
HAL Id: hal-00869774
https://hal.science/hal-00869774

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation of CUDA programming for
machining simulation

Felix Abecassis, Sylvain Lavernhe, Christophe Tournier, Pierre-Alain Boucard

To cite this version:
Felix Abecassis, Sylvain Lavernhe, Christophe Tournier, Pierre-Alain Boucard. Performance Evalua-
tion of CUDA programming for machining simulation. International Conference on Graphics Engi-
neering, Jun 2013, Madrid, Spain. �hal-00869774�

https://hal.science/hal-00869774
https://hal.archives-ouvertes.fr

International conference on Graphics Engineering
June 19th – 21th, 2013 Madrid,Spain

INGEGRAF – ADM – AIP PRIMECA

Performance evaluation of CUDA programming
 for machining simulation

ABECASSIS., Felix (a), LAVERNHE., Sylvain (a), TOURNIER., Christophe (a), BOUCARD., Pierre-Alain (b)
(a) LURPA, ENS Cachan, Université Paris Sud 11, 61 av. du Président Wilson, 94235 Cachan, France
(b) LMT-Cachan (ENS Cachan/CNRS/UPMC/PRES UniverSud Paris), 61 av. du Président Wilson, 94235 Cachan,France

Article Information

Keywords:
Machining simulation,
GPU computing,
CUDA architecture,
5-axis milling,
CAM software

Corresponding author:
Lavernhe Sylvain
Tel.: 33 1 47 40 29 85
Fax.:33 1 47 40 22 20
e-mail:lavernhe@lurpa.ens-cachan.fr
Address: LURPA, ENS Cachan,
Université Paris Sud 11, 61 av. du
Président Wilson, 94235 Cachan,
France

Abstract
5-axis milling simulations in CAM software are mainly used to detect collisions

between the tool and the part. They are very limited in terms of surface topography
investigations to validate machining strategies as well as machining parameters
such as chordal deviation, scallop height and tool feed. Z-buffer or N-Buffer
machining simulations provide more precise simulations but require long
computation time, especially when using realistic cutting tools models including
cutting edges geometry.

Thus, the aim of this paper is to evaluate Nvidia CUDA architecture to speed-up
Z-buffer or N-Buffer machining simulations. Several strategies for parallel
computing are investigated and compared to CPU conventional and parallel
computing, relative to the complexity of the simulation. Simulations are conducted
with a professional CAD/CAM workstation equipped with a Nvidia Quadro4000
graphic card.

1 Introduction
All manufactured goods present surfaces that interact
with external elements. These surfaces are designed to
provide sealing or friction functions, optical or aero
dynamics properties. The technical function of the surface
requires specific geometrical deviations, which can be
performed with specific manufacturing process. In
particular, to reduce the cycle time of product
development, it is essential to simulate the evolution of
geometrical deviations of surfaces throughout the
manufacturing process.
Currently, simulations of the machined surfaces in CAM
software are very limited. These simulations are purely
geometric where cutting tools are modelled as spheres or
cylinders without any representation of cutting edges. In
addition, these simulations do not include any
characteristic of the actual process that may damage the
surface quality during machining. Finally, these
simulations do not provide the required accuracy within a
reasonable computation time and the selection of an area
in which the user wishes to have more precision is
impossible.
However, there are many methods to perform machining
simulations in the literature: methods based on a partition
of the space by lines [1], by voxels [2] or by planes [3],
methods based on meshes [4], etc. If we consider the
Zbuffer or Nbuffer methods applied to a realistic
description of both the tools and the machining path,
earlier work have shown that it is possible to simulate the
resulting geometry only on small portions of the surface in
a few minutes [5]. Simulation results are very close to
experimental results but the simulated surfaces have an
area of a few square millimeters with micrometer
resolution (fig. 1).
Therefore, the limits in terms of computing capacity and
simulation methods restrict the realistic simulations of

geometrical deviations. Regarding the hardware, NVIDIA
has recently developed CUDA, a parallel processing
architecture for faster computing performance, harnessing
the power of GPUs.

