7]. The scalability of the 
CUDA programming models stems from the fact that, 
thanks to this fine-grain task model, the number of 
threads to execute generally exceeds the number of 
execution units on the GPU, called CUDA cores, for those 
threads. As more CUDA cores are added, e.g. through 
hardware upgrades, performance will increase without 
requiring changes to the code. Another benefit of this fine-
grained decomposition is the ability to hide latency, if a 
warp is waiting for a memory access to complete, the 
scheduler can switch to another warp by selecting it from 
a pool of ready warps. This technique is called Thread 
Level Parallelism (TLP). Latency hiding can also be done 
within a thread directly, by firing several memory 
transactions concurrently, this technique is called 
Instruction Level Parallelism (ILP). 
Despite continuous efforts by NVIDIA to improve the 
accessibility of CUDA, the learning curve remains steep. 
Attaining high performance requires careful tuning of the 
algorithm through a detailed knowledge of the CUDA 
execution model. 

4 Parallel computation strategies 
The basic algorithm consists in determining whether there 
is an intersection between a line and a triangle associated 
to a position of the tool. Given this three variables on 
which the algorithm iterates during the sequential 
computation, there are numerous possible combinations 
to affect threads and browse the set of lines, triangles and 
positions. The most interesting possibilities are developed 
hereafter. 

4.1 The line approach 
Each CUDA thread is assigned to a line of the Zbuffer 

grid. A thread calculates the intersection of the line with 
the tool for all positions along the path. To reduce the 
number of intersection tests, the intersection with the 
bounding box of the tool in a given position is first 
calculated. If there is intersection, each triangle of the tool 
is then tested. The advantage of this approach is that 
there is no need to use atomic operations since a single 
thread calculates the minimum height of cut for each line. 
However, this approach cannot be used with bounding 
boxes which significantly increases the number of 
calculations. 

4.2 The tool position approach (coarse) 
Each thread is assigned to a position of the tool and 
applies the Z-buffer algorithm for every triangle of the tool 
mesh for this position. The granularity of tasks is high: if 
the amount of triangles to be processed is large, each 
thread will run for a long time. If the computation time 

between threads is heterogeneous, some threads of a 
warp may no longer be active, and therefore the 
parallelism is lost. A thread may affect the cutting height 
of several lines so multiple threads can update a line and 
global memory access conflicts appear. Atomic operations 
proposed by CUDA are then used to allow concurrent 
update the height of the lines. This method is the one 
implemented in the CPU configuration. 

4.3 The tool triangle approach (inverted) 
Each thread is assigned to a triangle of the tool mesh and 
applies the Z-buffer algorithm for the triangle for all 
positions along the path. In the case of the 3-axis 
machining, the dimensions of the triangle projection on 
the grid remain constant, which allows optimization 
possibilities. However, in 5-axis milling, this property is no 
longer valid. Each position involves a new transformation 
matrix to be recovered in memory, which increases 
significantly the number of memory transactions. This 
method is advantageous in the case of a 3-axis tool path 
but is not suited for 5-axis tool path. The same remarks 
apply the previous approach on the granularity of tasks 
and conflicts in global memory access. 

4.4 The triangle and position approach (fine) 
In this approach, each thread is assigned to a single 
triangle in one position. As the granularity is smaller, the 
risk of a bad balance workload disappears. However, in 
return the number of threads is much higher: the 
management and scheduling of billions of threads involve 
additional workload for the task scheduler CUDA and thus 
a significant increase in computation time. 

5 Numerical investigations 

5.1 Cases study 
Different configurations of trajectories and tools have 
been used for testing. A first setting, called random 
(fig.5), for which random positions are generated on a 
plane and a second setting, where a plane is machined 
along a downward spiral called spiral (fig.6). In both 
cases, the ball-end tool is 100 times smaller compared to 
the dimensions of the surface. On the other hand, an 
industrial configuration is proposed, which consists in the 
3-axis machining of a plastic injection mold to produce 
polycarbonate optical lenses for ski mask (fig. 7).  
 

 

Fig. 5 Random case 
 
Both the roughing with a torus tool and the finishing 
operation with the ball end tool are used in the proposed 
benchmark. The finishing simulation is compared to an 



ABECASSIS. Felix et al. Performance evaluation of CUDA programming for machining simulation 
 

June 19th – 21st, 2013, Madrid, Spain Congress INGEGRAF-ADM-AIP PRIMECA 

industrial CAM software simulation in terms of visible 
defects and computation time. At last, a small scale 
simulation benchmark, called Cutting, is proposed with 
the mesh of a ball end mill including worn cutting edges 
and spindle rotation (fig. 8) which lead to numerous tool 
positions and large tool mesh size (tab. 1). 
 

