
HAL Id: hal-00869761
https://hal.science/hal-00869761v1

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Structural SHOIN(D) Ontology Model for Change
Modelling

Perrine Pittet, Christophe Cruz, Christophe Nicolle

To cite this version:
Perrine Pittet, Christophe Cruz, Christophe Nicolle. A Structural SHOIN(D) Ontology Model for
Change Modelling. 2nd International Workshop on Methods, Evaluation, Tools and Applications for
the Creation and Consumption of Structured Data for the e-Society (META4eS’13), Sep 2013, Graz,
Austria. pp 442-446, �10.1007/978-3-642-41033-8_56�. �hal-00869761�

https://hal.science/hal-00869761v1
https://hal.archives-ouvertes.fr


A Structural !"#$%!!! Ontology Model for Change 

Modelling 

Perrine Pittet, Christophe Cruz, Christophe Nicolle  

LE2I, UMR CNRS 630, University of Burgundy - Dijon, France 

{perrine.pittet@u-bourgogne.fr, christophe.cruz@u-
bourgogne.fr, cnicolle@u-bourgogne.fr} 

Abstract. This paper presents a complete structural ontology model suited for 

change modelling on !!!!!!!! ontologies. The application of this model is 

illustrated along the paper through the description of an ontology example in-

spired by the UOBM ontology benchmark and its evolution. 

Keywords. !!!!!!!! Description Logic; Change Modelling, OWL DL. 

1 Introduction 

Ontologies make possible to application, enterprise, and community boundaries of 

any domain to bridge the gap of semantic heterogeneity. Ontologies development, to 

be correctly achieved, requires a dynamic and incremental process (Djedidi & 

Aufaure, 2008.). It starts with a rigorous ontological analysis (Guarino, 1995) that 

provides a conceptualization of the domain to model agreed by the community. The 

ontology, specified in a formal language, approximates the intended models of the 

conceptualization: the closer it is the better it is. The ontology needs to be revised and 

refined until an ontological commitment is found. Ulterior updates of the ontology, 

addressed by ontology evolution, aim at responding to changes in the domain and/or 

the conceptualization (Flouris, 2008). Changes are consequently inherent in the ontol-

ogy life cycle. Modelling changes then implies having an exhaustive and non-

ambiguous definition of the ontology model according to its language, so that each 

element of the ontology impacted by changes can be formally described.  

This paper focuses on the !!!!!!!! level of expressivity, on which the ontologi-

cal language OWL DL is based (Horrocks I. , 2005). After presenting the structural 

constraints of a !!!!!!!! ontology, it describes a list of basic changes, constrained 

by this structural model to avoid performing structural inconsistent updates on the 

ontology. 

2 !"#$%!!! Ontology Model 

To formalize our framework the Karlsruhe Ontology Model (Ehrig, 2004) is used and 

extended to cover the whole !!!!!!!! constructors. From a mathematical point of 

view, an ontology can be defined as a structure. Formally, a structure is a triple A=(S, 



!, ") consisting of an underlying set S, a signature !, and an interpretation function " 

that indicates how the signature is to be interpreted on S. 

 

Definition 1: !"#$%!!! Ontology Model 

A !!!!!!!! ontology is a structure O=( SO ,!O ,FO) consisting of: 

• The underlying set SO containing: 

o Six disjoint sets sC, sT, sR, sA, sI, sV, sKR and sKA called concepts, 

datatypes, relations, attributes, instances, data values, relation characteristics 

(among Symmetric, Functional, Inverse Functional, Transitive) and attribute 

characteristics (Functional),  

o Four partial orders #C, #T, #R and #A, respectively on sC called concept hier-

archy or taxonomy, on sT called type hierarchy, on sR called relation hierar-

chy and on sA called attribute hierarchy, 

such that SO :={(sC, #C ),(sT, #T),(sR, #R),(sA, #A), sI, sV, sKR, sKA,}, 

• The signature !O containing two functions !R:sR$sC
2
 called relation signature 

and !A:sA$sC % sT called attribute signature, such that !O :={!R, !A}, 

• The interpretation function FO containing: 