Fig. 1 Real (left) and simulated (right) topography

The aim of this paper is thus to propose an evaluation of
this architecture to improve the computation time and
therefore computing complexity. After having presented
the machining simulation algorithm to be parallelized,
constraints related to the use of the CUDA architecture
are exposed. Then, different solutions to the problem of
parallelization with CUDA are investigated. Finally a
comparison of the computing time between GPU and
CPU processors is proposed on several 3 and 5-axis
milling examples with real time zooming.

2 Computation algorithm
The computation algorithm relies on relies on the Zbuffer
method [1]. This method consists in partitioning the space
around the surface to be machined in a set of lines, which
are equally distributed in the x-y plane and oriented along
the z-axis. The machining simulation is carried out by
computing the intersections between the lines and the tool
along the tool path. The geometry of the tool is modelled
by a triangular mesh including cutting edges, which allows

ABECASSIS. Felix et al. Performance evaluation of CUDA programming for machining simulation

June 19th – 21st, 2013, Madrid, Spain Congress INGEGRAF-ADM-AIP PRIMECA

to simulate the effect of the rotation of the tool on surface
topography. The tool path is whether a 3-axis tool path
with a fixed tool axis orientation or a 5-axis tool path with
variable tool axis orientations.
In order to simulate the material removal, intersections
with a given lines are compared and the lowest is
registered (fig. 2). The complete simulation requires the
computation of the intersections between the N lines and
the T triangles of the tool mesh at each tool posture P on
the tool path. The complexity C of the algorithm is thus
defined by:

 C = N ×T × P (1)

If we consider a finish operation on a 5mm x 5mm patch
of surface with a resolution of 3 µm, this leads to
2,250,000 lines. The tool mesh contains 3,000 triangles
and the tool path contains 70,000 postures including the
tool rotation around the spindle axis. The number of
intersection to compute is equal to 4.7x1014. This
technique can be accelerated by decreasing the number
of tests by first calculating the intersection with the
bounding box of the tool and using data structures such
as Bounding Volume Hierarchy or Binary Space
Partitioning trees.

Fig. 2 Zbuffer simulation method

In the case of Z-buffer, all lines are oriented in the same
direction, which allows many optimizations on both the
number of intersection tests to be performed, and the
number of operations required for each test. For each
triangle, its projection on the grid and its 2D bounding box
is calculated (fig. 3). The lines outside the bounding box
(shaded circles) are not tested; they can not have an
intersection with the triangle. A double loop is then
performed to test the intersection of each line within the
bounding box with the 2D projection of the triangle. The
lines may intersect with the triangle (green) or not (red). If
the intersection exists, the height is calculated and then
compared with the current height of the line.
As there are no dependencies between the milling
process at different locations on the tool path, each of
theses intersections could be carried out simultaneously.
However, due to memory limitations and tasks
scheduling, the parallel computing of these intersections
on graphics processing units with CUDA has to be done
carefully.

Fig. 3 2D bounding boxe

3 Compute Unified Device Architecture
CUDA is a parallel computing platform that unlocks
programmability of NVIDIA graphic cards in the goal of
speeding up the execution of algorithms exhibiting a high
parallelization potential. Algorithms are written using a
modified version of the ANSI C programming language
(CUDA C) and can consequently be executed seamlessly
on any CUDA capable GPU [6].
The strength of the CUDA programming model lies in its
capability of achieving high performance through its
massively parallel architecture. In order to achieve high
throughput, the algorithm must be divided into a set of
tasks with minimal dependencies. Tasks are mapped into
lightweight threads, which are scheduled and executed
concurrently on the GPU. 32 threads are grouped to form
a warp. Threads within the same warp are always
executed simultaneously; maximum performance is
therefore achieved if all the 32 threads are executing the
same instruction at each cycle. Warps are themselves
grouped into virtual entities called blocks; the set of all
blocks forms the grid, representing the parallelization of
the algorithm (fig. 4).

