
HAL Id: hal-00869750
https://hal.science/hal-00869750v1

Submitted on 4 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Changes for SHOIN(D) Ontologies: An
Exhaustive Structural Model

Perrine Pittet, Christophe Cruz, Christophe Nicolle

To cite this version:
Perrine Pittet, Christophe Cruz, Christophe Nicolle. Modeling Changes for SHOIN(D) Ontologies:
An Exhaustive Structural Model. ICSC 2013, Seventh IEEE International Conference on Semantic
Computing, Sep 2013, Irvine, United States. pp.Perrine Pittet. �hal-00869750�

https://hal.science/hal-00869750v1
https://hal.archives-ouvertes.fr

Modeling Changes for 𝓢𝓗𝓞𝓘𝓝(𝓓) Ontologies
An Exhaustive Structural Model

Perrine Pittet, Christophe Cruz, Christophe Nicolle
Le2i, UMR CNRS 6306
University of Burgundy

Dijon, France
{perrine.pittet, christophe.cruz, cnicolle}@u-bourgogne.fr

Abstract— Ontology development starts with a rigorous
ontological analysis that provides a conceptualization of the
domain to model agreed by the community. An ontology,
specified in a formal language, approximates the intended models
of this conceptualization. It needs then to be revised and refined
until an ontological commitment is found. Also ulterior updates,
responding to changes in the domain and/or the
conceptualization, are expected to occur throughout the ontology
life cycle. To handle a consistent application of changes, a couple
of ontology evolution methodologies have been proposed.
Maintaining the structural consistency is one of the ontology
evolution criteria. It implies modeling changes with respect to
how the constructs of the ontology language are used. However
there is no ontology model, among those proposed, that allows to
exhaustively describe changes and their impact for languages
based on SHOIN(D) description logic. To bridge this gap, this
paper presents a complete structural ontology model suited for
change modeling on SHOIN(D) ontologies. The application of this
model is illustrated along the paper through the description of an
ontology example inspired by the UOBM ontology benchmark
and its evolution.

Keywords- SHOIN(D) Description Logic; Change Modelling;
Ontology Evolution; Ontology Model; Structural Consistency;
OWL DL.

I. INTRODUCTION
In recent years, building ontologies are gaining ground to

provide to the Semantic Web clear semantics in agreed,
consistent and shared encodings. Actually, ontologies make
possible to application, enterprise, and community boundaries
of any domain to bridge the gap of semantic heterogeneity.
Ontologies development, to be correctly achieved, requires a
dynamic and incremental process [1]. It starts with a rigorous
ontological analysis [2] that provides a conceptualization of the
domain to model agreed by the community. The ontology,
specified in a formal language, approximates the intended
models of the conceptualization: the closer it is the better it is.
The ontology needs to be revised and refined until an
ontological commitment is found. Ulterior updates of the
ontology, addressed by ontology evolution, aim at responding
to changes in the domain and/or the conceptualization [3].
Changes are consequently inherent in the ontology life cycle.

Reference [4] defines an ontology change as an action on
an ontology resulting in an ontology that is different from the
original version. To manage the lifecycle of ontologies and to

ensure structural and logical consistent updates with regards to
changes, a couple of ontology evolution methodologies have
been proposed like [[5], [6], [7], [8], [9]]. Among them, the
AIFB methodology [7], which is one of the most popular,
identifies 6 phases to ensure the quality of the ontology
evolution process: detection, representation, semantics,
implementation, propagation and validation. Among those
phases, two are of utmost importance to correctly model
changes and their impact: the change representation phase,
which consists in the translation of these changes into formal
ontological operations, and the change semantics phase, which
clearly defines their impact on the ontology by decomposing
each operation into additions and/or deletions of atomic
elements of the ontology. These two phases aim at ensuring a
non-ambiguous application of changes to clearly envision their
consequences on the ontology consistency. According to [10],
a consistent ontology is one that satisfies all invariants of the
ontology model. Invariants are constraints that must hold in
every quiescent state of an ontology. Structural consistency is
one of these constraints. It ensures that the ontology obeys the
constraints of the ontology language with respect to how the
constructs of the ontology language are used. Modelling
structurally consistent changes then implies having an
exhaustive and non-ambiguous definition of the ontology
model according to its language, so that each element of the
ontology impacted by changes can be formally described.