 
Fig. 6 Spiral case 

 

 
Fig. 7 Ski mask injection mold 

 

 
 

Fig. 8 Local simulation with worn cutting edge  
 
 

One of the objectives is to be able to dynamically zoom 
on the part and update the simulation. Thus the grid size 
is constant and set to 1024x1024 lines, regardless of the 
zoom factor. Therefore, the above configurations are also 
studied with or without a zoom on the surface, which 
changes the size of the problem (tab. 1 and tab. 2).  

 Tool position P Tool Mesh size T 
Random 200000 Sphere 320 
Spiral 200000 Sphere 1984 
Roughing 345848 Torus 25904 
Finishing 3015072 Sphere 1984 
Cutting 144001 Sphere 36389 

Tab. 1 Without zoom  

 Tool position P Tool Mesh size T 
Random 135 Sphere 320 
Spiral 206 Sphere 1984 
Finishing 129 Sphere 1984 

Tab. 2 With zoom 

5.2 Hardware configurations 
Hardware configurations used for the benchmarks are the 
followings: 
 
CPU: Intel Xeon X5650 - 2.67GHz 6 cores, 12 virtual 
cores (hyperthreading) OpenMP, SSE 
 
GPU: Nividia Quadro 4000 - 0.95 GHz 8 multiprocessors, 
256 CUDA Cores 

5.3 Computation time analysis 
Excluding cases of zoom, GPU implementation is on 
average 5 times faster than the CPU implementation with 
the engine GPU Coarse (1 thread handles all triangles in 
one position) (tab. 3).  
When the number of triangles in the mesh of the tool is 
too low, the number of threads used in the engine GPU 
Inverted is much lower than the number of threads that 
can be executed simultaneously on all multiprocessors. 
Performance is worse (random, spiral and finishing). 
When the number of triangles increases (random to spiral, 
spiral to roughing and roughing to cutting), performance 
improves accordingly.  
With the engine GPU Fine (1 thread processes one 
triangle in one position), there are too few lines in the 
bounding box of each triangle because the triangles are 
very small compared to the size of the grid. Each thread is 
little busy and time is lost to launch these threads. 
 
Case Time (ms) GPU Speed-up 
 CPU Coarse Inverted Fine 
Random 469 6.2 0.3 2.4 
Spiral 1414 4.7 2.5 1.9 
Roughing 37766 5.8 4.7 1.8 
Finishing 218203 5.5 1.3 2.7 
Cutting 22882 8.3 7.8 2.3 

Tab. 3 Configurations without zoom 

In micro geometry configurations, the GPU speed-up 
doesn’t meet expectations (tab. 4). Since the number of 
positions with zoom is much lower than the number of 
threads that can be executed simultaneously on all GPU 
multiprocessors, the granularity of the simulation engine 
GPU Coarse is too high: the available parallelism is not 
exploited. The computation engine must exhibit a much 
finer granularity, such as the GPU Fine engine, that 
should be used to make best use of the number of 
threads. 
 
Case Time (ms) GPU Speed-up 
 CPU Coarse Inverted Fine 
Random 195 0.1 0.2 1.8 
Spiral 368 0.2 0.9 3.2 
Finishing 825 0.08  0.3 

Tab. 4 Configurations with zoom 

Performance tests with or without zoom shows that the 
CUDA kernel must be chosen depending on the 
simulation configuration. Conversely, it is not a problem 
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with the CPU engine because the number of available 
threads is much lower than the number of positions.  
During the initial implementations, the acceleration factor 
was more important between GPU and CPU, but 
successive optimizations have, systematically, further 
improved the CPU engine rather than GPU 
implementations. The difference between the two 
versions is reduced over the optimizations. 

5.4 Simulation results analysis 
Regarding the ski mask injection mold, a tangency 
discontinuity has been introduced along the vertical 
symmetry axis in the middle of the lens. The machining 
simulation should emphasize this geometrical deviation. 
Despite using the best settings offered by the CAM 
software, the rendering of the simulation is not enough 
precise to detect the groove generated during tool path 
computation (fig. 9). On the other hand, the proposed 
simulation allows without any zoom to highlight this defect 
(fig. 10). 

 
Fig. 9 CAM Software simulation 

6 Conclusion 
Machining simulations in CAM software are mainly used 
to detect collisions between the tool and the part on the 
whole part surface. It is difficult, if not impossible, to 
restrict the simulation to a delimited area in which the 
accuracy is much better to control the surface 
topography. To overcome this issue, this paper presents 
some opportunities to speed-up machining simulations 
and to provide multi scale simulations based on Nvidia 
CUDA architecture. 
 

 
Fig. 10 3-axis GPU mask simulation 

 

The results show that the use of the CUDA architecture 
can significantly improve performance on the computation 
time. However, if the granularity of tasks is not set 
correctly, the massively parallel CUDA architecture will not 
be used and the implementation may be slower than 
CPU. It is therefore necessary to adapt the parallelization 
strategy for the type of simulation, namely large scale or 
small scale.  
Regarding the future works, faster simulation software 
could help to introduce stochastic behaviour and simulate 
tool wear and the use of abrasive tool could improve the 
quality of the surface topography simulation. 
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