Perrine Pittet
email: perrine.pittet@u-bourgogne.fr

Christophe Cruz
email: christophe.cruz@u-bourgogne.fr

Christophe Nicolle
email: cnicolle@u-bourgogne.fr

Modeling Changes for 𝓢𝓗𝓞𝓘𝓝(𝓓) Ontologies An Exhaustive Structural Model

Keywords: SHOIN(D) Description Logic, Change Modelling, Ontology Evolution, Ontology Model, Structural Consistency, OWL DL. I

Ontology development starts with a rigorous ontological analysis that provides a conceptualization of the domain to model agreed by the community. An ontology, specified in a formal language, approximates the intended models of this conceptualization. It needs then to be revised and refined until an ontological commitment is found. Also ulterior updates, responding to changes in the domain and/or the conceptualization, are expected to occur throughout the ontology life cycle. To handle a consistent application of changes, a couple of ontology evolution methodologies have been proposed. Maintaining the structural consistency is one of the ontology evolution criteria. It implies modeling changes with respect to how the constructs of the ontology language are used. However there is no ontology model, among those proposed, that allows to exhaustively describe changes and their impact for languages based on SHOIN(D) description logic. To bridge this gap, this paper presents a complete structural ontology model suited for change modeling on SHOIN(D) ontologies. The application of this model is illustrated along the paper through the description of an ontology example inspired by the UOBM ontology benchmark and its evolution.

INTRODUCTION

In recent years, building ontologies are gaining ground to provide to the Semantic Web clear semantics in agreed, consistent and shared encodings. Actually, ontologies make possible to application, enterprise, and community boundaries of any domain to bridge the gap of semantic heterogeneity. Ontologies development, to be correctly achieved, requires a dynamic and incremental process [START_REF] Djedidi | Change Management Patternsfor Ontology Evolution Process[END_REF]. It starts with a rigorous ontological analysis [START_REF] Guarino | Formal ontology, conceptual analysis and knowledge representation[END_REF] that provides a conceptualization of the domain to model agreed by the community. The ontology, specified in a formal language, approximates the intended models of the conceptualization: the closer it is the better it is. The ontology needs to be revised and refined until an ontological commitment is found. Ulterior updates of the ontology, addressed by ontology evolution, aim at responding to changes in the domain and/or the conceptualization [START_REF] Flouris | Ontology change: Classification and survey[END_REF]. Changes are consequently inherent in the ontology life cycle.

Reference [START_REF] Klein | Change management for distributed ontologies[END_REF] defines an ontology change as an action on an ontology resulting in an ontology that is different from the original version. To manage the lifecycle of ontologies and to ensure structural and logical consistent updates with regards to changes, a couple of ontology evolution methodologies have been proposed like [[START_REF] Noy | Ontology evolution: Not the same as schema evolution[END_REF], [START_REF] Pinto | DILIGENT: Towards a fine-grained methodology for Distributed, Looselycontrolled and evolving Engineering of oNTologies[END_REF], [START_REF] Stojanovic | Methods and tools for ontology evolution[END_REF], [START_REF] Djedidi | Approche d'évolution d'ontologie guidée par des patrons de gestion de changement[END_REF], [START_REF] Jaziri | A methodology for ontology evolution and versioning[END_REF]]. Among them, the AIFB methodology [START_REF] Stojanovic | Methods and tools for ontology evolution[END_REF], which is one of the most popular, identifies 6 phases to ensure the quality of the ontology evolution process: detection, representation, semantics, implementation, propagation and validation. Among those phases, two are of utmost importance to correctly model changes and their impact: the change representation phase, which consists in the translation of these changes into formal ontological operations, and the change semantics phase, which clearly defines their impact on the ontology by decomposing each operation into additions and/or deletions of atomic elements of the ontology. These two phases aim at ensuring a non-ambiguous application of changes to clearly envision their consequences on the ontology consistency. According to [START_REF] Stojanovic | Ontology evolution within ontology editors[END_REF], a consistent ontology is one that satisfies all invariants of the ontology model. Invariants are constraints that must hold in every quiescent state of an ontology. Structural consistency is one of these constraints. It ensures that the ontology obeys the constraints of the ontology language with respect to how the constructs of the ontology language are used. Modelling structurally consistent changes then implies having an exhaustive and non-ambiguous definition of the ontology model according to its language, so that each element of the ontology impacted by changes can be formally described. This paper focuses on the 𝒮ℋ𝒪ℐ𝒩 𝒟 level of expressivity, on which the ontological language OWL DL is based [START_REF] Horrocks | Reducing OWL entailment to description logic satisfiability[END_REF]. It first presents a model that exhaustively describes the structural constraints of a 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology defined by the constructors, axioms and facts of the description logic. It then describes a list of basic changes, constrained by this structural model to avoid performing structural inconsistent updates on the ontology. It subsequently explains how to model complex changes, composed of basic changes of this list, which are safe for the structure consistency of the ontology. Additionally each application of a change is semantically defined as an addition or a deletion of a basic or complex change that corresponds to additions or deletions of identified elements of the ontology model. This improves the evaluation of the impact of the application on a 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology. The application of this model is illustrated along the paper through the description of an ontology example, inspired by the UOBM Ontology Benchmark for OWL DL ontologies [START_REF] Ma | Towards a complete OWL ontology benchmark[END_REF], and its evolution.