This paper focuses on the 𝒮ℋ𝒪ℐ𝒩 𝒟 level of
expressivity, on which the ontological language OWL DL is
based [11]. It first presents a model that exhaustively describes
the structural constraints of a 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology defined by
the constructors, axioms and facts of the description logic. It
then describes a list of basic changes, constrained by this
structural model to avoid performing structural inconsistent
updates on the ontology. It subsequently explains how to model
complex changes, composed of basic changes of this list, which
are safe for the structure consistency of the ontology.
Additionally each application of a change is semantically
defined as an addition or a deletion of a basic or complex
change that corresponds to additions or deletions of identified
elements of the ontology model. This improves the evaluation
of the impact of the application on a 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology.
The application of this model is illustrated along the paper
through the description of an ontology example, inspired by the
UOBM Ontology Benchmark for OWL DL ontologies [13],
and its evolution.

II. 𝒮ℋ𝒪ℐ𝒩 𝒟 ONTOLOGY MODEL

A. A Structural Model
In order to formalize our framework the Karlsruhe

Ontology Model [12] is used and extended to cover the whole
𝒮ℋ𝒪ℐ𝒩 𝒟 constructors. From a mathematical point of view,
an ontology can be defined as a structure. Formally, a structure
is a triple A=(S, σ, F) consisting of an underlying set S, a
signature σ, and an interpretation function F that indicates how
the signature is to be interpreted on S.

Definition 1: 𝒮ℋ𝒪ℐ𝒩 𝒟 Ontology Model.

A 𝒮ℋ𝒪ℐ𝒩 𝒟 ontology is a structure O=(SO ,σO ,FO)
consisting of:

• The underlying set SO containing:

o Six disjoint sets sC, sT, sR, sA, sI, sV, sKR and sKA
called concepts, datatypes, relations, attributes,
instances, data values, relation characteristics (among
Symmetric, Functional, Inverse Functional, Transitive)
and attribute characteristics (Functional),

o Four partial orders ≤C, ≤T, ≤R and ≤A, respectively on sC
called concept hierarchy or taxonomy, on sT called type
hierarchy, on sR called relation hierarchy and on sA
called attribute hierarchy,

such that SO :={(sC, ≤C),(sT, ≤T),(sR, ≤R),(sA, ≤A), sI, sV,
sKR, sKA,},

• The signature σO containing two functions σR:sR→sC2
called relation signature and σA:sA→sC × sT called
attribute signature, such that σO :={σR, σA},

• The interpretation function FO containing:

o A function ιC:sC→ 2sI called concept instantiation,
o A function ιT:sA→ 2sV called data type instantiation,
o A function ιR:sC→ 2sI×sI called relation instantiation,
o A function ιA:sC→ 2sI×sV called attribute instantiation,
o A function κR:sR→ 2sKR called relation characterization,
o A function κA:sA→ 2sKA called attribute

characterization,
o A function εC:sC→ 2sC called concept equivalence,
o A function εR:sR→ 2sR called relation equivalence,
o A function εA:sA→ 2sA called attribute equivalence,
o A function εI:sI→ 2sI called instance equivalence,
o A function δC:sC→ 2sC called concept disjunction,
o A function δI:sI→ 2sI called instance differentiation,
o A function -C:sC→ 2sC called concept complement

specification,
o A function -R:sR→ 2sR called relation inverse

specification,
o A function maxCardR:sR→N called relation maximal

cardinality restriction,
o A function minCardR:sR→N called relation minimal

cardinality restriction,
o A function ⊓C:sC→2sC called concept intersection,
o A function ⊔C:sC→2sC called concept union,

o A function ⊔iC:sI→2sC called concept union
enumeration,

o A function ⊔V:sV→2sC called data value union,
o A function ⊓iC:sC→2sI called concept enumeration,
o A function 𝜌∃! :sR→2sC called relation existential

restriction
o A function 𝜌∀! :sR→2sC called relation universal

restriction,
o A function 𝜌! :sR→2sI called relation value restriction,
o A function 𝜌∃! :sA→2sT called attribute existential

restriction
o A function 𝜌∀! :sA→2sT called attribute universal

restriction,
o A function 𝜌! :sA→2sV called attribute value restriction,

such that FO:={ιC, ιT, ιR, ιA, κR, κA, εC, εR, εA, εI, δC, δI, -C, -R,
maxCardR, minCardR, ⊓C, ⊔, ⊔iC, ⊔V, ⊓iC, 𝜌∃!, 𝜌∀!, 𝜌!, 𝜌∃!,
𝜌∀!, 𝜌!).