Fig. 4 Cuda architecture

Threads from the same block can be synchronized and
are able to communicate efficiently using a fast on-chip
memory, called shared memory, whereas threads from
different blocks are executed independently and can only

ABECASSIS. Felix et al. Performance evaluation of CUDA programming for machining simulation

June 19th – 21st, 2013, Madrid, Spain Congress INGEGRAF-ADM-AIP PRIMECA

communicates through global (GDDR) memory of the
GPU.
The number of threads executing simultaneously can be
two orders of magnitude larger than on a classical CPU
architecture. As a consequence, task decomposition
should be fine-grained opposed to the traditional coarse-
grained approach for CPU parallelization. The
combination of this execution model and memory
hierarchy advocates a multi-level parallelization of the
algorithm with homogeneous fine-grained tasks;
dependent tasks should be mapped to the same warp or
block in order to avoid costly accesses to global memory.
In order to harness the power of the massively parallel
architecture of GPUs, a complete overhaul of the
algorithm is often required [7]. The scalability of the
CUDA programming models stems from the fact that,
thanks to this fine-grain task model, the number of
threads to execute generally exceeds the number of
execution units on the GPU, called CUDA cores, for those
threads. As more CUDA cores are added, e.g. through
hardware upgrades, performance will increase without
requiring changes to the code. Another benefit of this fine-
grained decomposition is the ability to hide latency, if a
warp is waiting for a memory access to complete, the
scheduler can switch to another warp by selecting it from
a pool of ready warps. This technique is called Thread
Level Parallelism (TLP). Latency hiding can also be done
within a thread directly, by firing several memory
transactions concurrently, this technique is called
Instruction Level Parallelism (ILP).
Despite continuous efforts by NVIDIA to improve the
accessibility of CUDA, the learning curve remains steep.
Attaining high performance requires careful tuning of the
algorithm through a detailed knowledge of the CUDA
execution model.

4 Parallel computation strategies
The basic algorithm consists in determining whether there
is an intersection between a line and a triangle associated
to a position of the tool. Given this three variables on
which the algorithm iterates during the sequential
computation, there are numerous possible combinations
to affect threads and browse the set of lines, triangles and
positions. The most interesting possibilities are developed
hereafter.

4.1 The line approach
Each CUDA thread is assigned to a line of the Zbuffer

grid. A thread calculates the intersection of the line with
the tool for all positions along the path. To reduce the
number of intersection tests, the intersection with the
bounding box of the tool in a given position is first
calculated. If there is intersection, each triangle of the tool
is then tested. The advantage of this approach is that
there is no need to use atomic operations since a single
thread calculates the minimum height of cut for each line.
However, this approach cannot be used with bounding
boxes which significantly increases the number of
calculations.

4.2 The tool position approach (coarse)
Each thread is assigned to a position of the tool and
applies the Z-buffer algorithm for every triangle of the tool
mesh for this position. The granularity of tasks is high: if
the amount of triangles to be processed is large, each
thread will run for a long time. If the computation time

between threads is heterogeneous, some threads of a
warp may no longer be active, and therefore the
parallelism is lost. A thread may affect the cutting height
of several lines so multiple threads can update a line and
global memory access conflicts appear. Atomic operations
proposed by CUDA are then used to allow concurrent
update the height of the lines. This method is the one
implemented in the CPU configuration.

4.3 The tool triangle approach (inverted)
Each thread is assigned to a triangle of the tool mesh and
applies the Z-buffer algorithm for the triangle for all
positions along the path. In the case of the 3-axis
machining, the dimensions of the triangle projection on
the grid remain constant, which allows optimization
possibilities. However, in 5-axis milling, this property is no
longer valid. Each position involves a new transformation
matrix to be recovered in memory, which increases
significantly the number of memory transactions. This
method is advantageous in the case of a 3-axis tool path
but is not suited for 5-axis tool path. The same remarks
apply the previous approach on the granularity of tasks
and conflicts in global memory access.