II. 𝒮ℋ𝒪ℐ𝒩 𝒟 ONTOLOGY MODEL

A. A Structural Model

In order to formalize our framework the Karlsruhe Ontology Model [START_REF] Ehrig | Similarity for ontologies-a comprehensive framework[END_REF] is used and extended to cover the whole 𝒮ℋ𝒪ℐ𝒩 𝒟 constructors. From a mathematical point of view, an ontology can be defined as a structure. Formally, a structure is a triple A=(S, σ, F) consisting of an underlying set S, a signature σ, and an interpretation function F that indicates how the signature is to be interpreted on S.

:={ι C , ι T , ι R , ι A , κ R , κ A , ε C , ε R , ε A , ε I , δ C , δ I , -C , -R , maxCard R , minCard R , ⊓ C , ⊔, ⊔ iC , ⊔ V , ⊓ iC , 𝜌 ∃! , 𝜌 ∀! , 𝜌 ! , 𝜌 ∃! , 𝜌 ∀! , 𝜌 !).
We illustrate our model definition through an example inspired by the UOBM Ontology Benchmark [START_REF] Ma | Towards a complete OWL ontology benchmark[END_REF]. The ontology O describes the relations between students taking courses, supervised by professors teaching courses. We have added instances and datavalues in order to show a complete illustration of our model: • ιR={(friendOf,(christophe1, christophe2)), (taughtBy(knowledgeManagement, christophe2)), (teaches, (christophe1, The application of a change on an ontology, basic or complex, can be an addition or a deletion. It is traced as such in the log of changes.

• εR ={(takesCourse, {appliesTo })}, • εA={(hasName, {hasFirstNameAndLastName})}, • εI={(christophe1, {cnicolle})}, • δC={(Student,{Professor})}, • δI={(christophe1,{christophe2})}, • -C={(Student,{NonStudent })}, • -R={(teaches,{isTaughtBy})}, • maxCardR={(isTaughtBy, 1)}, • minCardR={(isTaughBy, 1)}, • ⊓C={(Person, {Student, NonStudent})}, • ⊔C={(Course, {KnowledgeCourse, SemanticWebCourse})}, • ⊔iC={(KnowledgeCourse, {knowledgeManagement, knowledgeEngineering})}, • ⊔V={(26, {26.0, 26.00})}, • ⊓iC={(SemanticWebCourse,{semanticWeb1, semanticWeb2})}, • 𝜌 ∃! = {(Professor, teaches, Course), (Student, takesCourse, Course)}, • 𝜌 ∀! ={(KnowledgeStudent, takesCourse, KnowledgeCourse)} • 𝜌 ! ={(KnowledgeStudent, hasSupervisor, christophe2)}, • 𝜌 ∃! ={(Course, duration, xsd:duration)}, • 𝜌 ∀! ={(KnowledgeCourse, duration, {P2H, P4H})}, • 𝜌 ! ={(SemanticWebCourse, duration, P2H)},
Identify applicable sponsor/s here. (sponsors) Definition 6: Addition of a Change. The addition of a change ω i traced in the log of changes log i , noted log i +{ω i }, is defined by the disjoint union between the two disjoint sets log i and {ω i }.

Definition 7: Deletion of a Change. The deletion of a change ω i traced in the log of changes log i , noted log i -{ω i }, is defined by the set-theoretic complement such that log i -{ω i }={x∈ log i | x ∉ {ω i }}.