We illustrate our model definition through an example

inspired by the UOBM Ontology Benchmark [13]. The
ontology O describes the relations between students taking
courses, supervised by professors teaching courses. We have
added instances and datavalues in order to show a complete
illustration of our model:
• sC={TConcept, Person, HumanBeing, Student, Professor, Course,

KnowledgeCourse, SemanticWebCourse, KnowledgeStudent,
NonStudent},

• sT={tType, xs:decimal, xs:string, xs:duration},
• ≤C ={(TConcept, Person), (TConcept, HumanBeing), (Person, Student),

(Person, Professor), (TConcept, Course), (Course, KnowledgeCourse),
(Course, SemanticWebCourse), (Student, KnowledgeStudent), (Person,
NonStudent)}

• ≤T ={(tType, xs:decimal), (tType, xs:string), (tType, xs:duration)},
• sR={tRelation, friendOf, taughtBy, teaches, takesCourse, appliesTo,

hasSupervisor},
• sA={ name, firstNameAndLastName, age, duration},
• σR={(takesCourse, (Person, Course)), (friendOf, (Person, Person)),

(taughtBy, (Course, Professor)), (teaches, (Professor, Course)),
(hasSupervisor, (Student, Professor))}

• σA={(name, (Person, xs:string)), (age, (Person, xs:decimal)), (duration,
(Course, xs:duration))}

• ≤R={(tRelation, friendOf), (tRelation, taughtBy), (tRelation, takesCourse),
(tRelation, appliesTo), (tRelation, hasSupervisor)}

• ≤A={(tAttribute, name), (tAttribute, age), (tAttribute, duration)},
• sI={christophe1, cnicolle, christophe2, perrine, knowledgeManagement,

knowledgeEngineering, semanticWeb1, semanticWeb2},
• sV={“Christophe Nicolle”, “Christophe Cruz”, “Perrine Pittet”, 26, 26.0,

P2H, P4H},
• ιC={(Professor,{christophe1, christophe2}), (Student,{perrine}), (Course,

{knowledgeManagement, knowledgeEngineering, semanticWeb1,
semanticWeb2})},

• ιT={(xs:decimal,{26}), (xs:string, {“Christophe Nicolle”, “Christophe
Cruz”, “Perrine Pittet”}), (xs:duration,{P2H, P4H})},

• ιR={(friendOf,(christophe1, christophe2)),
(taughtBy(knowledgeManagement, christophe2)), (teaches, (christophe1,

Figure 1. Graphical Representation of the Ontology O with G-MOT.

semanticWeb1)), (takesCourse, (perrine, knowledgeManagement)),
hasSupervisor(perrine, christophe2)}}

• ιA={(age,(perrine, 26)), (name,(christophe1, “Christophe Nicolle”)),
(name,(christophe2, “Christophe Cruz)), (name,(perrine, “Perrine Pittet”)),
(duration, (knowledgeManagement, P2H))},

• sKR={Symmetric, Functional, InverseFunctional},
• sKA={Functional},
• κR={(friendOf, Symmetric), (taughtBy,{Functional}),

(teaches,{InverseFunctional)},
• κA={(age, {Functional}), (duration,{Functional})},
• εC={(Person, {HumanBeing})},
• εR ={(takesCourse, {appliesTo })},
• εA={(hasName, {hasFirstNameAndLastName})},
• εI={(christophe1, {cnicolle})},
• δC={(Student,{Professor})},
• δI={(christophe1,{christophe2})},
• -C={(Student,{NonStudent })},
• -R={(teaches,{isTaughtBy})},
• maxCardR={(isTaughtBy, 1)},
• minCardR={(isTaughBy, 1)},
• ⊓C={(Person, {Student, NonStudent})},
• ⊔C={(Course, {KnowledgeCourse, SemanticWebCourse})},
• ⊔iC={(KnowledgeCourse, {knowledgeManagement,

knowledgeEngineering})},
• ⊔V={(26, {26.0, 26.00})},
• ⊓iC={(SemanticWebCourse,{semanticWeb1, semanticWeb2})},
• 𝜌∃!= {(Professor, teaches, Course), (Student, takesCourse, Course)},
• 𝜌∀! ={(KnowledgeStudent, takesCourse, KnowledgeCourse)}
• 𝜌! ={(KnowledgeStudent, hasSupervisor, christophe2)},
• 𝜌∃! ={(Course, duration, xsd:duration)},
• 𝜌∀!={(KnowledgeCourse, duration, {P2H, P4H})},
• 𝜌!={(SemanticWebCourse, duration, P2H)},

Figure1 shows a graphical representation of the ontology O
realized with the G-MOT Ontology Editor [14].

B. 𝒮ℋ𝒪ℐ𝒩(𝒟) Change Modeling
In order to model changes w.r.t our model, we give the five

definitions below.

Definition 2: Change. A change ω is the application of a
modification on an ontology O, that potentially affects one or
more elements of its structure as defined by the 𝒮ℋ𝒪ℐ𝒩(𝒟)
Ontology Model.

Definition 3: Log of Changes. Given an ontology O a log of
changes, noted logi, is defined by an ordered set of changes
(simple/complex) <ω1, …, ωn> that applied to O results in O.