o A function &C:sC$ 2
sI
 called concept instantiation, 

o A function &T:sA$ 2
sV

 called data type instantiation, 

o A function &R:sC$ 2
sI%sI 

called relation instantiation, 

o A function &A:sC$ 2
sI%sV 

called attribute instantiation, 

o A function 'R:sR$ 2
sKR

 called relation characterization, 

o A function 'A:sA$ 2
sKA

 called attribute characterization, 

o A function (C:sC$ 2
sC

 called concept equivalence, 

o A function (R:sR$ 2
sR

 called relation equivalence, 

o A function (A:sA$ 2
sA

 called attribute equivalence, 

o A function (I:sI$ 2
sI
 called instance equivalence, 

o A function )C:sC$ 2
sC

 called concept disjunction, 

o A function )I:sI$ 2
sI
 called instance differentiation, 

o A function -C:sC$ 2
sC

 called concept complement specification, 

o A function -R:sR$ 2
sR

 called relation inverse specification, 

o A function maxCardR:sR$N called relation maximal cardinality restriction, 

o A function minCardR:sR$N called relation minimal cardinality restriction, 

o A function !C:sC$2
sC

 called concept intersection, 

o A function "C:sC$2
sC

 called concept union, 

o A function "iC:sI$2
sC

 called concept union enumeration, 

o A function "V:sV$2
sC

 called data value union, 

o A function !iC:sC$2
sI
 called concept enumeration, 

o A function !!!:sR$2
sC

 called relation existential restriction, 
o A function !!!:sR$2

sC
 called relation universal restriction, 

o A function *R::sR$2
sI
 called relation value restriction, 

o A function !!!:sA$2
sT

 called attribute existential restriction, 

o A function !!!:sA$2
sT

 called attribute universal restriction, 

o A function *A::sA$2
sV

 called attribute value restriction, 

such that FO:={&C, &T, &R,&A, 'R, 'A, (C, (R, (A, (I, )C, )I, -C, -R, maxCardR, minCardR, !C, 

", "iC, "V, !iC,!!!! !!!, *R:, !!!, !!!, *A:). 



2.1 !"#$%!!! Change Modelling 

To model changes, we give the five definitions below. 

• Definition 2: Change. A change + is the application of a modification on an 

ontology O, that potentially affects one or more elements of its structure as de-

fined by the !!!!!!!! Ontology Model. 

• Definition 3: Log of Changes. Given an ontology O a log of changes, noted logi, 

is defined by an ordered set of changes (simple and complex) <+1, …, +n> that 

applied to O results in O. 

Like in (Klein, 2004), 2 change types are distinguished: basic and complex.  

• Definition 4: Basic Change. A basic change on an ontology O is a function 

+B:sK$2
O
 with sK:={sC ! sI ! sR ! sA} that corresponds to an addition, a re-

moval of a modification of one element ! O. 

• Definition 5: Complex Change. A complex change on an ontology O is a dis-

joint union of basic changes. It is a function +C:nsK$2
O
 such that +C:=+B1 

+…+ +Bn. 

The application of a change on an ontology, basic or complex, can be an addition 

or a deletion. It is traced as such in the log of changes. 

• Definition 6: Addition of a Change. The addition of a change +i traced in the 

log of changes logi, noted logi +{+i}, is defined by the disjoint union between the 

two disjoint sets logi and {+i}. 

• Definition 7: Deletion of a Change. The deletion of a change +i traced in the log 

of changes logi, noted logi - {+i}, is defined by the set-theoretic complement such 

that logi - {+i}={x# logi | x $ {+i}}. 

 

2.2 Basic Changes Modelling.  

To produce the list of basic change operations on !!!!!!!! ontologies, the 

!!!!!!!! Ontology Model is exploited as described in Table 1. The third column 

lists the 47 operators representing basic changes, which, if applied on the ontology, 

affect the corresponding !!!!!!!! model element. According to our model, every 

basic change can be declined as an addition or a deletion of an element of the underly-

ing set, the signature or the interpretation function. 

  

DL Syntax Model !"#$%!!!-based Changes Abstract Syntax 

D
e
sc

r
ip

ti
o

n
s 

C sC Class(Class) 

C1 ! . . .! Cn !!  IntersectionOf(Class1,…,Classn) 

C1 " . . ." Cn !!  UnionOf(Class1,…,Classn) 

¬C !C ComplementOf(Class) 

{I1} " . . ." {In} !!"  OneOf(Class, Instance1,…,Instancen) 

%R.C !!!  SomeValuesFrom(ObjectProperty, Class) 

&R.C !!!  AllValuesFrom(ObjectProperty, Class) 

R : I !!! HasValue(ObjectProperty, Instance) 

, n R maxCardR MinCardinalityProperty(ObjectProperty, n) 

# n R minCardR MaxCardinalityProperty(ObjectProperty, n) 



%A.T !!! SomeValuesFrom(DatatypeProperty, Datatype) 

&A.T !!! AllValuesFrom(DatatypeProperty, Datatype) 

A : V !!! HasValue(DatatypeProperty, Datavalue) 

T sT Datatype(Datatype) 

{V1} " . . ." {Vn} !!  OneOf(Datavalue1,…,Datavaluen) 

R sR ObjectProperty(ObjectProperty) 

A sA DatatypeProperty(DatatypeProperty) 

I sI Instance(Instance) 

V sV Datavalue(Datavalue) 

C - C1 !. . . ! Cn !!  IntersectionClass(Class, (Class1,…Classn)) 

C - {I1}! . . . !{In} !!"  EnumeratedClass(Class, (Instance1,…Instancen)) 

C1 ' C2 #C SubClassOf(Class1, Class2) 

C1 - . . . - Cn !!  EquivalentClass(Class1,…Classn) 

ԋ- C1 !  C2 !!!  DisjointClass(Class1, Class2) 

T1 " T2 #T SubDatatypeOf(Datatype1, Datatype2) 

V # Ti! !!  InstancesOfDatatype(Datavalue, Datatype) 

, 1R ' Ci !!  DomainProperty(ObjectProperty, Class) 

! ' &R.Ci RangeProperty(ObjectProperty, Class) 

R - R0
- !!!  InverseOf(ObjectProperty1 ObjectProperty2) 

R - R- !!  