C. Basic Changes Modeling

The whole 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology Model is exploited to produce a list of 45 basic change operations described in [START_REF] Pittet | A Structural Ontology Model for Change Modelling[END_REF]. They represent basic changes, which, if applied on the ontology, affect the corresponding 𝒮ℋ𝒪ℐ𝒩(𝒟) model element. According to our model, every basic change can be declined as an addition or a deletion of an element of the underlying set, the signature or the interpretation function. Table 1 below represents the impact corresponding to the change entitled InstancesOfObjectProperty in terms of addition or deletion on the ontology model. If applied as an addition, this change corresponds to the addition of an element 𝜄 !i to the set of relation instantiations 𝜄 ! as described in [START_REF] Pittet | A Structural Ontology Model for Change Modelling[END_REF]. Inversely, if applied as a deletion, this change corresponds to the deletion of an element 𝜄 !i .

Example

𝜄 ! + 𝜄 !i 𝜄 ! - 𝜄 !i
Table 1. Modelling of the Impact of a Basic Change Addition or Deletion on a 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology.

-- Class(Class) x x x x x x x x x x x x x x x Datatype(Datatype)

IntersectionOf
x x x x x ObjectProperty(ObjectProperty)

x x x x x x x x x x x x x x x DatatypeProperty(DatatypeProperty)

x x x x x x x x Instance(Instance)

x x x x x x Datavalue(Datavalue)

x x x This simple application of a basic change without structural consistency checking can be performed with every basic change except changes corresponding to deletions of concepts, instances, datatypes, datavalues, roles and attributes. Indeed each of these 6 changes directly impacts the axioms related to the deleted element. Consequently, to maintain structural consistency, the application such deletion changes require the deletion of the related axioms of before they are applied on the ontology. The following paragraph develops the interdependencies of these deletion changes with the related axioms to delete by matching corresponding change deletions. Table 2 shows the interdependencies between basic changes organized as a dependency matrix. The value x of an element, i.e. dependency[i][j]=x, indicates that the application of a change 𝜔 ! ! related to the row i induces a change 𝜔 ! ! related to the column j with the corresponding element to maintain ontology structural consistency. In terms of change application, a change 𝜔 ! ! has to be applied only after all changes 𝜔 ! ! with j>=1 and j<=n for which dependency[i][j]=x are firstly applied. For instance, from this matrix we can see deduce a structural consistency pattern for the application of a deletion of a concept Class i . The pattern below develops the different modifications or deletions of basic changes that have to precede the deletion of Class i :

• Change <-Class(Classi)> • Replace by <-IntersectionOf(Classi, Class1)… -IntersectionOf(Classi, Classn) -UnionOf(Classi, Class1… Classn)… +UnionOf(Class1, Classn) -ComplementOf(Classi Class1)… -ComplementOf(Classi Classn) -OneOf(Classi, Instance1,…, Instancen) -SomeValuesFrom(ObjectProperty1, Classi)… -SomeValuesFrom(ObjectPropertyn, Classi) -AllValuesFrom(ObjectProperty1, Classi)… -AllValuesFrom(ObjectPropertyn, Classi) -IntersectionClass(Classi, (Class1, …, Classn)) -EnumeratedClass(Classi, (Instance1, …, Instancen)) -SubClassOf(Classi, Class1) …-SubClassOf(Classi, Classn) -EquivalentClass(Classi, …, Classn)…+EquivalentClass(Class1, …, Classn) -DisjointClass(Class1, Class1)… -DisjointClass(Class1, Classn) -DomainProperty(ObjectProperty1, Classi)…-DomainProperty(ObjectPropertyn, Classi) -RangeProperty(ObjectProperty1, Classi)… -RangeProperty(ObjectPropertyn, Classi) -DomainProperty(DatatypeProperty1, Classi)… -DomainProperty(DatatypePropertyn, Classi) -InstancesOf(Instance1, Classi)… -InstancesOf(Instancen, Classi) -Class(Classi)>
• sCnew={sC-{Student}}, • ≤Cnew={≤C -{(Person, Student), (Student, KnowledgeStudent)}}, • 𝜎 !"#$ ={𝜎 ! -{ (hasSupervisor, (Student, Professor))}}, • 𝜄 !"#$ ={𝜄 ! -{(Student,{perrine})}}, • 𝛿 !"#$ ={ 𝛿 ! -{(Student, {Professor})}, • -!"#$ ={ -! -{(Student, {NonStudent})}}, • ⊓ !"#$ = {⊓ ! -{(Person, {Student, NonStudent})}}, • 𝜌 ∃!"#$ ={𝜌 ∃! -{(Student, takesCourse, Course)}}
The existence of Structural Consistency Patterns is however not limited to those 6 basic changes. Many complex changes are also concerned due to the fact that they aggregate different basic changes [START_REF] Plessers | Ontology change detection using a version log[END_REF]. Their pertinence depends on the need of particular changes implied by particular uses. For example, the renaming of a concept is a complex change, which is often used in collaborative development of an ontology to reach a consensus, but, can be unused in other contexts. For this reason, our model natively provides the limited set of 45 basic changes but, depending on change modelling needs, gives the opportunity to build complex changes from these basic changes and their corresponding patterns.