Like in reference [4], 2 change types are distinguished: basic
and complex.

Definition 4: Basic Change. A basic change on an ontology O
is a function ωB:sK→2O with sK:={sC ! sI ! sR ! sA} that
corresponds to an addition, a removal of a modification of one
element ∈ O.

Definition 5: Complex Change. A complex change on an
ontology O is a disjoint union of basic changes. It is a function
ωC:nsK→2O such that ωC:=ωB1 +…+ ωBn.

The application of a change on an ontology, basic or
complex, can be an addition or a deletion. It is traced as such in
the log of changes.

Identify applicable sponsor/s here. (sponsors)

Definition 6: Addition of a Change. The addition of a change
ωi traced in the log of changes logi, noted logi +{ωi}, is defined
by the disjoint union between the two disjoint sets logi and
{ωi}.

Definition 7: Deletion of a Change. The deletion of a change
ωi traced in the log of changes logi, noted logi - {ωi}, is defined
by the set-theoretic complement such that logi - {ωi}={x∈ logi |
x ∉ {ωi}}.

C. Basic Changes Modeling
The whole 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology Model is exploited to

produce a list of 45 basic change operations described in [18].
They represent basic changes, which, if applied on the
ontology, affect the corresponding 𝒮ℋ𝒪ℐ𝒩(𝒟) model
element. According to our model, every basic change can be
declined as an addition or a deletion of an element of the

underlying set, the signature or the interpretation function.
Table 1 below represents the impact corresponding to the
change entitled InstancesOfObjectProperty in terms of addition
or deletion on the ontology model. If applied as an addition,
this change corresponds to the addition of an element 𝜄! i to the
set of relation instantiations 𝜄! as described in [18]. Inversely, if
applied as a deletion, this change corresponds to the deletion of
an element 𝜄! i.

Example: Addition of the basic change
InstancesOfObjectProperty. Given the previous example
ontology O, the evolution of O into Onew with the addition of
the relation instantiation 𝜄! i = hasSupervisor(perrine
christophe1) w.r.t. our model, represented by the change 𝜔!!
=InstancesOfObjectProperty(perrine,christophe1,hasSuperviso
r) can be formalized:

𝜄!new ={ 𝜄!+{(hasSupervisor(perrine, christophe1)}

𝓢𝓗𝓞𝓘𝓝(𝓓)-based Change Abstract Syntax
𝓢𝓗𝓞𝓘𝓝(𝓓) Ontology Impact
Addition Deletion

InstancesOfObjectProperty(Instance, Instance1, ObjectProperty) 𝜄! + 𝜄! i 𝜄! − 𝜄! i

Table 1. Modelling of the Impact of a Basic Change Addition or Deletion on a 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology.

-‐	

In
te

rs
ec

tio
nO

f(
C

la
ss

1,…
,C

la
ss

n)

U
ni

on
O

f(
C

la
ss

1,…
,C

la
ss

n)

C
om

pl
em

en
tO

f(
C

la
ss

1,
C

la
ss

2)

O
ne

O
f(

C
la

ss
, I

ns
ta

nc
e 1

,…
,In

st
an

ce
n)

So
m

eV
al

ue
sF

ro
m

(O
bj

ec
tP

ro
pe

rty
, C

la
ss

)

A
llV

al
ue

sF
ro

m
(O

bj
ec

tP
ro

pe
rty

, C
la

ss
)

H
as

V
al

ue
(O

bj
ec

tP
ro

pe
rty

, I
ns

ta
nc

e)

M
in

C
ar

di
na

lit
yP

ro
pe

rty
(O

bj
ec

tP
ro

pe
rty

, n
)

M
ax

C
ar

di
na

lit
yP

ro
pe

rty
(O

bj
ec

tP
ro

pe
rty

, n
)

So
m

eV
al

ue
sF

ro
m

(D
at

at
yp

eP
ro

pe
rty

, D
at

at
yp

e)

A
llV

al
ue

sF
ro

m
(D

at
at

yp
eP

ro
pe

rty
, D

at
at

yp
e)

H
as

V
al

ue
(D

at
at

yp
eP

ro
pe

rty
, D

at
av

al
ue

)

O
ne

O
f(

D
at

av
al

ue
1,…

,D
at

av
al

ue
n)

In
te
rs
ec
tio

nC
la
ss
(C
la
ss
,	 (
Cl
as
s1
,…
Cl
as
sn
))	

En
um

er
at
ed

Cl
as
s(
Cl
as
s,
	 (I
ns
ta
nc
e1
,…
In
st
an
ce
n)
)	