 

SymmetricProperty(ObjectProperty) 

" ' ( 1R FunctionalProperty(ObjectProperty) 

"!' # 1R. InverseFunctionalProperty(ObjectProperty) 

Tr(R) TransitiveProperty(ObjectProperty) 

R1 ' R2 #R InheritanceObjectPropertyLink(ObjectProperty1, ObjectProperty2) 

R1 - . . . - Rn !!  EquivalentProperty(ObjectProperty1,…,ObjectPropertyn) 

A ' Ai A DatatypeProperty(DatatypeProperty) 

, 1A ' Ci !! DomainProperty(DatatypeProperty Class) 

" ' A.Ti RangeProperty(DatatypeProperty, Datatype) 

" ' # 1A !! FunctionalProperty(DatatypeProperty) 

A1 ' A2 #A InheritanceDatatypePropertyLink(DatatypeProperty1, DatatypeProperty2) 

A1 - . . . - An !! EquivalentProperty(DatatypeProperty1,…,DatatypePropertyn) 

I # Ci !!  InstancesOf(Instance, Class) 

{I, Ii} # Ri !!  InstancesOfObjectProperty(Instance, Instance1, ObjectProperty) 

{I, Vi} # Ai !! InstanceOfDatatypeProperty(Instance, Datavalue, DatatypeProperty) 

{I1} - . . . - {In} !!  SameAs(Instance1,…,Instancen) 

{Ii}' ¬{Ij}, i ! j !!!  DifferentFrom(Instance1,…,Instancen) 

Table 1. Correspondence between !!!!!!!! Description Logic Descriptions, Axioms and 

Facts, the !!!!!!!! Ontology Model and the !!!!!!!!-based List of Basic Changes. 

2.3 Complex Changes Modelling  

More generally, an infinite set of complex changes can be generated from the ag-

gregation of basic changes (Plessers, 2005). Their pertinence depends on the need of 



particular changes implied by particular uses. For example, the renaming of a concept 

is often used in collaborative development of an ontology to reach a consensus but 

can be unused in other contexts. For this reason, our model natively provides the lim-

ited set of 47 basic changes but, depending on change modelling needs, gives the 

opportunity to build complex changes from these basic changes. 

3 Discussion and Conclusion 

Our model aims at facilitating the modelling of basic and complex changes. It aims at 

contributing to the maintenance of the ontology structural consistency by clearly de-

fining each change impact on the structure of the ontology. This model is the structur-

al basis of a change management methodology called OntoVersionGraph (Pittet, 

2012). To ensure a complete consistent evolution of the ontology, it is used in con-

junction with a logical inconsistency identification methodology called CLOCk 

(Gueffaz, 2012), based on ontology design patterns and model-checking. 

4 References 

Djedidi, R., & Aufaure, M. A. (2008.). - Change Management Patternsfor Ontology 

Evolution Process –. IWOD at ISWC 2008. Karlsruhe. 

Ehrig, M. H. (2004). Similarity for ontologies-a comprehensive framework. 

Workshop Enterprise Modelling and Ontology: Ingredients for 

Interoperability, at PAKM.  

Flouris, G. M. (2008). Ontology Change: Classification & Survey. (C. U. Press, Ed.) 

he Knowledge Engineering Review,, 23(2), pp. 117-152. 

Guarino, N. &. (1995). Formal ontology, conceptual analysis and knowledge 

representation. International Journal of Human Computer Studies, 43(5), 

625-640. 

Gueffaz, M. P. (2012). Inconsistency Identification In Dynamic Ontologies Based On 

Model Checking. INSTICC, ACM SIGMIS, (pp. 418-421.). 

Horrocks, I. (2005). Owl: A description logic based ontology language. Logic 

Programming., 1-4. 

Klein, M. C. (2004). Change management for distributed ontologies. 

Pittet, P. N. (2012). Guidelines for a Dynamic Ontology-Integrating Tools of 

Evolution and Versioning in Ontology. . arXiv. 

Plessers, P. D. (2005). Ontology Change Detection using a Version Log. In Springer-

Verlag (Ed.), 4th International Semantic Web Conference (pp. 578-592). 

Galway, Ireland: Yolanda Gil, Enrico Motta, V.Richard Benjamins, Mark A. 

Musen. 

 