D. Complex Changes Modelling maintaining Structural Consistency

The following example illustrates how complex changes can be modelled according to our model and applied according to their pattern constraints.

Example: "Renaming Concept" Complex Change Pattern. In this example is considered the set-theory renaming not the lexical one. Renaming a concept C in a concept C new is a complex change called here renameClass, which implies the creation of a new concept C new , the copy of the concept descriptions of C (from its related ontology sets, signatures and interpretations) to C new , then the deletion these descriptions of C followed by the deletion of C itself with respect to the dependency matrix. Below is the Structural •

sCnew={sC-{Student} +{Pupil}}, • ≤Cnew={≤C -{(Person, Student), (Student, KnowledgeStudent)} + {(Person, Pupil), (Pupil, KnowledgeStudent)}}, • 𝜎 !"#$ ={ 𝜎 ! -{ (hasSupervisor, (Student, Professor))} + { (hasSupervisor, (Pupil, Professor))}}, • 𝜄 !"#$ ={𝜄 ! -{(Student,{perrine})} +{(Pupil,{perrine})}}, • 𝛿 !"#$ ={ 𝛿 ! -{(Student, {Professor})} +{(Pupil, {Professor})}}, • -!"#$ ={ -! -{(Student, {NonStudent})} +{(Pupil, {NonStudent})}}, • ⊓ !"#$ = {⊓ ! -{(

III. DISCUSSION AND CONCLUSION

It has long been realized that the web could benefit from having its content understandable and available in a machine processable form. This can be achieved if the ontology is specified in a language having a formal logic basedsemantics equipped with decision procedures designed for automated reasoning. That is why description logics have been introduced as a development basis of a number of ontological languages. Among them, OWL was heavily influenced by Description Logic research. The creation of the OWL DL sub-language (derived from the DL 𝒮ℋ𝒪ℐ𝒩(𝒟)) was motivated by the need to unambiguously represent information in a strongly expressive language, able to retain computational completeness, decidability and the availability of practical reasoning algorithms. Many works on ontology evolution consider the language OWL DL [[START_REF] Djedidi | Approche d'évolution d'ontologie guidée par des patrons de gestion de changement[END_REF]; [START_REF] Klein | Change management for distributed ontologies[END_REF]; [START_REF] Plessers | Ontology change detection using a version log[END_REF]]. However they do not provide an OWL DL ontology model suited for their purposes. Reference [START_REF] Stojanovic | Methods and tools for ontology evolution[END_REF] derives a set of ontology changes for the KAON1 ontology language. The author specifies fine-grained changes according to the KAON1 model that can be performed during ontology evolution. Similarly we have proposed a structural ontology model for change management dedicated to 𝒮ℋ𝒪ℐ𝒩 𝒟 . Our model aims at facilitating the modeling of basic and complex changes. It aims at contributing to the maintenance of the ontology structural consistency by clearly defining each change impact on the structure of the ontology. This model is the structural basis of a change management methodology called OntoVersionGraph [START_REF] Pittet | Guidelines for a Dynamic Ontology-Integrating Tools of Evolution and Versioning in Ontology[END_REF]. To ensure a complete consistent evolution of the ontology before its validation, it is used in conjunction with a priori logical inconsistency identification methodology called CLOCk [START_REF] Gueffaz | Inconsistency Identification In Dynamic Ontologies Based On Model Checking[END_REF], based on ontology design patterns and model-checking.

Figure 1 .