Su
bC

la
ss
O
f(C

la
ss
1,
	 C
la
ss
2)
	

Eq
ui

va
le

nt
C

la
ss

(C
la

ss
1,…

C
la

ss
n)

D
is

jo
in

tC
la

ss
(C

la
ss

1,
C

la
ss

2)

Su
bD

at
at

yp
eO

f(
D

at
at

yp
e 1

, D
at

at
yp

e 2
)

In
st

an
ce

sO
fD

at
at

yp
e(

D
at

av
al

ue
, D

at
at

yp
e)

D
om

ai
nP

ro
pe

rty
(O

bj
ec

tP
ro

pe
rty

, C
la

ss
)

R
an

ge
Pr

op
er

ty
(O

bj
ec

tP
ro

pe
rty

, C
la

ss
)

In
ve

rs
eO

f(
O

bj
ec

tP
ro

pe
rty

1 O
bj

ec
tP

ro
pe

rty
2)

Sy
m

m
et

ric
Pr

op
er

ty
(O

bj
ec

tP
ro

pe
rty

)

Fu
nc

tio
na

lP
ro

pe
rty

(O
bj

ec
tP

ro
pe

rty
)

In
ve

rs
eF

un
ct

io
na

lP
ro

pe
rty

(O
bj

ec
tP

ro
pe

rty
)

Tr
an

si
tiv

eP
ro

pe
rty

(O
bj

ec
tP

ro
pe

rty
)

In
he

rit
an

ce
O

bj
ec

tP
ro

pe
rty

Li
nk

(O
bj

ec
tP

ro
pe

rty
1,

O
bj

ec
tP

ro
pe

rty
2)

Eq
ui

va
le

nt
Pr

op
er

ty
(O

bj
ec

tP
ro

pe
rty

1,…
,O

bj
ec

tP
ro

pe
rty

n)

D
om

ai
nP

ro
pe

rty
(D

at
at

yp
eP

ro
pe

rty
 C

la
ss

)

R
an

ge
Pr

op
er

ty
(D

at
at

yp
eP

ro
pe

rty
, D

at
at

yp
e)

Fu
nc

tio
na

lP
ro

pe
rty

(D
at

at
yp

eP
ro

pe
rty

)

In
he

rit
an

ce
D

at
at

yp
eP

ro
pe

rty
Li

nk
(D

at
at

yp
eP

ro
pe

rty
1,

D
at

at
yp

eP
ro

pe
rty

2)

Eq
ui

va
le

nt
Pr

op
er

ty
(D

at
at

yp
eP

ro
pe

rty
1,…

,D
at

at
yp

eP
ro

pe
rty

n)

In
st

an
ce

sO
f(

In
st

an
ce

, C
la

ss
)

In
st

an
ce

sO
fO

bj
ec

tP
ro

pe
rty

(I
ns

ta
nc

e,
 In

st
an

ce
1,

O
bj

ec
tP

ro
pe

rty
)

In
st

an
ce

O
fD

at
at

yp
eP

ro
pe

rty
(I

ns
ta

nc
e,

 D
at

av
al

ue
, D

at
at

yp
eP

ro
pe

rty
)

Sa
m

eA
s(

In
st

an
ce

1,…
,In

st
an

ce
n)

D
iff

er
en

tF
ro

m
(I

ns
ta

nc
e 1

,…
,In

st
an

ce
n)

Class(Class) x	 x	 x	 x	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 x	 x	 x	 	 	 	 	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 	 	 	 	 	 	 x	 	 	 	 	 	 	 	 	
Datatype(Datatype) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
ObjectProperty(ObjectProperty) 	 	 	 	 	 	 	 	 x	 x	 x	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 x	 x	 x	 x	 x	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 	 	 	 	
DatatypeProperty(DatatypeProperty) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 x	 x	 x	 	 	 	 	 x	 	 	 	 	
Instance(Instance) 	 	 	 	 	 	 x	 	 	 	 	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 x	 x	
Datavalue(Datavalue) 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 x	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 x	 	 	 	 	

Table 2. Structural Dependency Matrix of Concepts, Datatypes, Roles, Attributes, Instances and Datavalues Deletions Basic Changes and other
Basic Changes for a 𝒮ℋ𝒪ℐ𝒩(𝒟) Ontology.