4.4 The triangle and position approach (fine)
In this approach, each thread is assigned to a single
triangle in one position. As the granularity is smaller, the
risk of a bad balance workload disappears. However, in
return the number of threads is much higher: the
management and scheduling of billions of threads involve
additional workload for the task scheduler CUDA and thus
a significant increase in computation time.

5 Numerical investigations

5.1 Cases study
Different configurations of trajectories and tools have
been used for testing. A first setting, called random
(fig.5), for which random positions are generated on a
plane and a second setting, where a plane is machined
along a downward spiral called spiral (fig.6). In both
cases, the ball-end tool is 100 times smaller compared to
the dimensions of the surface. On the other hand, an
industrial configuration is proposed, which consists in the
3-axis machining of a plastic injection mold to produce
polycarbonate optical lenses for ski mask (fig. 7).

Fig. 5 Random case

Both the roughing with a torus tool and the finishing
operation with the ball end tool are used in the proposed
benchmark. The finishing simulation is compared to an

ABECASSIS. Felix et al. Performance evaluation of CUDA programming for machining simulation

June 19th – 21st, 2013, Madrid, Spain Congress INGEGRAF-ADM-AIP PRIMECA

industrial CAM software simulation in terms of visible
defects and computation time. At last, a small scale
simulation benchmark, called Cutting, is proposed with
the mesh of a ball end mill including worn cutting edges
and spindle rotation (fig. 8) which lead to numerous tool
positions and large tool mesh size (tab. 1).

Fig. 6 Spiral case

Fig. 7 Ski mask injection mold

Fig. 8 Local simulation with worn cutting edge

One of the objectives is to be able to dynamically zoom
on the part and update the simulation. Thus the grid size
is constant and set to 1024x1024 lines, regardless of the
zoom factor. Therefore, the above configurations are also
studied with or without a zoom on the surface, which
changes the size of the problem (tab. 1 and tab. 2).

 Tool position P Tool Mesh size T
Random 200000 Sphere 320
Spiral 200000 Sphere 1984
Roughing 345848 Torus 25904
Finishing 3015072 Sphere 1984
Cutting 144001 Sphere 36389

Tab. 1 Without zoom

 Tool position P Tool Mesh size T
Random 135 Sphere 320
Spiral 206 Sphere 1984
Finishing 129 Sphere 1984

Tab. 2 With zoom

5.2 Hardware configurations
Hardware configurations used for the benchmarks are the
followings:

CPU: Intel Xeon X5650 - 2.67GHz 6 cores, 12 virtual
cores (hyperthreading) OpenMP, SSE

GPU: Nividia Quadro 4000 - 0.95 GHz 8 multiprocessors,
256 CUDA Cores

5.3 Computation time analysis
Excluding cases of zoom, GPU implementation is on
average 5 times faster than the CPU implementation with
the engine GPU Coarse (1 thread handles all triangles in
one position) (tab. 3).
When the number of triangles in the mesh of the tool is
too low, the number of threads used in the engine GPU
Inverted is much lower than the number of threads that
can be executed simultaneously on all multiprocessors.
Performance is worse (random, spiral and finishing).
When the number of triangles increases (random to spiral,
spiral to roughing and roughing to cutting), performance
improves accordingly.
With the engine GPU Fine (1 thread processes one
triangle in one position), there are too few lines in the
bounding box of each triangle because the triangles are
very small compared to the size of the grid. Each thread is
little busy and time is lost to launch these threads.

Case Time (ms) GPU Speed-up
 CPU Coarse Inverted Fine
Random 469 6.2 0.3 2.4
Spiral 1414 4.7 2.5 1.9
Roughing 37766 5.8 4.7 1.8
Finishing 218203 5.5 1.3 2.7
Cutting 22882 8.3 7.8 2.3

Tab. 3 Configurations without zoom

In micro geometry configurations, the GPU speed-up
doesn’t meet expectations (tab. 4). Since the number of
positions with zoom is much lower than the number of
threads that can be executed simultaneously on all GPU
multiprocessors, the granularity of the simulation engine
GPU Coarse is too high: the available parallelism is not
exploited. The computation engine must exhibit a much
finer granularity, such as the GPU Fine engine, that
should be used to make best use of the number of
threads.