 1 Figure 1. Graphical Representation of the Ontology O with G-MOT.semanticWeb1)), (takesCourse, (perrine, knowledgeManagement)), hasSupervisor(perrine, christophe2)}} • ιA={(age,(perrine, 26)), (name,(christophe1, "Christophe Nicolle")), (name,(christophe2, "Christophe Cruz)), (name,(perrine, "Perrine Pittet")), (duration, (knowledgeManagement, P2H))}, • sKR={Symmetric, Functional, InverseFunctional}, • sKA={Functional}, • κR={(friendOf, Symmetric), (taughtBy,{Functional}), (teaches,{InverseFunctional)}, • κA={(age, {Functional}), (duration,{Functional})}, • εC={(Person, {HumanBeing})}, • εR ={(takesCourse, {appliesTo })}, • εA={(hasName, {hasFirstNameAndLastName})}, • εI={(christophe1, {cnicolle})}, • δC={(Student,{Professor})}, • δI={(christophe1,{christophe2})}, • -C={(Student,{NonStudent })}, • -R={(teaches,{isTaughtBy})}, • maxCardR={(isTaughtBy, 1)}, • minCardR={(isTaughBy, 1)}, • ⊓C={(Person, {Student, NonStudent})},

Figure1Definition 3 :Definition 4 :Definition 5 :

 345 Figure1 shows a graphical representation of the ontology O realized with the G-MOT Ontology Editor[START_REF] Paquette | An executable Model for Virtual Campus Environments[END_REF].

 Given the previous example ontology O, the evolution of O into O new with the addition of the relation instantiation 𝜄 ! i = hasSupervisor(perrine christophe1) w.r.t. our model, represented by the change 𝜔 ! ! =InstancesOfObjectProperty(perrine,christophe1,hasSuperviso r) can be formalized: 𝜄 !new ={ 𝜄 ! +{(hasSupervisor(perrine, christophe1)} 𝓢𝓗𝓞𝓘𝓝(𝓓)-based Change Abstract Syntax 𝓢𝓗𝓞𝓘𝓝(𝓓) Ontology Impact Addition Deletion InstancesOfObjectProperty(Instance, Instance1, ObjectProperty)

Figure 2 .

 2 Figure 2. Structural Consistency Change Pattern of -Class(Class i) Each basic change corresponding to deletions of concepts, instances, roles, attributes, datatypes or datavalues have therefore their own Structural Consistency Pattern derived from the constraints presented in the dependency matrix. Example: Deletion of the Basic Change Class(Class) instanciation on ontology O. Given the previous example ontology O, the evolution of O into O new with the deletion of the class Student w.r.t. our model, represented by the change 𝜔 ! ! =-class(Student) can be formalized:

Figure 3 .

 3 Figure 3. Structural Consistency Change Pattern of Complex Change renameClass(Class2, Class1)Like any basic change, a complex change has a corresponding impact on the ontology definition in terms of additions and deletions of elements of the underlying sets, signatures and interpretations of the ontology definition. As

 :sI→2 sC called concept union enumeration, o A function ⊔ V :sV→2 sC called data value union, o A function ⊓ iC :sC→2 sI called concept enumeration, o A function 𝜌 ∃! :sR→2 sC called relation existential restriction o A function 𝜌 ∀! :sR→2 sC called relation universal restriction, o A function 𝜌 ! :sR→2 sI called relation value restriction, o A function 𝜌 ∃! :sA→2 sT called attribute existential restriction o A function 𝜌 ∀! :sA→2 sT called attribute universal restriction, o A function 𝜌 ! :sA→2 sV called attribute value restriction, such that FO