This simple application of a basic change without structural
consistency checking can be performed with every basic
change except changes corresponding to deletions of
concepts, instances, datatypes, datavalues, roles and
attributes. Indeed each of these 6 changes directly impacts
the axioms related to the deleted element. Consequently, to
maintain structural consistency, the application such
deletion changes require the deletion of the related axioms
of before they are applied on the ontology. The following

paragraph develops the interdependencies of these deletion
changes with the related axioms to delete by matching
corresponding change deletions. Table 2 shows the
interdependencies between basic changes organized as a
dependency matrix. The value x of an element, i.e.
dependency[i][j]=x, indicates that the application of a
change 𝜔!! related to the row i induces a change 𝜔!!related
to the column j with the corresponding element to maintain
ontology structural consistency. In terms of change

application, a change 𝜔!! has to be applied only after all
changes 𝜔!! with j>=1 and j<=n for which
dependency[i][j]=x are firstly applied. For instance, from
this matrix we can see deduce a structural consistency
pattern for the application of a deletion of a concept Classi .
The pattern below develops the different modifications or
deletions of basic changes that have to precede the deletion
of Classi:
• Change <−Class(Classi)>
• Replace by
<−IntersectionOf(Classi, Class1)… −IntersectionOf(Classi, Classn)
−UnionOf(Classi, Class1… Classn)… +UnionOf(Class1, Classn)
−ComplementOf(Classi Class1)… −ComplementOf(Classi Classn)
−OneOf(Classi, Instance1,…, Instancen)
−SomeValuesFrom(ObjectProperty1, Classi)…
−SomeValuesFrom(ObjectPropertyn, Classi)
−AllValuesFrom(ObjectProperty1, Classi)…
−AllValuesFrom(ObjectPropertyn, Classi)
−IntersectionClass(Classi, (Class1, …, Classn))
−EnumeratedClass(Classi, (Instance1, …, Instancen))
−SubClassOf(Classi, Class1) …−SubClassOf(Classi, Classn)
−EquivalentClass(Classi, …, Classn)…+EquivalentClass(Class1, …,
Classn)
−DisjointClass(Class1, Class1)… −DisjointClass(Class1, Classn)
−DomainProperty(ObjectProperty1,
Classi)…−DomainProperty(ObjectPropertyn, Classi)
−RangeProperty(ObjectProperty1,
Classi)… −RangeProperty(ObjectPropertyn, Classi)
−DomainProperty(DatatypeProperty1,
Classi)… −DomainProperty(DatatypePropertyn, Classi)
−InstancesOf(Instance1, Classi)… −InstancesOf(Instancen, Classi)
−Class(Classi)>

Figure 2. Structural Consistency Change Pattern of −Class(Classi)

Each basic change corresponding to deletions of concepts,
instances, roles, attributes, datatypes or datavalues have
therefore their own Structural Consistency Pattern derived
from the constraints presented in the dependency matrix.

Example: Deletion of the Basic Change Class(Class)
instanciation on ontology O. Given the previous example
ontology O, the evolution of O into Onew with the deletion of
the class Student w.r.t. our model, represented by the change
𝜔!!=−class(Student) can be formalized:
• sCnew={sC−{Student}},
• ≤Cnew={≤C − {(Person, Student), (Student, KnowledgeStudent)}},
• 𝜎!"#$={𝜎! –{ (hasSupervisor, (Student, Professor))}},
• 𝜄!"#$={𝜄! −{(Student,{perrine})}},
• 𝛿!"#$ ={ 𝛿! −{(Student, {Professor})},
• −!"#$={ −! −{(Student, {NonStudent})}},
• ⊓!"#$= {⊓!−{(Person, {Student, NonStudent})}},
• 𝜌∃!"#$={𝜌∃! − {(Student, takesCourse, Course)}}

The existence of Structural Consistency Patterns is however
not limited to those 6 basic changes. Many complex changes
are also concerned due to the fact that they aggregate
different basic changes [15]. Their pertinence depends on
the need of particular changes implied by particular uses.
For example, the renaming of a concept is a complex
change, which is often used in collaborative development of
an ontology to reach a consensus, but, can be unused in
other contexts. For this reason, our model natively provides

the limited set of 45 basic changes but, depending on change
modelling needs, gives the opportunity to build complex
changes from these basic changes and their corresponding
patterns.

D. Complex Changes Modelling maintaining Structural
Consistency

The following example illustrates how complex changes can
be modelled according to our model and applied according
to their pattern constraints.