Case Time (ms) GPU Speed-up
 CPU Coarse Inverted Fine
Random 195 0.1 0.2 1.8
Spiral 368 0.2 0.9 3.2
Finishing 825 0.08 0.3

Tab. 4 Configurations with zoom

Performance tests with or without zoom shows that the
CUDA kernel must be chosen depending on the
simulation configuration. Conversely, it is not a problem

ABECASSIS. Felix et al. Performance evaluation of CUDA programming for machining simulation

June 19th – 21st, 2013, Madrid, Spain Congress INGEGRAF-ADM-AIP PRIMECA

with the CPU engine because the number of available
threads is much lower than the number of positions.
During the initial implementations, the acceleration factor
was more important between GPU and CPU, but
successive optimizations have, systematically, further
improved the CPU engine rather than GPU
implementations. The difference between the two
versions is reduced over the optimizations.

5.4 Simulation results analysis
Regarding the ski mask injection mold, a tangency
discontinuity has been introduced along the vertical
symmetry axis in the middle of the lens. The machining
simulation should emphasize this geometrical deviation.
Despite using the best settings offered by the CAM
software, the rendering of the simulation is not enough
precise to detect the groove generated during tool path
computation (fig. 9). On the other hand, the proposed
simulation allows without any zoom to highlight this defect
(fig. 10).

Fig. 9 CAM Software simulation

6 Conclusion
Machining simulations in CAM software are mainly used
to detect collisions between the tool and the part on the
whole part surface. It is difficult, if not impossible, to
restrict the simulation to a delimited area in which the
accuracy is much better to control the surface
topography. To overcome this issue, this paper presents
some opportunities to speed-up machining simulations
and to provide multi scale simulations based on Nvidia
CUDA architecture.

Fig. 10 3-axis GPU mask simulation

The results show that the use of the CUDA architecture
can significantly improve performance on the computation
time. However, if the granularity of tasks is not set
correctly, the massively parallel CUDA architecture will not
be used and the implementation may be slower than
CPU. It is therefore necessary to adapt the parallelization
strategy for the type of simulation, namely large scale or
small scale.
Regarding the future works, faster simulation software
could help to introduce stochastic behaviour and simulate
tool wear and the use of abrasive tool could improve the
quality of the surface topography simulation.

Acknowledgement
This work is supported by the Farman Institute of Ecole
Normale Supérieure de Cachan.

References
[1] R. Jerard, R. Drysdale, K. Hauck, B.

Schaudt, and J. Magewick. Methods for
detecting errors in numerically controlled
machining of sculptured surfaces. IEEE
Computer Graphics and Applications 9, 1
(1989) pp 26-39.

[2] D. Jang, K. Kim, and J. Jung. Voxel-based
virtual multi-axis machining. International
Journal of Advanced Manufacturing
Technology 16 (2000) pp 709-713.

[3] Y. Quinsat, L. Sabourin, and C. Lartigue.
Surface topography in ball end milling
process: Description of a 3d surface
roughness parameter. Journal of materials
processing technology 195, 1-3 (2008)
pp 135-143.

[4] W. He and H. Bin. Simulation model for
cnc machining of sculptured surface
allowing different levels of detail. The
International Journal of Advanced
Manufacturing Technology 33, (2007)
pp 1173-1179.

[5] Y. Quinsat, S. Lavernhe, C. Lartigue.
Characterization of 3D surface topography
in 5 axis milling. Wear 271, 3-4 (2011)
pp 590-595.

[6] NVIDIA (2012). CUDA C Programming
Guide. http://developer.nvidia.com/cuda/c
uda-downloads.

[7] R. Farber, R. CUDA Application Design
and Development. Elsevier Science.
(2011)

.