	Definition 1: 𝒮ℋ𝒪ℐ𝒩 𝒟 Ontology Model.
	A 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology is a structure O=(SO ,σO ,FO)
	consisting of:
	• The underlying set SO containing:
	o Six disjoint sets sC, sT, sR, sA, sI, sV, sK R and sK A
	called concepts, datatypes, relations, attributes,
	instances, data values, relation characteristics (among
	Symmetric, Functional, Inverse Functional, Transitive)
	and attribute characteristics (Functional),
	o Four partial orders ≤ C , ≤ T , ≤ R and ≤ A , respectively on sC
	called concept hierarchy or taxonomy, on sT called type
	hierarchy, on sR called relation hierarchy and on sA
	called attribute hierarchy,
	such that SO :={(sC, ≤ C),(sT, ≤ T),(sR, ≤ R),(sA, ≤ A), sI, sV,
	sK R , sK A ,},
	• The signature σO containing two functions σ R :sR→sC 2
	called relation signature and σ A :sA→sC × sT called
	attribute signature, such that σO :={σ R , σ A },
	• The interpretation function FO containing:
	o A function ι C :sC→ 2 sI called concept instantiation, o A function ι T :sA→ 2 sV called data type instantiation, o A function ι R :sC→ 2 sI×sI called relation instantiation, o A function ι A :sC→ 2 sI×sV called attribute instantiation, o A function κ R :sR→ 2 sKR called relation characterization, o A function κ A :sA→ 2 sKA called attribute
	characterization,
	o A function ε C :sC→ 2 sC called concept equivalence, o A function ε R :sR→ 2 sR called relation equivalence, o A function ε A :sA→ 2 sA called attribute equivalence, o A function ε I :sI→ 2 sI called instance equivalence, o A function δ C :sC→ 2 sC called concept disjunction, o A function δ I :sI→ 2 sI called instance differentiation, o A function -C :sC→ 2 sC called concept complement
	specification,
	o A function -R :sR→ 2 sR called relation inverse
	specification,
	o A function maxCardR:sR→N called relation maximal
	cardinality restriction,
	o A function minCardR:sR→N called relation minimal
	cardinality restriction,
	o A function ⊓

C :sC→2 sC called concept intersection, o A function ⊔ C :sC→2 sC called concept union, o A function ⊔ iC

Table 2 .

 2 Structural Dependency Matrix of Concepts, Datatypes, Roles, Attributes, Instances and Datavalues Deletions Basic Changes and other Basic Changes for a 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology.

 Person, {Student, NonStudent})} +{(Person, {Pupil, NonStudent})}}, • 𝜌 ∃!"#$ ={ 𝜌 ∃! -{(Student, takesCourse, Course)} + {(Pupil, takesCourse, Course)}}

Consistency Pattern of such complex change: • Change: renameClass(Class2, Class1) • Replace by <+Class(Class2) +IntersectionOf(Class2, Class1.getIntersectionOf()) +UnionOf(Class2, Class1.getUnionOf()) +ComplementOf(Class2, Class1.getComplementOf()) +SomeValuesFrom(Class1.getSomeValuesFromObjectProperty(), Class2) +AllValuesFrom(Class1.getAllValuesFromObjectProperty(), Class2) +EquivalentClass(Class2, Class1.getEquivalentClass()) +DisjointClass(Class2, Class1.getDisjointClass()) +IntersectionClass(Class2, Class1.getIntersectionClass()) +EnumerationClass(Class2, Class1.getIntersectionClass()) +OneOf (Class2, Class1.getOneOf()) +SubClassOf (Class2, Class1.getSubClassOf()) +SuperClassOf (Class2, Class1.getSuperClassOf()) +DomainProperty(Class1.getObjectPropertyDomainOf(), Class2) +RangeProperty(Class1.getObjectPropertyRangeOf(), Class2) +DomainProperty(Class1.getDatatypePropertyDomainOf(), Class2) +InstancesOf(Class2, Class1.getInstancesOf()) -IntersectionOf(Class1, Class1.getIntersectionOf()) -UnionOf(Class1, Class1.getUnionOf()) -ComplementOf(Class1, Class1.getComplementOf()) -SomeValuesFrom(Class1.getSomeValuesFromObjectProperty(), Class1) -AllValuesFrom(Class1.getAllValuesFromObjectProperty(), Class1) -EquivalentClass(Class1, Class1.getEquivalentClass()) -DisjointClass(Class1, Class1.getDisjointClass()) -IntersectionClass(Class1, Class1.getIntersectionClass()) -EnumerationClass(Class1, Class1.getIntersectionClass()) -OneOf(Class1, Class1.getOneOf()) -SubClassOf (Class1, Class1.getSubClassOf()) -SuperClassOf (Class1, Class1.getSuperClassOf()) -DomainProperty(Class1.getObjectPropertyDomainOf(), Class1) -RangeProperty(Class1.getObjectPropertyRangeOf(), Class1) -DomainProperty(Class1.getDatatypePropertyDomainOf(), Class1) -InstancesOf(Class1, Class1.getInstancesOf()) -Class(Class1)>