Example: “Renaming Concept” Complex Change Pattern.
In this example is considered the set-theory renaming not
the lexical one. Renaming a concept C in a concept Cnew is a
complex change called here renameClass, which implies the
creation of a new concept Cnew, the copy of the concept
descriptions of C (from its related ontology sets, signatures
and interpretations) to Cnew, then the deletion these
descriptions of C followed by the deletion of C itself with
respect to the dependency matrix. Below is the Structural
Consistency Pattern of such complex change:
• Change: renameClass(Class2, Class1)
• Replace by
<+Class(Class2)
+IntersectionOf(Class2, Class1.getIntersectionOf())
+UnionOf(Class2, Class1.getUnionOf())
+ComplementOf(Class2, Class1.getComplementOf())
+SomeValuesFrom(Class1.getSomeValuesFromObjectProperty(), Class2)
+AllValuesFrom(Class1.getAllValuesFromObjectProperty(), Class2)
+EquivalentClass(Class2, Class1.getEquivalentClass())
+DisjointClass(Class2, Class1.getDisjointClass())
+IntersectionClass(Class2, Class1.getIntersectionClass())
+EnumerationClass(Class2, Class1.getIntersectionClass())
+OneOf (Class2, Class1.getOneOf())
+SubClassOf (Class2, Class1.getSubClassOf())
+SuperClassOf (Class2, Class1.getSuperClassOf())
+DomainProperty(Class1.getObjectPropertyDomainOf(), Class2)
+RangeProperty(Class1.getObjectPropertyRangeOf(), Class2)
+DomainProperty(Class1.getDatatypePropertyDomainOf(), Class2)
+InstancesOf(Class2, Class1.getInstancesOf())
−IntersectionOf(Class1, Class1.getIntersectionOf())
−UnionOf(Class1, Class1.getUnionOf())
−ComplementOf(Class1, Class1.getComplementOf())
−SomeValuesFrom(Class1.getSomeValuesFromObjectProperty(), Class1)
−AllValuesFrom(Class1.getAllValuesFromObjectProperty(), Class1)
−EquivalentClass(Class1, Class1.getEquivalentClass())
−DisjointClass(Class1, Class1.getDisjointClass())
−IntersectionClass(Class1, Class1.getIntersectionClass())
−EnumerationClass(Class1, Class1.getIntersectionClass())
−OneOf(Class1, Class1.getOneOf())
−SubClassOf (Class1, Class1.getSubClassOf())
−SuperClassOf (Class1, Class1.getSuperClassOf())
−DomainProperty(Class1.getObjectPropertyDomainOf(), Class1)
−RangeProperty(Class1.getObjectPropertyRangeOf(), Class1)
−DomainProperty(Class1.getDatatypePropertyDomainOf(), Class1)
−InstancesOf(Class1, Class1.getInstancesOf())
−Class(Class1)>

Figure 3. Structural Consistency Change Pattern of Complex
Change renameClass(Class2, Class1)

Like any basic change, a complex change has a
corresponding impact on the ontology definition in terms of
additions and deletions of elements of the underlying sets,
signatures and interpretations of the ontology definition. As

a complex change is defined as a disjoint union of basic
changes, then its impact on the ontology definition is the set
of the additions and deletions corresponding to each basic
change implied.

Example: Application of the concept renaming Complex
Change renameClass(Class2, Class1) application on
ontology O. Given the previous example ontology O, the
evolution of O into Onew with the renaming of the class
Student into Pupil w.r.t. our model, represented by the
change 𝜔!! = − renameClass(Pupil, Student) can be
formalized:
• sCnew={sC−{Student} +{Pupil}},
• ≤Cnew={≤C − {(Person, Student), (Student, KnowledgeStudent)} +

{(Person, Pupil), (Pupil, KnowledgeStudent)}},
• 𝜎!"#$ ={ 𝜎! − { (hasSupervisor, (Student, Professor))} + {

(hasSupervisor, (Pupil, Professor))}},
• 𝜄!"#$={𝜄! −{(Student,{perrine})} +{(Pupil,{perrine})}},
• 𝛿!"#$ ={ 𝛿! −{(Student, {Professor})} +{(Pupil, {Professor})}},
• −!"#$={ −! −{(Student, {NonStudent})} +{(Pupil, {NonStudent})}},
• ⊓!"#$= {⊓!−{(Person, {Student, NonStudent})} +{(Person, {Pupil,

NonStudent})}},
• 𝜌∃!"#$ ={ 𝜌∃! − {(Student, takesCourse, Course)} + {(Pupil,

takesCourse, Course)}}

III. DISCUSSION AND CONCLUSION
It has long been realized that the web could benefit from

having its content understandable and available in a machine
processable form. This can be achieved if the ontology is
specified in a language having a formal logic based-
semantics equipped with decision procedures designed for
automated reasoning. That is why description logics have
been introduced as a development basis of a number of
ontological languages. Among them, OWL was heavily
influenced by Description Logic research. The creation of the
OWL DL sub-language (derived from the DL 𝒮ℋ𝒪ℐ𝒩(𝒟))
was motivated by the need to unambiguously represent
information in a strongly expressive language, able to retain
computational completeness, decidability and the availability
of practical reasoning algorithms. Many works on ontology
evolution consider the language OWL DL [[8]; [4]; [15]].
However they do not provide an OWL DL ontology model
suited for their purposes. Reference [7] derives a set of
ontology changes for the KAON1 ontology language. The
author specifies fine-grained changes according to the
KAON1 model that can be performed during ontology
evolution. Similarly we have proposed a structural ontology
model for change management dedicated to 𝒮ℋ𝒪ℐ𝒩 𝒟 .
Our model aims at facilitating the modeling of basic and
complex changes. It aims at contributing to the maintenance
of the ontology structural consistency by clearly defining
each change impact on the structure of the ontology. This
model is the structural basis of a change management
methodology called OntoVersionGraph [17]. To ensure a
complete consistent evolution of the ontology before its
validation, it is used in conjunction with a priori logical
inconsistency identification methodology called CLOCk
[19], based on ontology design patterns and model-checking.

REFERENCES

[1] Djedidi, R., & Aufaure, M. A. (2008.). - Change Management
Patternsfor Ontology Evolution Process –. IWOD at ISWC 2008.
Karlsruhe.

[2] Guarino, N. (1995). Formal ontology, conceptual analysis and
knowledge representation. International Journal of Human-Computer
Studies, 43(5), 625-640.

[3] Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., &
Antoniou, G. (2008). Ontology change: Classification and survey. The
Knowledge Engineering Review, 23(2), 117-152.

[4] Klein, M. C. (2004). Change management for distributed ontologies
[5] Noy, N. F., & Klein, M. (2004). Ontology evolution: Not the same as

schema evolution. Knowledge and information systems, 6(4), 428-
440.

[6] Pinto, H. S., Staab, S., & Tempich, C. (2004, August). DILIGENT:
Towards a fine-grained methodology for Distributed, Loosely-
controlled and evolving Engineering of oNTologies. In ECAI (Vol.
16, p. 393).

[7] Stojanovic, L. (2004). Methods and tools for ontology evolution
(Doctoral dissertation, Karlsruhe, Univ., Diss., 2004).

[8] Djedidi, R. (2009). Approche d'évolution d'ontologie guidée par des
patrons de gestion de changement.

[9] Jaziri, W. (2009, October). A methodology for ontology evolution
and versioning. In Advances in Semantic Processing, 2009.
SEMAPRO'09. Third International Conference on (pp. 15-21). IEEE.

[10] Stojanovic, L., & Motik, B. (2002, September). Ontology evolution
within ontology editors. In Proceedings of the OntoWeb-SIG3
Workshop (pp. 53-62).

[11] Horrocks, I., & Patel-Schneider, P. F. (2003). Reducing OWL
entailment to description logic satisfiability. In The Semantic Web-
ISWC 2003 (pp. 17-29). Springer Berlin Heidelberg.

[12] Ehrig, M., Haase, P., Stojanovic, N., & Hefke, M. (2004, December).
Similarity for ontologies-a comprehensive framework. In Workshop
Enterprise Modelling and Ontology: Ingredients for Interoperability,
at PAKM (Vol. 2004).

[13] Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., & Liu, S. (2006).
Towards a complete OWL ontology benchmark. In The Semantic
Web: Research and Applications (pp. 125-139). Springer Berlin
Heidelberg.

[14] Paquette, G. & Magnan, F. (2008). An executable Model for Virtual
Campus Environments. Handbook on Information Technologies for
Education and Training (pp. 363-403).

[15] Plessers, P., & De Troyer, O. (2005). Ontology change detection
using a version log. In The Semantic Web–ISWC 2005 (pp. 578-592).
Springer Berlin Heidelberg.

[16] Horrocks, I. (2005). Owl: A description logic based ontology
language. In Logic Programming (pp. 1-4). Springer Berlin
Heidelberg.

[17] Pittet, P., Nicolle, C., & Cruz, C. (2012). Guidelines for a Dynamic
Ontology-Integrating Tools of Evolution and Versioning in Ontology.
arXiv preprint arXiv:1208.1750.

[18] Pittet, P. Cruz, C. & Nicolle C. (2013). A Structural Ontology Model
for Change Modelling, proceedings of Meta4es workshop, Graz,
Austria.

[19] Gueffaz, M., Pittet, P., Rampacek, S. Cruz, C. & Nicolle C. (2012).
Inconsistency Identification In Dynamic Ontologies Based On Model
Checking. INSTICC, ACM SIGMIS, (pp. 418-421.)

ACKNOWLEDGEMENT
Authors would like to thank the Regional Council of
Burgundy for its support. They particularly acknowledge
Yoan Chabot and Maxime Demongeot for their important
contribution on the application implementation and Jean-
Luc Baril for his expertise on the mathematical model.

